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Abstract. Over recent years many algorithms have been used for the

analysis of electro- and magnetoencephalograms, assuming a linear model

for the mixing of cortical activity at the sensor plane. Such linearity can

be theoretically justified, through the Maxwell equations. In this paper

we exploit the adaptive and modular nature of the variational Bayesian

hierarchical nonlinear factor analysis to give empirical evidence of linearity,

as well as to estimate the intrinsic dimension of the generative source space.

1 Introduction

Magnetoencephalography (MEG) is a non-invasive brain imaging technique re-
lated to the electroencephalography (EEG). It is sensitive to the net magnetic
flux arising from the post-synaptic currents of thousands of neurons, acting syn-
chronously. The Maxwell equations, ruling over such electromagnetic phenom-
ena, when applied to the various head tissue types (brain, cerebral spinal fluid,
skull, scalp, ...), suggest a quasi-instantaneous linear model for the combination
of cortical activity at the measuring level [1, 2].

At first as a simple first order approximation, then basing oneself on the
aforementioned theoretical grounds for linearity, recent years have seen many
successful linear blind source separation (BSS) approaches to the analysis of
biomedical signals (c.f., [2–6]). We now give further experimental validation to
the belief of a linear generative nature for MEG.

In the present study, we use the modular and adaptive nature of variational
Bayesian hierarchical nonlinear factor analysis (HNFA) to show direct empirical
evidence of linearity. Furthermore, we see how this algorithm is capable of
estimating the intrinsic dimension of the generative space. Such estimate is
crucial, e.g., when making sure we avoid overlearning phenomena [7]. In line
with consistency studies of independent component analysis (ICA, c.f. [8–10]),
we show also how to identify the percentage of signal and noise in such space.

2 Hierarchical nonlinear factor analysis by variational

Bayesian learning

In this work, the MEG recordings are analysed with a nonlinear blind source
separation method. The method is based on postprocessing the results of a
nonlinear factor analysis (NFA) method with linear ICA to obtain nonlinear



independent components. NFA is a nonlinear generalisation of linear factor
analysis. The generative model for observations x(t) in NFA is

x(t) = f(s(t)) + n(t), (1)

where s(t) denotes the Gaussian sources or factors, f is a nonlinear mapping from
sources to observations and n(t) is Gaussian noise. An algorithm for solving the
NFA problem using a multilayer perceptron (MLP) network to model f is pre-
sented in [11]. The method is based on variational Bayesian learning and works
well for small problems, but the computational complexity is quadratic with
respect to the number of the sources and the approximately 60 sources needed
to model the MEG data would increase the computational burden too much.
To avoid this, a computationally simpler hierarchical NFA (HNFA) method [12]
based on the variational Bayesian building block framework [13] is used instead.
The HNFA method was used for reconstructing missing data in several well-
known benchmark data sets in [14]. It performed clearly better than linear
models, showing that the method can effectively learn a nonlinear representa-
tion of the data.

2.1 HNFA model

The model for the nonlinearity used in HNFA is layered in a way resembling
MLP and radial basis function (RBF) networks. In order to attain the smaller
computational complexity, the hidden nodes of the network have to be taken as
additional latent variables, hence the name hierarchical NFA. The probabilistic
model for the observations x(t) can now be written as

h(t) ∼ N(As(t) + a,Σh) (2)

x(t) ∼ N(Cs(t) + Bφ(h(t)) + b,Σx), (3)

where h(t) are the additional latent variables at the hidden nodes. Σh and
Σx are the noise covariance matrices of the hidden nodes and the observations,
respectively, φ is an activation function acting component-wise on its inputs and
A,B,C,a,b are weight matrices and bias vectors. For the sake of computational
simplicity, the nonlinear activation function is φ(y) = exp(−y2). The structure
of the model is illustrated in Fig. 1.

2.2 Variational Bayesian learning

The HNFA model is learned using a variational Bayesian method called en-
semble learning [15]. It is based on approximating the posterior distribution
p(S,θ,H |X) of the sources S = {s(t)}, parameters θ, and additional latent
variables H = {h(t)} with a simpler factorial approximation q(S,θ,H) =
∏

i,t q(si(t))
∏

j,t q(hj(t))
∏

k q(θk). Here X = {x(t)} is the data set. The ap-
proximation is fitted by minimising the cost

C =

〈

log
q(S,θ,H)

p(S,θ,H ,X)

〉

= DKL(q(S,θ,H)||p(S,θ,H |X)) − log p(X) (4)
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Fig. 1: An illustration of the HNFA model. Square nodes correspond to weight
matrices and round nodes to the (latent) variables.

where 〈·〉 denotes expectation over q(S,θ,H) and DKL(q||p) is the Kullback-
Leibler divergence between q and p. As the Kullback-Leibler divergence is always
non-negative, C yields an upper bound for − log p(X) and thus a lower bound for
the evidence p(X). This allows the cost function values to be used as a criterion
for model comparison and pruning of unused parts of the model [16].

2.3 Learning the model

The HNFA model is learned by minimising the cost (4) with a variational EM
algorithm that updates one variable at a time while keeping the others fixed. The
model structure is constructed by starting with a linear mapping from sources
s(t) to the data x(t) and gradually building the nonlinearity by adding the
hidden nodes hi(t). The incoming weights of the added nodes are initialised
randomly. During the first addition all the generated candidates are added but
later only those showing the greatest estimated decrease in the cost are selected
because random candidates are unlikely to significantly decrease the cost. After
adding new hidden nodes the learning algorithm is run for 30 iterations before
applying pruning to remove unsuccessful additions and other redundant parts.
In addition to complete hidden nodes, the individual elements of the weight
matrices are also pruned and added in a similar manner. For more details on
the procedure, see [12].

3 Experimental evidence

To study the linearity and the intrinsic dimensionality of the generative space
of MEG recordings, the HNFA method was applied to measurements containing
strong artifacts. This data was first introduced in [17], and has since constituted
a good benchmarking set for the evaluation of various algorithms.

The data consisted of 122-channel whole-scalp MEG recordings, collected at
61 locations over the scalp. It contained controlled artifacts, such as eye blinks
and saccades, cardiac cycle, muscle contraction through biting, as well as the
contamination from a digital watch, placed inside the shielded room, one meter



away from the measuring device. The sampling frequency was 297 Hz, and the
data was bandpass-filtered between 0.75 Hz and 45 Hz, and further downsampled
by a factor of 2. We took 10000 samples, corresponding to around 68 seconds.

The HNFA method was tested with 48, 56, 64 and 72 sources with multiple
random initialisations. The attained cost function values are shown in left panel
of Fig. 2. The figure shows a clear minimum in the cost around 64 sources
indicating optimal size of the model.
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Fig. 2: Left panel: The value of the cost function as a function of the number
of sources. The circles show results of individual experiments while the solid
line shows the mean of the results. Right panel: Mean correlations between the
components in different simulations, sorted by correlation.

All of the extracted 64 sources are not very meaningful but rather seem to
be associated with more complex noise processes affecting several measurement
channels. These additional signals are close to Gaussian and hence cannot be
estimated reliably. This can be utilised to filter them out by running the algo-
rithm multiple times and correlating the results of different simulations. The
means of such correlations are illustrated in the right panel of Fig. 2. The most
reliable components form a group of approximately 20 easily interpretable com-
ponents. Selected examples of these are shown as eight topmost sources in Fig. 3
together with two less consistent noise-like components. In agreement with [17],
two muscle artifacts are seen, followed by vertical and horizontal eye activity.
The next two components, clearly periodic, contain contaminations to the MEG
by the cardiac cycle and a digital watch, respectively. Components 7 and 8 are
harder to explain physiologically, yet exhibit interesting temporal structure.

The variational Bayesian learning procedure used in HNFA allows pruning
unused parts of the model. This feature is used heavily in the learning process
as the model starts linear and the nonlinearity is built by gradually adding the
hidden nodes hi. In case of MEG data, practically all of the hidden nodes
are pruned out. In some cases a single hidden node may remain, but the cost
function value in these cases is higher than in purely linear models. This shows
that the optimal HNFA model has a linear mixing mapping.



Fig. 3: Examples of the 64 sources extracted from the data.

4 Conclusions

The variational-Bayesian-based HNFA has shown in the past to be a useful
method to learn nonlinear representations of data. Yet, due to its modular
nature, we show here that it is also capable of pruning out that nonlinearity,
when dealing with intrinsically linear data sets. This result is far from trivial,
and suggests a degree of robustness against overlearning.

In a practical example of the pruning properties of HNFA, we have shown em-
pirical evidence for the theoretically expected linear generative nature of MEG
recordings. This result is important, as it validates the use of linearity in de-
signing algorithms for processing such data.

Finally, we have been able to determine the intrinsic dimension of the gener-
ative space of this MEG data. It was done by evaluating a cost function which
penalises the complexity of the suggested models, whilst helping to approximate
the posterior distribution of the sources and parameters.

To distinguish between signal and noise dimensions in the estimated gener-
ative space, we have used a consistency approach. This assumes that the noise
forms a close to Gaussian subspace. For each run of the algorithm, this subspace
can be spanned by a different set of vectors, showing very low consistency for
each individual direction. On the other hand, meaningful components are ex-
pected to be stable, hence their estimation is somewhat constant across all runs.
This method reached a value of 20-25 generative signals, which is in agreement
with earlier results for the same data set.

The variational approximation may in some situations favour simpler linear
HNFA models over nonlinear ones. Yet, HNFA has been able to correctly identify
a nonlinear generative process in several examples [14]. The results reported here



evidence clearly that MEG is a mostly linear mixture of underlying neuronal
electromagnetic activity.
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