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Abstract. A popular strategy for dealing with large parameter estimation problems
is to split the problem into manageable subproblems and solve them cyclically one by
one until convergence. A well-known drawback of this strategy is slow convergence in
low noise conditions. We propose using so-called pattern searches which consist of an
exploratory phase followed by a line search. During the exploratory phase, a search
direction is determined by combining the individual updates of all subproblems.
The approach can be used to speed up several well-known learning methods such
as variational Bayesian learning (ensemble learning) and expectation-maximization
algorithm with modest algorithmic modifications. Experimental results show that
the proposed method is able to reduce the required convergence time by 60–85 % in
realistic variational Bayesian learning problems.

Keywords: alternating optimization, Bayesian methods, cyclic updating, line search,
parameter estimation, pattern search, variational Bayesian learning.

1. Introduction

Several advanced statistical learning methods for neural networks and
graphical models are based on a generative approach where the goal
is to find a specific model which explains how the observations were
generated. It is assumed that there exist certain latent variables (also
called factors, sources, or hidden variables or causes) which have gener-
ated the observed data through an unknown mapping. In unsupervised
learning, the goal is to identify both the unknown latent variables
and the generative mapping, while in supervised learning it suffices
to estimate the generative mapping.

Especially in unsupervised generative learning of large-scale data
sets, the number of unknown parameters to be estimated easily grows
very high. This is because all the source values corresponding to each
observation vector are essentially unknown parameters which must be
estimated from the available data. In this kind of situations, it is
computationally prohibitive to estimate all the unknown parameters
or values simultaneously. Instead, one must resort to simpler cyclic
estimation schemes, also known as alternating optimization or grouped
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coordinate optimization. In these schemes, one parameter or a group
of parameters is picked up at a time and optimized while keeping the
other parameters frozen to their current values. Repeating this process
for different sets of parameters, their values eventually converge to an
optimum [3].

In particular, this strategy is utilized in the variational Bayesian
techniques [12], which decouple the difficult problem of describing the
posterior probability density of the model parameters into many smaller
tractable problems. It is well known that in the case of low noise,
the posterior dependences become stronger. This in turn makes the
cyclic estimation procedure slow. It is difficult to optimize the values
of dependent parameters one at a time since any one of them can only
be changed very little if the other parameters stay constant. In this
paper we propose a method based on pattern searches for speeding up
the convergence of the estimation procedure in such cases.

In the next section, we briefly describe Bayesian methods which
apply this type of cyclic estimation. In Section 3, we present a sim-
ple example illustrating the considered problem. The pattern search
algorithm for accelerating estimation of parameters is explained in
Section 4. In Section 5, the proposed method is applied to example
problems demonstrating its effectiveness. The paper concludes with a
discussion and suggestions for future work.

2. Bayesian estimation methods

Denote by θ the set of model parameters and all the unknown variables
that we wish to estimate from a given data set X. In Bayesian estima-
tion methods, it is assumed that there is some prior information on θ

available. This is represented in the form of prior distribution p(θ) of
θ. After learning, all the information of the parameters is contained in
the posterior probability density p(θ|X) of the parameters given the
data X. It can be computed from the Bayes’ rule

p(θ|X) =
p(X|θ)p(θ)

p(X)
. (1)

Here p(X|θ) is the likelihood of the parameters θ, and p(X) is a nor-
malizing constant which can be evaluated if necessary by integrating
the numerator p(X|θ)p(θ) over all the possible values of θ.

Because integration over parameter space that is needed to evaluate
the normalising constant and to use the posterior otherwise is difficult,
using the exact posterior is typically intractable, and some approxima-
tions are needed. The simplest approximations are based on using point
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estimates such as maximum a posteriori (MAP) estimate or slightly
more advanced EM (expectation maximization) algorithm [5, 17]. In
EM algorithm, the parameters are divided into two sets which are
then updated cyclically. The algorithm employs point estimates for
some of the parameters, which can lead to problems with model order
estimation and overfitting [4].

Variational methods form one class of more advanced approxima-
tions. Their key idea is to approximate the exact posterior distribution
p(θ|X) by another distribution q(θ) that is computationally easier to
handle [12]. The approximating distribution is usually chosen to be
a product of several independent distributions, one for each param-
eter or a set of similar parameters. We use a particular variational
method known as ensemble learning that has recently become very
popular [8, 15, 14].

In ensemble learning the optimal approximating distribution is found
by minimizing the Kullback-Leibler divergence between the approxi-
mate and true posterior. After some considerations [14, 15], this leads
to the cost function

C =

∫
θ

q(θ) ln
q(θ)

p(X,θ)
dθ. (2)

The standard procedure is to optimize the cost function with respect
to different groups of the parameters cyclically.

During the last years, variational Bayesian learning has gained pop-
ularity because of its desirable properties. It largely avoids the model
order estimation and overfitting problems related to the maximum
likelihood (ML) and maximum a posterior (MAP) estimation. The
method has been successfully applied to various models such as hidden
Markov models (HMMs) [16], independent factor analysis [1], nonlinear
independent component analysis [13], as well as switching and nonlinear
state-space models [7, 18]. It has also been used as a foundation of a
general framework of building blocks for latent variable models [20].
This building block framework is employed in the experimental part of
this paper.

3. A simple illustrative example

As an example, consider the simple linear generative model x = As+n

used in noisy independent component analysis (ICA) [10]. There x

denotes the known observation vector, s the unknown source vector, A

the unknown mixing matrix, and n a vector of additive noise. In ICA,
the mixing matrix A is chosen so that the components of the source
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vector s become as independent as possible. In this problem, the mixing
matrix A and the source vectors s are intimately tied. Changing A must
be compensated by a corresponding change in s and vice versa to retain
the value of the observed vector x. If A and s are updated separately,
quite large number of steps may be required to find the correct values
because both A and s can be changed only little at each step.

Take now the simplest possible model x = as + n where the obser-
vation x, source s, noise n, and the mixing coefficient a are all scalars.
Though seemingly trivial, this case already illustrates several problems
encountered in more difficult generalizations, and it is easy to visualize.
Assume that there is a single observation x = 1, and that the variables
a and s have Gaussian priors with zero mean and unit variance. The
noise term n is also Gaussian with zero mean and predefined variance σ2

n

whose value is changed in different experiments. Variational Bayesian
learning is used to solve this problem by assuming that a and s are
statistically independent.
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Figure 1. Contour plots of the posterior distribution of the parameters of the linear
model x = as+n under different noise levels. The convergence of the means of a and
s in cyclic iteration to the optimum is shown in the left subfigure. A corresponding
iteration in the right subfigure would need to take much shorter steps and thus
would need many more iterations.

It turns out that the optimal approximate posterior distributions
of a and s are Gaussian. Ignoring the variances of the Gaussians, the
cost function of posterior means of a and s is quite similar to the
posterior distributions shown in Fig. 1. For a moderate noise variance
of σ2

n = 10−1 in the left subfigure, a and s depend on each other only
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weakly. The figure shows that the cyclic iteration scheme converges
relatively quickly in this case.

When the noise variance decreases, the optimal region of the cost
function becomes narrower. For the noise variance σ2

n = 10−3 in the
right subfigure, the optimization problem is already much more dif-
ficult, and convergence of the cyclic iteration slows down consider-
ably. This problem becomes more pronounced in higher-dimensional
real-world problems.

4. The algorithm

We propose speeding up convergence of cyclic update schemes by ap-
plying the idea of pattern searches introduced by Hooke and Jeeves
in [9]. The pattern search consists of two phases. In the first exploratory
phase, the objective function is optimized in each coordinate direction
separately as usual. This phase is called parameter-wise update phase.
The updates performed there are then combined to form a diagonal
direction for the line search.

Pattern search methods have mostly been abandoned in standard
optimization literature in favor of conjugate gradient and other more
advanced methods. Using such methods with the variational Bayesian
approach would, however, require significant changes to the existing
algorithms, and would not utilize the ability to solve independent sub-
problems easily. The pattern search approach takes advantage of the
existing methodology for performing the parameter-wise updates and
requires only minor changes to the update process as illustrated by
the algorithm optimize pattern below. It is especially noteworthy that
the pattern search approach does not need the derivatives of the cost
function.

Assume that we are optimizing the function C : R
n → R, and

denote by d1, . . . ,dn the standard basis of R
n. One iteration of the

parameter-wise updates can be implemented as follows.

function optimize parameter-wise(C, z1):
z2 ← z1

for i = 1, . . . , n:
λ← argminλ C(z2 + λdi)
z2 ← z2 + λdi

return z2

In practice the parameter-wise updates are not performed using a
general purpose optimization algorithm. In the variational Bayesian
approach the problem is split into smaller subtasks. They can be solved
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more easily, which is utilized here. The ability to solve these subtasks
analytically in many problems is in fact one of the most important
reasons for using a cyclic update scheme in the first place. The updates
can also be carried out for a larger group of parameters at a time rather
than for just one parameter.

The complete pattern search scheme is a straightforward extension
to this standard algorithm:

function optimize pattern(C, z1):
z2 ← optimize parameter-wise(C, z1)
∆z← z2 − z1

λ← argminλ C(z1 + λ ·∆z)
z3 ← z1 + λ ·∆z

return z3

z1

z2

z3

∆z

Parameter-wise updates

Line search

Figure 2. Illustration of the pattern search algorithm.

The algorithm is illustrated in Fig. 2. The figure shows how the direc-
tion of the line search is obtained as the difference vector ∆z = z2−z1 of
the value of the parameters z2 after the parameter-wise update round
and the corresponding value z1 before the updates. Parameters such
as variances that have a positivity constraint are treated on logarith-
mic scale for the purposes of evaluating the difference and later when
extrapolating for the iterates z1 + λ ·∆z. This leads to formulas

∆σ := log σ2 − log σ1 = log
σ2

σ1
(3)

and
log σ3 = log σ1 + λ ·∆σ ⇒ σ3 = σ1 exp(λ ·∆σ) (4)

that are used for such parameters.
Figure 2 also shows that although the optimizations in the function

optimize pattern appear to be similar to those in optimize parameter-
wise, there is a big difference: the line search is made in an arbitrary
direction instead of standard coordinate directions. In many cases such
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as ours, the parameter-wise optimizations in the directions of coor-
dinate axes can be easily carried out analytically. The arbitrary line
search is a very different operation, but essentially it requires only a
method to evaluate the cost function of the model and a generic line
search algorithm. Thus it is actually simpler than the standard update
method which requires at least some local gradient information.

The computational requirements of the line search are typically
comparable to a few rounds of parameter-wise optimizations. The little
extra work really pays off as the value of λ can easily be more than
100. Therefore a single line search can save at least that many ordinary
rounds of optimization.

4.1. Line searches

The line search in the function optimize pattern can be implemented by
any standard algorithm. As the other parts of the algorithm do not use
derivatives of the cost function, it is reasonable to choose a derivative
free line search algorithm. Good general candidates for such algorithms
are the golden section method and the method of quadratic fit [6, 2].

The golden section method gives decent worst case performance, but
does usually not perform as well as its competitors in more realistic sit-
uations. In our examples, the cost function appeared roughly quadratic
along the line search direction. Hence a simple implementation of the
method of quadratic fit with golden section method as a fallback for
the most difficult cases was used. In practice the best method would
probably be some kind of a combination of these two basic methods [6].

4.2. Implementation details

In standard Hooke–Jeeves algorithm there is only one cyclic optimiza-
tion step between two line searches [2]. This turned out to be subop-
timal for our purposes, because the benefits of the line searches with
increased step length were rather small. The resulting algorithm was
even slower than the standard update scheme in some cases.

Letting the iteration stabilize by doing several parameter-wise op-
timization phases before the next line search seemed to work much
better. In the experiments we used ten parameter-wise optimization
rounds between two consecutive line search steps. We also tried to
average the search direction over several parameter-wise optimization
rounds but this did not improve the results.

pattern.tex; 4/03/2003; 10:40; p.7



8 Honkela, Valpola, Karhunen

5. Experiments

We demonstrate the usefulness of the pattern search algorithm with
three experiments using variational Bayesian learning. In the examples
considered here, the approximate posterior is a product of independent
Gaussian distributions. Hence it is completely characterized by the
means and variances of these distributions. To ensure the validity of
the values of the variances, they are treated on a logarithmic scale as
explained in Section 4.

5.1. One-dimensional example
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Figure 3. The cost function values attained by the pattern search algorithm (solid
lines) and standard cyclic updating (dashed lines) in the simple one-dimensional
example. The noise variance decreases by a factor of 10 between consecutive curves
from left to right.

Consider first the very simple linear model x = as + n discussed in
Section 3 and in Figure 1. The progress of the optimization procedures
as a function of time is illustrated in Figure 3. The cyclic iteration
performs very badly in this case. For low noise levels, the length of
the steps taken by the iteration is directly proportional to the noise
variance. Thus halving the noise level (standard deviation) quadruples
the time needed for the algorithm to converge. The pattern search
method does much better, slowing down clearly less when the noise level
decreases. The time scale is logarithmic so that a constant difference is
in fact difference by a constant factor. The noise variance σ2

n decreases
by a factor of 10 between the consecutive curves starting from the left.
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5.2. Real ICA example

The method was also tested with a more realistic noisy independent
component analysis (ICA) [10] model x = As +n where n is the noise
vector. The data set used was an eight-dimensional artificial mixture x

of four source signals s. A varying amount of Gaussian noise was added
to the data. The number of data points was 200. The prior distributions
of the sources were Gaussians with varying variance, which corresponds
to a super-Gaussian distribution. The actual simulations were run us-
ing the building block library discussed in [20]. All the parameters of
the model had hierarchical priors which were also estimated from the
data. The total number of parameters and hyperparameters was 1662.
For each of them, both the mean and variance of the approximating
posterior distribution are estimated in the variational Bayesian method.

The convergence times of different methods are shown in Figure 4
in a similar manner as in Fig. 3. The cyclic update algorithm behaves
in a very similar manner as in the simple one-dimensional example.
Finding the correct rotation for the sources takes a long time, and this
time seems to increase in proportion to the inverse of the variance of
additive noise. The pattern search method is again significantly faster,
typically reaching the same value of cost function in around one fourth
or one eighth of the time required by the cyclic update method.

5.3. Hierarchical nonlinear factor analysis example

The third experiment was conducted with a hierarchical nonlinear fac-
tor analysis model [19]. The data set used in the experiment was the
same 20 dimensional artificial data generated by a random multi-layer
perceptron (MLP) network from 8 independent random sources that
was also used in [13]. The number of samples was 1 000. More details
on the data set can be found in [13].

The generative model for the nonlinear model is basically x(t) =
As2(t) + f(s2(t)) with MLP-like structure f(s2(t)) = W1φ(W2s2(t) +
b2) + b1 and activation function φ(t) = exp(−t2) applied componen-
twise. In order to avoid problems caused by propagation of variance
through multiple paths (see [13]), the values of the hidden neurons are
taken as latent variables s1(t) so that actually

s1(t) ∼ N(W2s2(t) + b2,Σ1) (5)

and
x(t) ∼ N(As2(t) + W1φ(s1(t)) + b1,Σx), (6)

where Σ1 is the (diagonal) covariance matrix of the first level sources
and Σx is the noise covariance matrix.
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Figure 4. The cost function values attained by the pattern search algorithm (solid
lines) and standard cyclic update algorithm (dashed lines) in the real ICA example.
The noise variance decreases by a factor of 10 between consecutive curves starting
from the left.

The results of applying the two optimization algorithms to this
problem are illustrated in Fig. 5. The final value of the cost function at-
tained and the time required for the convergence vary between different
initializations, but the difference between standard cyclic updates and
our pattern search method stays roughly the same. The comparison is,
however, somewhat difficult as the methods do not always converge to
the same local optimum. This multitude of local optima is an inherent
feature of flexible nonlinear models such as the one used here. The
pattern searches did not affect the average quality of the local optima
that were found.

For Figure 5, we have selected four simulations that did converge
to more or less same result. The results of the other simulations are
similar: the simulations using pattern searches converge more quickly
to some local minimum of the cost function than the standard method.
This overall behaviour is demonstrated in Figure 6 which shows the
average speedups in 20 simulations with different initialisations. As
the different algorithms do not converge to the same point we have
used the times needed to reach certain level of cost function value as
measurement points. The levels were chosen to be 1000, 100, 10 and
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Figure 5. The cost function values attained by the pattern search algorithm (solid
lines) and standard cyclic update algorithm (dashed lines) in the hierarchical non-
linear factor analysis example. The subfigures show the results of four experiments
run with different initializations.

1 units above the worse local minimum found in that case. The wider
confidence intervals in the last case are thus due to the fact that in
some cases the convergence of the worse method has already started
to slow down close to the local minimum whereas the other method
is still descending rapidly. The figure is almost the same even if the
levels are chosen for each method separately except that in that case
the confidence intervals behave more smoothly.

Overall, the relative time savings in the hierarchical nonlinear factor
analysis experiments are approximately the same as in the ICA experi-
ment, around 60–80 %, with the mean of all the results used in Figure 6
being 73 % and the worst individual point 37 %.

6. Discussion

The pattern search algorithm is a straightforward extension of the
standard cyclic update scheme, but it accelerates the convergence sig-
nificantly. It is easy to implement and utilizes the ability to solve
the independent optimization problems easily. All the operations re-
quired scale linearly with respect to the number of parameters in the
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Figure 6. The average speedup obtained by pattern searches in different phases
of learning. The speedup is measured by the ratio of times required by the basic
algorithm and pattern search method to reach certain level of cost function value.
The solid line shows the mean of the speedups over 20 simulation with different
initialisations and the dashed lines show 99 % confidence intervals for the mean.

problem. The method could probably be refined to further improve
its performance. In this paper, we have demonstrated that even in its
current fairly simple form, the proposed method can provide significant
speedups in learning.

In optimization literature pattern search methods have, however,
mostly been abandoned and replaced by more advanced methods like
conjugate gradient optimization. The conjugate gradient method is very
different from the standard procedure used in variational Bayesian ap-
proach, because it requires derivatives of the cost function and does not
take advantage of the ability to solve independent subproblems easily.
It has anyway been used successfully for speeding up the EM algorithm
in [11]. It would be interesting to study whether a similar method will
work for other algorithms such as variational Bayesian learning as well,
and how it would compare with the pattern search approach proposed
in this paper. Nevertheless, the conjugate gradient method requires
significant algorithmic modifications, and does not therefore directly
compete with the pattern search approach, which attains a significant
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improvement in the convergence speed with minor modifications to the
standard algorithm.
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