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Abstract. The variational Bayesian nonlinear blind source separation
method introduced by Lappalainen and Honkela in 2000 is initialised
with linear principal component analysis (PCA). Because of the mul-
tilayer perceptron (MLP) network used to model the nonlinearity, the
method is susceptible to local minima and therefore sensitive to the ini-
tialisation used. As the method is used for nonlinear separation, the
linear initialisation may in some cases lead it astray. In this paper we
study the use of kernel PCA (KPCA) in the initialisation. KPCA is a
rather straightforward generalisation of linear PCA and it is much faster
to compute than the variational Bayesian method. The experiments show
that it can produce significantly better initialisations than linear PCA.
Additionally, the model comparison methods provided by the variational
Bayesian framework can be easily applied to compare different kernels.

1 Introduction

Nonlinear blind source separation (BSS) and related nonlinear independent com-
ponent analysis (ICA) are difficult problems. Several different methods have been
proposed to solve them in a variety of different settings [1, 2]. In this work, we
attempt to combine two different methodologies used for solving the general non-
linear BSS problem, the kernel based approach [3, 4] and the variational Bayesian
(VB) approach [5, 6]. This is done by using sources recovered by kernel PCA as
initialisation for the sources in the variational Bayesian nonlinear BSS method.

Kernel PCA (KPCA) [3] is a nonlinear generalisation of linear principal com-
ponent analysis (PCA). It works by mapping the original data space nonlinearly
to a high dimensional feature space and performing PCA in that space. With
the kernel approach this can be done in a computationally efficient manner. One
of the drawbacks of KPCA in general is the difficulty of mapping the extracted
components back to the data space, but in the case of source initialisation, such
mapping is not needed.

The variational Bayesian nonlinear BSS method presented in [5] is based on
finding a generative model from a set of sources through a nonlinear mapping



to the data. The sources and the model are found by using an iterative EM-
like algorithm. Because of the flexible multilayer perceptron (MLP) network
used to model the nonlinearity and general ill-posed nature of the problem, the
method requires a reasonable initialisation to provide good results. In the original
implementation, the initialisation was handled by computing a desired number of
first linear principal components of the data and fixing the sources to those values
for some time while the MLP network was adapted. The linear initialisation is
robust and seems to work well in general, but a nonlinear initialisation provided
by KPCA should lead to better results and faster learning.

In the next section, kernel PCA and variational Bayesian nonlinear BSS
methods will be presented in more detail. Experimental results of using KPCA
initialisation for VB approach are presented in Section 3. The paper concludes
with discussion and conclusions in Sections 4 and 5.

2 The Methods

In this section, kernel PCA and the variational Bayesian nonlinear BSS method
will be introduced briefly. For more details, see the referenced papers.

2.1 Kernel PCA

Kernel principal component analysis (kernel PCA) was introduced in [3] as a
nonlinear generalisation of principal component analysis. The idea is to map
given data points from their input space R

n to some high-dimensional (possibly
infinite-dimensional) feature space F ,

Φ : R
n → F , (1)

and to perform PCA in F . The space F and therewith also the mapping Φ might
be very complicated. However, employing the so-called kernel trick, kernel PCA
avoids to use Φ explicitly: PCA in F is formulated in such a way that only the
inner product in F is needed (for details see [3]). This inner product can be seen
as some nonlinear function, called kernel function,

R
n × R

n → R

(x,y) 7→ k(x,y),
(2)

which calculates a real number for each pair of vectors from the input space.
Deciding on the form of the kernel function, defines implicitly the feature space
F (and the mapping Φ). The kernel functions used in this paper are shown
in Table 1. These functions are not proper Mercer kernels and the “covariance
matrix” evaluated in feature space is not positive semidefinite. Most eigenvalues
are nevertheless positive and the corresponding components are meaningful, so
the negative eigenvalues can be simply ignored.



Function Values of parameter κ used

tanh(κ(x · y)) 10−3
, 10−2.5

, 10−2
, . . . , 101.5

, 102

arsinh(κ(x · y)) 10−3
, 10−2.5

, 10−2
, . . . , 101.5

, 102

Table 1. Summary of the kernels used in the experiments

2.2 Variational Bayesian Nonlinear BSS

Denoting the observed data by X = {x(t)|t} and the sources by S = {s(t)|t},
the generative model for the VB nonlinear BSS method can be written as

x(t) = f(s(t),θf ) + n(t), (3)

where f is the unknown nonlinear (mixing) mapping modelled by a multilayer
perceptron (MLP) network with weights and parameters θf , and n(t) is Gaussian
noise. The sources S are usually assumed to have a Gaussian prior, which leads
to a PCA like nonlinear factor analysis (NFA) model. This can be extended to a
full nonlinear BSS method by either using a mixture-of-Gaussians source prior
or using standard linear ICA as post-processing for the sources recovered by
NFA. As the latter method is significantly easier and produces almost as good
results, it is more commonly used [5, 6].

The NFA model is learned by a variational Bayesian learning method called
ensemble learning. As a variational Bayesian method, ensemble learning is based
on finding a simpler approximation to the true posterior distribution p(S,θ|X)
of the sources and model parameters θ. The approximation q(S,θ) is fitted by
minimising the cost function

C = Eq

[

log
q(S,θ)

p(S,θ,X)

]

= DKL(q(S,θ)||p(S,θ|X)) − log p(X), (4)

where DKL(q||p) denotes the Kullback-Leibler divergence between the distribu-
tions q and p. The remaining evidence term is a constant with respect to the
parameters of the model so the cost is minimised when the Kullback-Leibler
divergence is minimised. Because the Kullback-Leibler divergence is always non-
negative, the cost function yields an upper bound for − log p(X) and conse-
quently a lower bound for model evidence p(X). The values of the cost function
can be thus used for model comparison with smaller values indicating larger lower
bounds on model evidence [7, 8]. In our case, the approximating distribution
q(S,θ) is restricted to be a multivariate Gaussian with a diagonal covariance.

2.3 Learning and Initialisation of the VB Method

The variational Bayesian learning algorithm of the NFA model is based on iter-
ative updates of the parameters of the approximating distribution. The means
and diagonal elements of the covariance correspond to estimated values and vari-
ances of the different sources and weights. The sources and MLP network weights



are updated by minimising the cost in Eq. (4) with a gradient based algorithm.
The optimal values of other model parameters such as noise variances and pa-
rameters of the hierarchical priors can be solved exactly if the other parameters
are assumed to be fixed.

Because of the iterative nature of the update algorithms and especially be-
cause the MLP network is very prone to local optima, the method needs a good
initialisation to produce good results. Earlier, a given number of first linear PCA
components has been used as initialisation of the posterior means of the sources
while the means of the weights have been initialised randomly. The variances of
all parameters are initialised to small constant values. The means of the sources
are then kept fixed for the first 50 iterations while the network adapts to model
the mapping from the PCA sources to the observations [5].

In this work, the principal components extracted with the linear algorithm
are replaced with components extracted with the nonlinear kernel PCA algo-
rithm. Otherwise the learning proceeds in the same way as before. The flow of
information in the method is illustrated in Fig. 1.

X

X initial S

S, θNFA
KPCA

Fig. 1. A block diagram of the learning method.

3 Experiments

The experiments were conducted using the same artificial data set that was used
in [9]. The data was generated by mapping 4 super-Gaussian and 4 sub-Gaussian
sources with a random MLP to a 20 dimensional space and adding some noise.
The number of samples used was 1000. The NFA model used an MLP network
with 10 inputs (sources), 30 hidden neurons and 20 outputs. The model can
prune unneeded sources so using too many causes no problems.1

In order to get the initialisations for the sources, kernel PCA was applied
to the data. A number of different types of kernels and parameters were used
as listed in Table 1. These were then all used for brief simulations with the
NFA algorithm to see which provided the best results. The results in terms of
cost function value attained after 1000 iterations are illustrated in Fig. 2. The
figure shows that larger parameter values tend to produce better results although
variations between neighbouring values can be large.

The results of the experiments were evaluated based on both the attained
values of the cost function in Eq. (4) and the signal-to-noise ratios (SNRs) of

1 Matlab code for KPCA and NFA methods used in the experiments is available at
http://www.lis.inpg.fr/pages perso/bliss/deliverables/d20.html.
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Fig. 2. Comparison of cost function values attained with different kernels and their
parameter values after 1000 iterations of the NFA algorithm. The lines show the mean
result of 10 simulations with different random MLP initialisations for kernel PCA with
tanh and arsinh kernels and linear PCA.
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Fig. 3. Signal-to-noise ratio of the optimal linear reconstruction of the true sources
from the estimated source subspace as a function of the cost function value attained
in different stages of different simulations, some of which were run for up to 50000
iterations.



the optimal linear reconstruction from the estimated source subspace to the true
sources. The two statistics are strongly correlated, as illustrated in Fig. 3. This
shows that the ensemble learning cost function is a very good measure of the
quality of the found solution. This is in agreement with the results reported in [9]
for a hierarchical nonlinear model.
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Fig. 4. Comparison of signal-to-noise ratios attained with linear PCA and kernel PCA
initialisations. The results shown here are the mean of 10 simulations with different
random MLP initialisations.

Based on the results shown in Fig. 2, the parameter value κ = 101.5 ≈ 31.6
was chosen as best candidate for the tanh kernel and the value κ = 100 for
the arsinh kernel. The simulations for these kernels and linear initialisation were
then continued for 4000 more iterations. The SNRs attained at different stages
of learning on average in 10 simulations with these initialisations are illustrated
in Fig. 4. The results show that kernel PCA is able to provide a consistent
improvement of about 1 dB in signal-to-noise ratio to the results attained in
equal time with linear PCA initialisation.

Looking at the same result from time perspective, the kernel PCA initiali-
sation can speed up learning significantly. This can be seen from Fig. 5, which
shows a comparison of numbers of iterations needed with different initialisations
on average in 10 simulations with tanh kernel to reach a given level of cost func-
tion value. The figure shows that as good results can be attained with kernel
PCA initialisation using only slightly more than half of the time needed with
linear PCA initialisation.

4 Discussion

The signal-to-noise ratios reported in the experiments were evaluated for opti-
mal linear reconstruction from the estimated source subspace to the true sources.
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Fig. 5. The number of iterations needed on average to attain the same level of cost
function value with linear PCA initialisation as a function of number of iterations
needed with kernel PCA initialisation.

As noted in [9], these optimal results are presumably about 1 dB higher than
completely blind application of linear ICA would produce. The optimal recon-
struction was selected for comparison because it needed to be evaluated often and
was more efficient to evaluate than running linear ICA every time and avoided
a possible source of error.

In order to find out which kernels were the best ones, the signal-to-noise
ratios were also evaluated for the components extracted with linear PCA and
kernel PCA with different kernels. Surprisingly these SNRs had little correlation
with how well NFA worked with different initialisations. The best SNR among
the initialisations was attained by linear PCA followed by the kernels that were
closest to linear. These were however not the ones that produced the best overall
results. Fortunately the best kernels could be identified rather quickly from the
cost function values attained during learning.

5 Conclusions

The experiments show that kernel PCA can provide significantly better initiali-
sation for nonlinear factor analysis than linear PCA. The lower bound of model
evidence provided by the cost function correlates strongly with the quality of
the results as measured by the signal-to-noise ratio of optimal linear reconstruc-
tion of true sources from the estimated sources, thus allowing easy evaluation
of results. The cost function can also be evaluated in more realistic situations,
whereas the SNR cannot.

From variational Bayesian perspective, the kernel PCA initialisations are
good complement to the nonlinear BSS method. Considering the significant
computational demands of the basic method, the computation time required
for kernel PCA and even kernel selection is more or less negligible. From kernel



point of view, the variational Bayesian NFA is an interesting complement to
KPCA as it allows relatively easy comparison of different kernels and parameter
values.
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