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Abstract. Variational methods for approximate inference in machine
learning often adapt a parametric probability distribution to optimize
a given objective function. This view is especially useful when apply-
ing variational Bayes (VB) to models outside the conjugate-exponential
family. For them, variational Bayesian expectation maximization (VB
EM) algorithms are not easily available, and gradient-based methods
are often used as alternatives. Traditional natural gradient methods use
the Riemannian structure (or geometry) of the predictive distribution
to speed up maximum likelihood estimation. We propose using the ge-
ometry of the variational approximating distribution instead to speed
up a conjugate gradient method for variational learning and inference.
The computational overhead is small due to the simplicity of the ap-
proximating distribution. Experiments with real-world speech data show
significant speedups over alternative learning algorithms.

1 Introduction

Variational Bayesian (VB) methods provide an efficient and often sufficiently
accurate deterministic approximation to exact Bayesian learning [1]. Most work
on variational methods has focused on the class of conjugate exponential models
for which simple EM-like learning algorithms can be derived easily.

Nevertheless, there are many interesting more complicated models which are
not in the conjugate exponential family. Similar variational approximations have
been applied for many such models [2–7]. The approximating distribution q(θ|ξ),
where θ includes both model parameters and latent variables, is often restricted
to be Gaussian with a somehow restricted covariance. Values of the variational
parameters ξ can be found by using a gradient-based optimization algorithm.

When applying a generic optimization algorithm for such problem, a lot of
background information on the geometry of the problem is lost. The parameters
ξ of q(θ|ξ) can have different roles as location, shape, and scale parameters,
and they can change the influence of other parameters. This implies that the
geometry of the problem is in most cases not Euclidean.

Information geometry studies the Riemannian geometric structure of the
manifold of probability distributions [8]. It has been applied to derive efficient
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natural gradient learning rules for maximum likelihood algorithms in indepen-
dent component analysis (ICA) and multilayer perceptron (MLP) networks [9].
The approach has been used in several other problems as well, for example in
analyzing the properties of an on-line variational Bayesian EM method [10].

In this paper we propose using the Riemannian structure of the distribu-
tions q(θ|ξ) to derive more efficient algorithms for approximate inference and
especially mean field type VB. This is in contrast with the traditional natural
gradient learning [9] which uses the Riemannian structure of the predictive dis-
tribution p(X|θ). The proposed method can be used to jointly optimize all the
parameters ξ of the approximation q(θ|ξ), or in conjunction with VB EM for
some parameters. The method is especially useful for models that are not in the
conjugate exponential family, such as nonlinear models [2–5, 7] or non-conjugate
variance models [6] that may not have a tractable exact VB EM algorithm.

2 Variational Bayes

Variational Bayesian learning [1, 5] is based on approximating the posterior dis-
tribution p(θ|X) with a tractable approximation q(θ|ξ), where X is the data,
θ are the unknown variables (including both the parameters of the model and
the latent variables), and ξ are the variational parameters of the approximation
(such as the mean and the variance of a Gaussian variable). The approximation
is fitted by maximizing a lower bound on marginal log-likelihood

B(q(θ|ξ)) =

〈

log
p(X, θ)

q(θ|ξ)

〉

= log p(X) − DKL(q(θ|ξ)‖p(θ|X)), (1)

where 〈·〉 denotes expectation over q. This is equivalent to minimizing the Kullback–
Leibler divergence DKL(q‖p) between q and p [1, 5].

Finding the optimal approximation can be seen as an optimization problem,
where the lower bound B(q(θ|ξ)) is maximized with respect to the variational
parameters ξ. This is often solved using a VB EM algorithm by updating sets
of parameters alternatively while keeping the others fixed. Both VB-E and VB-
M steps can implicitly optimally utilize the Riemannian structure of q(θ|ξ) for
conjugate exponential family models [10]. Nevertheless, the EM based methods
are prone to slow convergence, especially under low noise, even though more
elaborate optimization schemes can speed up their convergence somewhat.

The formulation of VB as an optimization problem allows applying generic
optimization algorithms to maximize B(q(θ|ξ)), but this is rarely done in practice
because the problems are quite high dimensional. Additionally other parameters
may influence the effect of other parameters and the lack of this specific knowl-
edge of the geometry of the problem can seriously hinder generic optimization
tools.

Assuming the approximation q(θ|ξ) is Gaussian, it is often enough to use
generic optimization tools to update the mean of the distribution. This is because
the negative entropy of a Gaussian q(θ|µ,Σ) with mean µ and covariance Σ
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is 〈log q(θ|ξ)〉 = − 1

2
log det(2πeΣ) and thus straightforward differentiation of

Eq. (1) yields a fixed point update rule for the covariance

Σ−1 = −2∇Σ 〈log p(X, θ)〉 . (2)

If the covariance is assumed diagonal, the same update rule applies for the di-
agonal terms.

3 Natural gradient learning for VB

Let F(ξ) be a scalar function defined on the manifold S = {ξ ∈ Rn}. If S is
a Euclidean space and the coordinate system ξ is orthonormal, the direction of
steepest ascent is given by the standard gradient ∇F(ξ).

If the space S is a curved Riemannian manifold, the direction of steepest
ascent is given by the natural gradient [9]

∇̃F(ξ) = G−1(ξ)∇F(ξ). (3)

The n×n matrix G(ξ) = (gij(ξ)) is called the Riemannian metric tensor and it
may depend on the point of origin ξ.

For the space of probability distributions q(θ|ξ), the most common Rieman-
nian metric tensor is given by the Fisher information [8]

Iij(ξ) = gij(ξ) = E

{

∂ ln q(θ|ξ)

∂ξi

∂ ln q(θ|ξ)

∂ξj

}

= E

{

−
∂2 ln q(θ|ξ)

∂ξi∂ξj

}

, (4)

where the last equality is valid given certain regularity conditions [11].

3.1 Computing the Riemannian metric tensor

When applying natural gradients to approximate inference, the geometry is de-
fined by the approximation q(θ|ξ) and not the full model p(X|θ) as usually.
If the approximation q(θ|ξ) is chosen such that disjoint groups of variables are
independent, that is,

q(θ|ξ) =
∏

i

qi(θi|ξi), (5)

the computation of the natural gradient is simplified as the Fisher information
matrix becomes block-diagonal. The required matrix inversion can be performed
very efficiently because

diag(A1, . . . , An)−1 = diag(A−1

1
, . . . , A−1

n ). (6)

The dimensionality of the problem space is often so high that inverting the full
matrix would not be feasible.
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(a) (b) (c) (d)

Fig. 1. The absolute change in the mean of the Gaussian in figures (a) and (b) and
the absolute change in the variance of the Gaussian in figures (c) and (d) is the same.
However, the relative effect is much larger when the variance is small as in figures (a)
and (c) compared to the case when the variance is high as in figures (b) and (d) [12].

3.2 Gaussian distribution

For the univariate Gaussian distribution parametrized by mean and variance
N(x; µ, v), we have

ln q(x|µ, v) = −
1

2v
(x − µ)2 −

1

2
ln(v) −

1

2
ln(2π). (7)

Furthermore,

E

{

−
∂2 ln q(x|µ, v)

∂µ∂µ

}

=
1

v
, (8)

E

{

−
∂2 ln q(x|µ, v)

∂v∂µ

}

= 0, and (9)

E

{

−
∂2 ln q(x|µ, v)

∂v∂v

}

=
1

2v2
. (10)

The vanishing of the cross term between mean and variance further supports
using the simpler fixed point rule (2) to update the variances.

In the case of univariate Gaussian distribution, natural gradient for the mean
has a rather straightforward intuitive interpretation, which is illustrated in Fig-
ure 1 (left). Compared to conventional gradient, natural gradient compensates
for the fact that changing the parameters of a Gaussian with small variance has
much more pronounced effects than when the variance is large.

In case of multivariate Gaussian distribution, the elements of the Fisher in-
formation matrix corresponding to the mean are simply

E

{

−
∂2 ln q(x|µ,Σ)

∂µT ∂µ

}

= Σ−1. (11)

Typically the covariance matrix Σ is assumed to have a simple structure (diag-
onal, diagonal+rank-k, simple Markov random field) that makes working with
it very efficient.
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4 Natural and conjugate gradient methods

Many of the traditional optimization algorithms have their direct counterparts
in Riemannian space. This paper concentrates on gradient based algorithms,
in particular the generalized versions of gradient ascent and conjugate gradient
method.

Gradient-based optimization algorithms in Euclidean space operate by de-
riving a search direction using the gradient at current search point and possibly
other information. Then, either a fixed-length step is taken or a line search
performed in this direction. The fixed step length can still be adjusted during
learning.

When generalizing these methods to Riemannian space, the geometrically
most natural approach would be to take the steps or perform the line search along
geodesics, which are length-minimizing curves and hence Riemannian counter-
parts of straight lines. In practice this is rarely done because the mathematical
forms of geodesics can be very complicated thus making operations with them
computationally expensive. Euclidean straight lines are used instead of geodesics
in this work as well.

4.1 Natural gradient ascent

The natural gradient learning algorithm is analogous to conventional gradient
ascent algorithm and is given by the iteration

ξk = ξk−1
+ γ∇̃F(ξk−1

), (12)

where the step size γ can either be adjusted adaptively during learning [9] or
computed for each iteration using e.g. line search. In general, the performance
of natural gradient learning is superior to conventional gradient learning when
the problem space is Riemannian; see [9].

4.2 Conjugate gradient methods and Riemannian conjugate

gradient

For better performance it can be useful to combine natural gradient learning
with some standard superlinear optimization algorithm. One such algorithm
is the nonlinear conjugate gradient (CG) method [13]. The conjugate gradient
method is a standard tool for solving high dimensional nonlinear optimization
problems. During each iteration of the conjugate gradient method, a new search
direction is generated by conjugation of the residuals from previous iterations.
With this choice the search directions form a Krylov subspace and only the pre-
vious search direction and the current gradient are required for the conjugation
process, making the algorithm efficient in both time and space complexity [13].

The extension of the conjugate gradient algorithm to Riemannian manifolds
is done by replacing the gradient with the natural gradient. The resulting al-
gorithm is known as the Riemannian conjugate gradient method [14, 15]. In
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principle this extension is relatively simple, as it is sufficient that all the vec-
tor operations take into account the Riemannian nature of the problem space.
Therefore, the line searches are performed along geodesic curves and the old
gradient vectors g̃k−1 defined in a different tangent space are transformed to
the tangent space at the origin of the new gradient by parallel transport along
a geodesic [14].

4.3 Natural conjugate gradient

Like with natural gradient ascent, it is often necessary to make certain simpli-
fying assumptions to keep the iteration simple and efficient. In this paper, the
geodesic curves used in Riemannian conjugate gradient algorithm are approxi-
mated with (Euclidean) straight lines. This also means that parallel transport
cannot be used, and vector operations between vectors from two different tan-
gent spaces are performed in the Euclidean sense, i.e. assuming that the parallel
transport between two points close to each other on the manifold can be ap-
proximated by the identity mapping. This approximative algorithm is called the
natural conjugate gradient (NCG).

For small step sizes and geometries which are locally close to Euclidean these
assumptions still retain many of the benefits of original algorithm while greatly
simplifying the computations. Edelman et al. [15] showed that near the solution
Riemannian conjugate gradient method differs from the flat space version of
conjugate gradient only by third order terms, and therefore both algorithms
converge quadratically near the optimum.

The search direction for the natural conjugate gradient method is given by

pk = g̃k + βpk−1, (13)

and the Polak-Ribiére formula used to evaluate the coefficient β is given by

β =
(g̃k − g̃k−1) · g̃k

g̃k−1 · g̃k

. (14)

5 VB for nonlinear state-space models

As a specific example, we consider the nonlinear state-space model (NSSM)
introduced in [5]. The model is specified by the generative model

x(t) = f(s(t), θf ) + n(t) (15)

s(t) = s(t − 1) + g(s(t − 1), θg) + m(t), (16)

where t is time, x(t) are the observations, and s(t) are the hidden states. The
observation mapping f and the dynamical mapping g are nonlinear and they
are modeled with multilayer perceptron (MLP) networks. Observation noise n

and process noise m are assumed Gaussian. The latent states s(t) are commonly
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denoted by θS. The model parameters include both the weights of the MLP net-
works and a number of hyperparameters. The posterior approximation of these
parameters is a Gaussian with a diagonal covariance. The posterior approxi-
mation of the states q(θS |ξS) is a Gaussian Markov random field a correlation
between the corresponding components of subsequent state vectors sj(t) and
sj(t − 1). This is a realistic minimum assumption for modeling the dependence
of the state vectors s(t) and s(t − 1) [5].

Because of the nonlinearities the model is not in the conjugate exponential
family, and the standard VB learning methods are only applicable to hyperpa-
rameters and not the latent states or weights of the MLPs. The bound (1) can
nevertheless be evaluated by linearizing the MLP networks f and g using the
technique of [7]. This allows evaluating the gradient with respect to ξS, ξf , and
ξg and using a gradient based optimizer to adapt the parameters. The natural
gradient for the mean elements is given by

∇̃µ
q
F(ξ) = Σq∇µ

q
F(ξ), (17)

where µq is the mean of the variational approximation q(θ|ξ) and Σq is the cor-
responding covariance. The covariance of the model parameters is diagonal while
the inverse covariance of the latent states s(t) is block-diagonal with tridiagonal
blocks. This implies that all computations with these can be done in linear time
with respect to the number of the parameters. The covariances were updated
separately using a fixed-point update rule similar to (2) as described in [5].

6 Experiments

As an example, the method for learning nonlinear state-space models presented
in Sec. 5 was applied to real world speech data. Experiments were made with
different data sizes to study the performance differences between the algorithms.
The data consisted of 21 dimensional mel frequency log power speech spectra of
continuous human speech.

To study the performance differences between the natural conjugate gradient
(NCG) method, standard natural gradient (NG) method, standard conjugate
gradient (CG) method and the heuristic algorithm from [5], the algorithms were
applied to different sized parts of the speech data set. Unfortunately a reasonable
comparison with a VB EM algorithm was impossible because the E-step failed
due to instability of the used Kalman filtering algorithm.

The size of the data subsets varied between 200 and 500 samples. A five
dimensional state-space was used. The MLP networks for the observation and
dynamical mapping had 20 hidden nodes. Four different initializations and two
different segments of data of each size were used, resulting in eight repetitions
for each algorithm and data size. The results for different data segments of the
same size were pooled together as the convergence times were in general very
similar. An iteration was assumed to have converged when |Bt − Bt−1| < ε =
(10−5N/500) for 5 consecutive iterations, where Bt is the bound on marginal
log-likelihood at iteration t and N is the size of the data set. Alternatively, the
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Fig. 2. Convergence speed of the natural conjugate gradient (NCG), the natural gradi-
ent (NG) and the conjugate gradient (CG) methods as well as the heuristic algorithm
(Old) with different data sizes. The lines show median times with 25 % and 75 %
quantiles shown by the smaller marks. The times were limited to at most 24 hours,
which was reached by a number of simulations.

iteration was stopped after 24 hours even if it had not converged. Practically all
the simulations converged to different local optima, but there were no statisti-
cally significant differences in the bound values corresponding to these optima
(Wilcoxon rank-sum test, 5 % significance level). There were still some differ-
ences, and especially the NG algorithm with smaller data sizes often appeared
to converge very early to an extremely poor solution. These were filtered by
removing results where the attained bound value that was more than two NCG
standard deviations worse than NCG average for the particular data set. The
results of one run where the heuristic algorithm diverged were also discarded
from the analysis.

The results can be seen in Figure 2. The plain CG and NG methods were
clearly slower than others and the maximum runtime was reached by most CG
and some NG runs. NCG was clearly the fastest algorithm with the heuristic
method between these extremes.

As a more realistic example, a larger data set of 1000 samples was used
to train a seven dimensional state-space model. In this experiment both MLP
networks of the NSSM had 30 hidden nodes. The convergence criterion was ε =
10−6 and the maximum runtime was 72 hours. The performances of the NCG,
NG, CG methods and the heuristic algorithm were compared. The results can be
seen in Figure 3. The results show the convergence for five different initializations
with markers at the end showing when the convergence was reached.

NCG clearly outperformed the other algorithms in this experiment as well.
In particular, both NG and CG hit the maximum runtime in every run, and es-
pecially CG was nowhere near convergence at this time. NCG also outperformed
the heuristic algorithm [5] by a factor of more than 10.
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Fig. 3. Comparison of the performance of the natural conjugate gradient (NCG), the
natural gradient (NG), the conjugate gradient (CG) methods and the heuristic al-
gorithm with the full data set. Lower bound on marginal log-likelihood B is plotted
against computation time using a logarithmic time scale. The tick marks show when
simulations either converged or were terminated after 72 hours.

7 Discussion

In previous machine learning algorithms based on natural gradients [9], the aim
has been to use maximum likelihood to directly update the model parameters θ

taking into account the geometry imposed by the predictive distribution for data
p(X|θ). The resulting geometry is often much more complicated as the effects
of different parameters cannot be separated and the Fisher information matrix
is relatively dense. In this paper, only the simpler geometry of the approximat-
ing distributions q(θ|ξ) is used. Because the approximations are often chosen
to minimize dependencies between different parameters θ, the resulting Fisher
information matrix with respect to the variational parameters ξ will be mostly
diagonal and hence easy to invert.

While taking into account the structure of the approximation, plain natural
gradient in this case ignores the structure of the model and the global geometry of
the parameters θ. This is to some extent addressed by using conjugate gradients,
and even more sophisticated optimization methods such as quasi-Newton or even
Gauss–Newton methods can be used if the size of the problem permits it.

While the natural conjugate gradient method has been formulated mainly
for models outside the conjugate-exponential family, it can also be applied to
conjugate-exponential models instead of the more common VB EM algorithms.
In practice, simpler and more straightforward EM acceleration methods may
still provide comparable results with less human effort.

The experiments in this paper show that using even a greatly simplified vari-
ant of the Riemannian conjugate gradient method for some variables is enough
to acquire a large speedup. Considering univariate Gaussian distributions, the
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regular gradient is too strong for model variables with small posterior variance
and too weak for variables with large posterior variance, as seen from Eqs. (8)–
(10). The posterior variance of latent variables is often much larger than the
posterior variance of model parameters and the natural gradient takes this into
account in a very natural manner.
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