
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Engineering
Physics and Mathematics

Antti Honkela

Nonlinear Switching State-Space Models

Master’s thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology

Espoo, May 29, 2001

Supervisor: Professor Juha Karhunen
Instructor: Harri Valpola, D.Sc. (Tech.)

Teknillinen korkeakoulu Diplomityön tiivistelmä

Teknillisen fysiikan ja matematiikan osasto

Tekijä: Antti Honkela
Osasto: Teknillisen fysiikan ja matematiikan osasto
Pääaine: Matematiikka
Sivuaine: Informaatiotekniikka

Työn nimi:
Epälineaariset vaihtuvat tila-avaruusmallit

Title in English:
Nonlinear Switching State-Space Models

Professuurin koodi ja nimi: Tik-61 Informaatiotekniikka
Työn valvoja: Prof. Juha Karhunen
Työn ohjaaja: TkT Harri Valpola

Tiivistelmä:

Epälineaarinen vaihtuva tila-avaruusmalli (vaihtuva NSSM) on kahden dynaamisen
mallin yhdistelmä. Epälineaarinen tila-avaruusmalli (NSSM) on jatkuva ja kätketty
Markov-malli (HMM) diskreetti. Vaihtuvassa mallissa NSSM mallittaa datan lyhyen
aikavälin dynamiikkaa. HMM kuvaa pidempiaikaisia muutoksia ja ohjaa NSSM:a.

Tässä työssä kehitetään vaihtuva NSSM ja oppimisalgoritmi sen parametreille. Oppi-
misalgoritmi perustuu bayesiläiseen ensemble-oppimiseen, jossa todellista posterio-
rijakaumaa approksimoidaan helpommin käsiteltävällä jakaumalla. Sovitus tehdään
todennäköisyysmassan perusteella ylioppimisen välttämiseksi. Algoritmin toteutus
perustuu TkT Harri Valpolan aiempaan NSSM-algoritmiin. Se käyttää monikerros-
perceptron -verkkoja NSSM:n epälineaaristen kuvausten mallittamiseen.

NSSM-algoritmin laskennallinen vaativuus rajoittaa vaihtuvan mallin rakennetta.
Vain yhden dynaamisen mallin käyttö on mahdollista. Tällöin HMM:a käytetään
vain NSSM:n ennustusvirheiden mallittamiseen. Tämä lähestymistapa on laskennal-
lisesti kevyt mutta hyödyntää HMM:a vain vähän.

Algoritmin toimivuutta kokeillaan todellisella puhedatalla. Vaihtuva NSSM osoittau-
tuu paremmaksi datan mallittamisessa kuin muut yleiset mallit. Työssä näytetään
myös, kuinka algoritmi pystyy järkevästi segmentoimaan puhetta erillisiksi fonee-
meiksi, kun ainoastaan foneemien oikea järjestys tunnetaan etukäteen.

Sivumäärä: 93 Avainsanat: vaihtuva malli, hybridi, epälineaarinen
tila-avaruusmalli, kätketty Markov-malli,
ensemble-oppiminen

Täytetään osastolla

Hyväksytty: Kirjasto:

Helsinki University of Technology Abstract of Master’s thesis

Department of Engineering Physics and Mathematics

Author: Antti Honkela
Department: Department of Engineering Physics and Mathematics
Major subject: Mathematics
Minor subject: Computer and Information Science

Title:
Nonlinear Switching State-Space Models

Title in Finnish:
Epälineaariset vaihtuvat tila-avaruusmallit

Chair: Tik-61 Computer and Information Science
Supervisor: Prof. Juha Karhunen
Instructor: Harri Valpola, D.Sc. (Tech.)

Abstract:

The switching nonlinear state-space model (switching NSSM) is a combination of
two dynamical models. The nonlinear state-space model (NSSM) is continuous by
nature, whereas the hidden Markov model (HMM) is discrete. In the switching
model, the NSSM is used to model the short-term dynamics of the data. The HMM
describes the longer-term changes and controls the NSSM.

This thesis describes the development of a switching NSSM and a learning algorithm
for its parameters. The learning algorithm is based on Bayesian ensemble learning,
in which the true posterior distribution is approximated with a tractable ensemble.
The approximation is fitted to the probability mass to avoid overlearning. The
implementation is based on an earlier NSSM by Dr. Harri Valpola. It uses multilayer
perceptron networks to model the nonlinear functions of the NSSM.

The computational complexity of the NSSM algorithm sets serious limitations for the
switching model. Only one dynamical model can be used. Hence, the HMM is only
used to model the prediction errors of the NSSM. This approach is computationally
efficient but makes little use of the HMM.

The algorithm is tested with real-world speech data. The switching NSSM is found to
be better in modelling the data than other standard models. It is also demonstrated
how the algorithm can find a reasonable segmentation to different phonemes when
only the correct sequence of phonemes is known in advance.

Number of pages: 93 Keywords: switching model, hybrid model, nonlinear
state-space model, hidden Markov model, en-
semble learning

Department fills

Approved: Library code:

Preface

This work has been funded by the European Commission research project
BLISS. It has been done at the Laboratory of Computer and Information
Science at the Helsinki University of Technology. It would not have been
possible without the vast computational resources available at the laboratory.
I am grateful to all my colleagues at the laboratory and the Neural Networks
Research Centre for the wonderful environment they have created.

I wish to thank my supervisor, professor Juha Karhunen, for the opportunity
to work at the lab and in the Bayesian research group. I am grateful to
my instructor, Dr. Harri Valpola, for suggesting the subject of my thesis and
giving a lot of technical advice on the way. They both helped in making the
presentation of the work much more clear. I also wish to thank professor Timo
Eirola for sharing his expertise on dynamical systems.

I am grateful to Mr. Vesa Siivola for his help in using the speech data in the
experiments. Mr. Tapani Raiko and Mr. Jaakko Peltonen gave many useful
suggestions in the numerous discussions we had.

Finally I wish to thank Maija for all her support during my project.

Otaniemi, May 29, 2001

Antti Honkela

Contents

List of abbreviations iv

List of symbols v

1 Introduction 1
1.1 Problem setting . 1
1.2 Aim of the thesis . 2
1.3 Structure of the thesis . 3
1.4 Contributions of the thesis . 3

2 Mathematical preliminaries of time series modelling 5
2.1 Theory . 5

2.1.1 Dynamical systems . 5
2.1.2 Linear systems . 6
2.1.3 Nonlinear systems and chaos 6
2.1.4 Tools for time series analysis 7

2.2 Practical considerations . 9
2.2.1 Delay coordinates in practice 9
2.2.2 Prediction algorithms . 10

3 Bayesian methods for data analysis 11
3.1 Bayesian statistics . 12

3.1.1 Constructing probabilistic models 13
3.1.2 Hierarchical models . 14
3.1.3 Conjugate priors . 14

3.2 Posterior approximations . 14
3.2.1 Model selection . 16
3.2.2 Stochastic approximations 17
3.2.3 Laplace approximation 18
3.2.4 EM algorithm . 19

3.3 Ensemble learning . 20
3.3.1 Information theoretic approach 21

i

4 Building blocks of the model 23
4.1 Hidden Markov models . 23

4.1.1 Markov chains . 24
4.1.2 Hidden states . 24
4.1.3 Continuous observations 25
4.1.4 Learning algorithms . 25

4.2 Nonlinear state-space models . 28
4.2.1 Linear models . 28
4.2.2 Extension from linear to nonlinear 29
4.2.3 Multilayer perceptrons 30
4.2.4 Nonlinear factor analysis 33
4.2.5 Learning algorithms . 34

4.3 Previous hybrid models . 35
4.3.1 Switching state-space models 35
4.3.2 Other hidden Markov model hybrids 36

5 The model 38
5.1 Bayesian continuous density hidden Markov model 38

5.1.1 The model . 38
5.1.2 The approximating posterior distribution 40

5.2 Bayesian nonlinear state-space model 41
5.2.1 The generative model . 41
5.2.2 The probabilistic model 42
5.2.3 The approximating posterior distribution 45

5.3 Combining the two models . 46
5.3.1 The structure of the model 47
5.3.2 The approximating posterior distribution 48

6 The algorithm 49
6.1 Learning algorithm for the continuous density hidden Markov

model . 49
6.1.1 Evaluating the cost function 49
6.1.2 Optimising the cost function 52

6.2 Learning algorithm for the nonlinear state-space model 56
6.2.1 Evaluating the cost function 56
6.2.2 Optimising the cost function 58
6.2.3 Learning procedure . 61
6.2.4 Continuing learning with new data 61

6.3 Learning algorithm for the switching model 62
6.3.1 Evaluating and optimising the cost function 62
6.3.2 Learning procedure . 63

ii

6.3.3 Learning with known state sequence 64

7 Experimental results 65
7.1 Speech data . 65

7.1.1 Preprocessing . 66
7.1.2 Properties of the data set 66

7.2 Comparison with other models 68
7.2.1 The experimental setting 69
7.2.2 The results . 71

7.3 Segmentation of annotated data 72
7.3.1 The training procedure 72
7.3.2 The results . 73

8 Discussion 77

A Standard probability distributions 80
A.1 Normal distribution . 80
A.2 Dirichlet distribution . 81

B Probabilistic computations for MLP networks 85

References 88

iii

List of abbreviations

CDHMM Continuous density hidden Markov model
EM Expectation maximisation
HMM Hidden Markov model
ICA Independent component analysis
MAP Maximum a posteriori
MDL Minimum description length
ML Maximum likelihood
MLP Multilayer perceptron (network)
NFA Nonlinear factor analysis
NSSM Nonlinear state-space model
PCA Principal component analysis
pdf Probability density function
RBF Radial basis function (network)
SSM State-space model

iv

List of symbols

A = (aij) Transition probability matrix of a Markov chain or a hidden
Markov model

A,B, a,b The weight matrices and bias vectors of the MLP network
f

C,D, c,d The weight matrices and bias vectors of the MLP network
g

D(q(θ)||p(θ)) The Kullback–Leibler divergence between q(θ) and p(θ)
diag[x] A diagonal matrix with the elements of the vector x on the

diagonal
Dirichlet(p; u) Dirichlet distribution for variable p with parameters u
E[x] The expectation or mean of x
f Mapping from latent space to the observations or an MLP

network modelling such a mapping
g Mapping modelling the continuous dynamics of an NSSM

or an MLP network modelling such a mapping
h(s) A measurement function h : M → R
Hi A model, hypothesis
Mt Discrete hidden state or HMM state at time instant t
M The set of discrete hidden states or HMM states
N(µ, σ2) Gaussian or normal distribution with parameters µ and σ2

N(x; µ, σ2) As N(µ, σ2) but for variable x
p(x) The probability of event x, or the probability density func-

tion evaluated at point x
q(x) Approximating probability density function used in ensem-

ble learning
s(t) Continuous hidden states or sources at time instant t
sk(t) The kth component of vector s(t)
sk(t) The estimated posterior mean of sk(t)

v

◦
sk(t) The estimated conditional posterior variance of sk(t) given

sk(t− 1)
s̆k(t− 1, t) The estimated posterior linear dependence between sk(t−

1) and sk(t)
S The set of continuous hidden states or source values
Var[x] The variance of x
x(t) A sample of observed data
X The set of observed data
θi, θ A scalar parameter of the model

θi The estimated posterior mean of parameter θi
θ̃i The estimated posterior variance of parameter θi
θ The set of all the parameters of the model
π = (πi) Initial distribution vector of a Markov chain or a hidden

Markov model
φt(x) The flow of a differential equation

vi

Chapter 1

Introduction

1.1 Problem setting

Most data analysis methods are based on developing a model that could be
used to recreate the studied data set. Speech recognition systems, for example,
are often built around a model that could in principle be used as a speech
generator. The success of the recogniser depends heavily on how well the
generator can generate realistic speech data.

The speech generators used by most modern speech recognition systems are
based on the hidden Markov model (HMM). The HMM is a discrete model.
It has a finite number of different internal states that produce different kind
of output. Typically there are a couple of states for each phoneme or a pair
of phonemes. The whole dynamical process of producing speech is thus mod-
elled by discrete transitions between the states corresponding to the different
phonemes.

The model of human speech implied by the HMM is not a very realistic one.
The dynamics of the mouth and the vocal cord used to produce the speech
are continuous. The discrete model is only a very crude approximation of
the “true” model. A more realistic approach would be to model the data
with a continuous model. The process of producing speech is clearly nonlinear
and this should be reflected by its model. A good candidate for the task is
the nonlinear state-space model (NSSM). The NSSM can be described as the
continuous counterpart of the HMM. The problem with models like the NSSM
is that they concentrate on modelling the short-term structure of the data.
Therefore they are not as such very well suited for speech recognition.

1

1.2. Aim of the thesis 2

There are speech recognition systems that try to get the best of the both worlds
by combining the two different kinds of models into one hybrid structure.
Such systems have performed well in several difficult real world problems but
they are often rather specialised. The training algorithms for such models are
usually based on some heuristic measures rather than on generally accepted
mathematical principles.

In this work, a hybrid model structure that combines the HMM with another
dynamical model, the continuous NSSM, is studied. The resulting model is
called the switching nonlinear state-space model (switching NSSM). The re-
sulting hybrid model has the power of a continuous NSSM to model the short-
term dynamics of the data. However, above the NSSM there is still the familiar
HMM to divide the data to different discrete states corresponding, for example,
to the different phonemes.

1.2 Aim of the thesis

The aim of this thesis has been to develop a Bayesian formulation for the
switching NSSM and a learning algorithm for the parameters of the model.
The term learning algorithm in this context means a procedure for optimising
the parameters of the model to best describe the given data. The learning
algorithm is based on the approximation method called ensemble learning. It
provides a principled approach for global optimisation of the performance of
the model. Similar switching models exist but they use only linear state-space
models (SSMs).

In practice the switching model has been implemented by extending the exist-
ing NSSM model and learning algorithm developed by Dr. Harri Valpola [58,
60]. The performance of the developed model has been verified by applying
it to a data set of Finnish speech in two different experiments. In the first
experiment, the switching NSSM has been compared with plain HMM, stan-
dard NSSM without switching and a static nonlinear factor analysis model
which completely ignores the temporal structure of the data. In the second
experiment, patches of speech with known annotation, i.e. the sequence of
phonemes in the word, have been used. The correct segmentation of the word
to the individual phonemes was, however, not known, and must be learnt by
the model.

Even though the development of the model has been motivated here by speech
recognition examples, the purpose of this thesis has not been to develop a

1.3. Structure of the thesis 3

working speech recognition system. Such a system could probably be developed
by extending the work presented here.

1.3 Structure of the thesis

The thesis begins with a review of different methods of time series modelling
in Chapters 2–4. Chapter 2 presents a mathematical point of view to the
subject. These ideas form the foundation for what follows but most of the
results are not used directly. Statistical methods for learning the parameters
of the different models are presented in Chapter 3. Chapter 4 introduces the
building blocks of the switching NSSM and discusses previous work on HMMs
and SSMs, as well as some of their combinations.

The second half of the thesis (Chapters 5–7) consists of the development of the
switching NSSM and experimental verification of its operation. In Chapter 5,
the exact structures of the parts of the switching model, the HMM and the
NSSM, are defined. It is also described how the two models are combined. The
ensemble learning based learning algorithms for all the models of the previous
chapter are derived in Chapter 6. A series of experiments was conducted to
verify the performance of the model. Chapter 7 discusses these experiments
and their results. Finally the results of the thesis are summarised in Chapter 8.

The thesis also has two appendices. Appendix A presents two important prob-
ability distributions, the Gaussian and the Dirichlet distribution, and some of
their most important properties. Appendix B contains a derivation of a result
needed in the learning algorithm in Chapter 6.

1.4 Contributions of the thesis

The first part of the thesis consists of a literature review of important back-
ground knowledge for developing the switching NSSM. The model is presented
in Chapter 5. The continuous density HMM in Section 5.1 has been devel-
oped by the author although it is heavily based on earlier work by Dr. David
MacKay [39]. A Bayesian NSSM by Dr. Harri Valpola is presented in Sec-
tion 5.2. The modifications needed to add switching to the NSSM model,
as presented in Section 5.3, have been developed by the author. The same
division applies to the learning algorithms for the models, found in Chapter 6.

The developed learning algorithm has been tested extensively. The author has

1.4. Contributions of the thesis 4

implemented the switching NSSM learning algorithm under Matlab. The code
is based on an implementation of the NSSM, which is in turn based on an
implementation of the nonlinear factor analysis (NFA) algorithm. Dr. Harri
Valpola wrote the extensions from NFA to NSSM. The author has written
most of the rest of the code over a period of two years. All the experiments
reported in Chapter 7 and the HMM implementation used in the comparisons
have been done by the author.

Chapter 2

Mathematical preliminaries of
time series modelling

As this thesis deals with modelling time series data, the first chapter will
discuss mathematical background on the subject. In Section 2.1, a brief intro-
duction to the theory of dynamical systems and some useful tools for solving
the related inverse problem, i.e. finding a suitable dynamical system to model
a given time series, is presented. Section 2.2 discusses some of the practical
consequences of the results. The concepts presented in this chapter form the
basis for the rest of the thesis. Most of them will, however, not be used directly.

2.1 Theory

2.1.1 Dynamical systems

The theory of dynamical systems is the basic mathematical tool for analysing
time series. This section presents a brief introduction to the basic concepts.
For a more extensive treatment, see for example [1].

The general form for an autonomous discrete-time dynamical system is the
map

xn+1 = f(xn) (2.1)

where xn,xn+1 ∈ Rn and f : Rn → Rn is a diffeomorphism, i.e. a smooth
mapping with a smooth inverse. It is important that the mapping f is inde-
pendent of time, meaning that it only depends on the argument point xn. Such

5

2.1. Theory 6

mappings are often generated by flows of autonomous differential equations.

For a general autonomous differential equation

x′(t) = f(x(t)), (2.2)

we define the flow by [1]
φt(x0) := x(t) (2.3)

where x(t) is the unique solution of Equation (2.2) with the initial condition
x(0) = x0, evaluated at time t. The function f in Equation (2.2) is called the
vector field corresponding to the flow φ.

Setting g(x) := φτ (x), where τ > 0, gives an autonomous discrete-time dy-
namical system like in Equation (2.1). The discrete system defined in this way
samples the values of the continuous system at constant intervals τ . Thus it
is a discretisation of the continuous system.

2.1.2 Linear systems

Let us assume that the mapping f in Equation (2.1) is linear, i.e.

xn+1 = Axn. (2.4)

Iterating the system for a given initial vector x0 leads to a sequence

xn = Anx0. (2.5)

The possible courses of evolution of such sequences can be characterized by
the eigenvalues of the matrix A. If there are eigenvalues that are greater than
one in absolute value, almost all of the orbits will diverge to infinity. If all the
eigenvalues are less than one in absolute value, the orbits will rapidly converge
to the origin. Complex eigenvalues with absolute value of unity will lead to
closed circular or elliptic orbits [1].

An affine map with xn+1 = Axn + b behaves in essentially the same way.
This shows that the autonomous linear system is too simple to describe any
interesting dynamical phenomena, because in practice the only stable linear
systems converge exponentially to a constant value.

2.1.3 Nonlinear systems and chaos

While the possible dynamics of linear systems are rather restricted, even very
simple nonlinear systems can have very complex dynamical behaviour. Nonlin-

2.1. Theory 7

earity is closely associated with chaos, even though not all nonlinear mappings
produce chaotic dynamics [49].

A dynamical system is chaotic if its future behaviour is very sensitive to the
initial conditions. In such systems two orbits starting close to each other will
rather soon behave very differently. This makes any long term prediction of
the evolution of the system impossible. Even for a deterministic system that
is perfectly known, the initial conditions would have to be known arbitrarily
precisely, which is of course impossible in practice. There is, however, great
variation in how far ahead different systems can be predicted.

A classical example of a chaotic system is the weather conditions in the at-
mosphere of the Earth. It is said that a butterfly flapping its wings in the
Caribbean can cause a great storm in Europe a few weeks later. Whether this
is actually true or not, it gives a good example on the futility of trying to
model a chaotic system and predict its evolution for long periods of time.

Even though long term prediction of a chaotic system is impossible, it is still
often possible to predict statistical features of its behaviour. While modelling
weather has proven troublesome, modelling the general long term behaviour,
the climate, is possible. It is also possible to find certain invariant features of
chaotic systems that provide qualitative description of the system.

2.1.4 Tools for time series analysis

In a typical mathematical model [9], a time series (x(t1), . . . , x(tn)) is generated
by the flow of a smooth dynamical system on a d-dimensional smooth manifold
M :

s(t) = φt(s(0)). (2.6)

The original d-dimensional states of the system cannot be observed directly.
Instead, the observations consist of the possibly noisy values x(t) of a one-
dimensional measurement function h which are related to the original states
by

x(t) = h(s(t)) + n(t) (2.7)

where n(t) denotes some noise process corrupting the observations. We shall
for now assume that the observations are noiseless, i.e. n(t) = 0, and deal with
the noisy case later on.

2.1. Theory 8

Reconstructing the state-space

The first problem in modelling a time series like the one described by Equa-
tions (2.6) and (2.7) is to try to reconstruct the original state-space or its
equivalent, i.e. to find the structure of the manifold M .

Two spaces are topologically equivalent if there exists a continuous mapping
with a continuous inverse between them. In this case it is sufficient that the
equivalent structure is a part of a larger entity, the rest can easily be ignored.
Thus the interesting concept is embedding, which is defined as follows.

Definition 1. A function f : X → Y is an embedding if it is a continuous
mapping with a continuous inverse f−1 : f(X) → X from its range to its
domain.

Whitney showed in 1936 [62] that any d-dimensional manifold can be embedded
into R2d+1. The theorem can be extended to show that with a proper definition
of almost all for an infinite-dimensional function space, almost all smooth
mappings from given d-dimensional manifold to R2d+1 are embeddings [53].

Having only a single time series produced by Equation (2.7), how does one
get those 2d+ 1 different coordinates? This problem can usually be solved by
introducing so called delay coordinates [53].

Definition 2. Let φ be a flow on a manifold M , τ > 0, and h : M → R
a smooth measurement function. The delay coordinate map with embedding
delay τ , F (h, φ, τ) : M → Rn is defined by

s 7→
(
h(s), h(φ−τ (s)), h(φ−2τ (s)), . . . , h(φ−(n−1)τ (s))

)
.

Takens proved in 1980 [55] that such mappings can indeed be used to recon-
struct the state-space of the original dynamical system. This result is known
as Takens’ embedding theorem.

Theorem 3 (Takens). Let M be a compact manifold of dimension d. For
triples (f, h, τ), where f is a smooth vector field on M with flow φ, h : M →
R a smooth measurement function and the embedding delay τ > 0, it is a
generic property that the delay coordinate map F (h, φ, τ) : M → R2d+1 is an
embedding.

Takens’ theorem states that in the general case, the dynamics of the system
recovered by delay coordinate embedding are the same as the dynamics of the
original system. The exact mathematical definition of this “in general” is,
however, somewhat more complicated [46].

2.2. Practical considerations 9

Definition 4. A subset U ⊂ X of a topological space is residual if it contains
a countable intersection of open dense subsets. A property is called generic if
it holds in a residual set.

According to Baire’s theorem, a residual set cannot be empty. Unfortunately
that is about all that can be said about it. Even in Euclidean spaces, a residual
set can be of arbitrarily small measure. With a proper definition for almost
all in infinite-dimensional spaces and slightly different assumptions, Sauer et
al. showed in 1991 that the claim of Takens’ theorem actually applies almost
always [53].

2.2 Practical considerations

According to Takens’ embedding theorem, almost all dynamical systems can
be reconstructed from just one noiseless observation sequence. Unfortunately
such observations of real life systems are very hard to get. There is always some
measurement noise and even if that could be eliminated, the results must be
stored into a computer with finite precision to do any practical calculations
with them.

In practice the observation noise can be a serious hinder to the reconstruction.
Low dimensional observations from a high dimensional chaotic system with
high noise level can easily become indistinguishable from a random time series.

2.2.1 Delay coordinates in practice

Even though Takens’ theorem does not give any guarantees of the success of
the embedding procedure in the noisy case, the delay coordinate embedding
has been found useful in practice and is used widely [22]. In the noisy case,
having more than one-dimensional measurements of the same process can help
very much in the reconstruction even though Takens’ theorem achieves the
goal with just a single time series.

The embedding dimension must also be chosen carefully. Too low dimen-
sionality may cause problems with noise amplification but using too high di-
mensionality will inflict other problems and is computationally expensive [9].
Assuming there is access to the original continuous measurement stream there
is also another free parameter in the procedure, namely choosing the embed-
ding delay τ . Takens’ theorem applies for almost all delays, at least as long as

2.2. Practical considerations 10

an infinitely long series of noiseless observations is used. According to Haykin
and Principe [22] the delay should be chosen to be long enough for the con-
secutive observations to be essentially, but not too, independent. In practice a
good value can often be found at the first minimum of the mutual information
between the consecutive samples.

2.2.2 Prediction algorithms

Assume we are analysing the scalar time series x(1), . . . , x(T). Using the time-
delay embedding with delay d transforms the series to vectors of the form
y(t) = (x(t− d+ 1), . . . , x(t)). Prediction in these coordinates corresponds to
predicting the next sample x(t+ 1) from the d previous ones, as all the other
components of y(t+1) are directly available in y(t). Thus the problem reduces
to finding a predictor of the form

x(t+ 1) = f(y(t)). (2.8)

Using a simple linear function for f leads to a linear auto-regressive (AR)
model [20]. There are also several generalisations of the same model leading
to other algorithms for the same purpose.

Farmer and Sidorowich [14] propose a locally linear predictor in which there
are several linear predictors for different areas of the embedded state-space.
The achieved performance is comparable with the global linear predictor for
small embedding dimensionalities but as the embedding dimension grows, the
local method clearly outperforms the global one. The problem with the locally
linear predictor is that it is not continuous.

Casdagli [8] presents a review of several different predictors including a globally
linear predictor, a locally linear predictor and a global nonlinear predictor using
a radial basis function (RBF) network [21] as the nonlinearity. According to
his results, the nonlinear methods are best for small data sets whereas the
locally linear method of Farmer and Sidorowich gives the best results for large
data sets.

For noisy data, the choice of coordinates can make a big difference on the
success of the prediction algorithm. The embedding approach is by no means
the only possible alternative, and as Casdagli et al. note in [9], there are often
clearly better alternatives. There are many approaches in the field of neural
computation where the choice is left to the algorithm. This corresponds to
trying to blindly invert Equation (2.7). Such models are called (nonlinear)
state-space models and they are studied in detail in Section 4.2.

Chapter 3

Bayesian methods for data
analysis

Inclusion of the effects of noise into the model of a time series leads to the
world of statistics — it is no longer possible to talk about exact events, only
their probabilities.

The Bayesian framework offers the mathematically soundest basis for doing
statistical work. In this chapter, a brief review of the most important results
and tools of the field is presented.

Section 3.1 concentrates on the basic ideas of Bayesian statistics. Unfortu-
nately, exact application of those methods is usually not possible. Therefore
Section 3.2 discusses some practical approximation methods that allow getting
reasonably good results with limited computational resources. The learning
algorithms presented in this work are based on the approximation method
called ensemble learning, which is presented in Section 3.3.

This chapter contains many formulas involving probabilities. The notation
p(x) is used for both probability of a discrete event x and the value of the
probability density function (pdf) of a continuous variable at x, depending on
what x is. All the theoretical results presented apply equally to both cases, at
least when integration over a discrete variable is interpreted in the Lebesgue
sense as summation.

Some authors use subscripts to separate different pdfs but here they are omit-
ted to simplify the notation. All pdfs are identified only by the argument of
p.

11

3.1. Bayesian statistics 12

Two important probability distributions, the Gaussian or normal distribution
and the Dirichlet distribution are presented in Appendix A. The notation
p(x) = N(x; µ, σ2) is used to denote that x is normally distributed with mean
µ and variance σ2.

3.1 Bayesian statistics

In the Bayesian probability theory, the probability of an event describes the
observer’s degree of belief on the occurrence of the event [36]. This allows
evaluating, for instance, the probability that a certain parameter in a complex
model lies on a certain fixed interval.

The Bayesian way of estimating the parameters of a given model focuses around
the Bayes theorem. Given some data X and a model (or hypothesis) H for it
that depends on a set of parameters θ, the Bayes theorem gives the posterior
probability of the parameters

p(θ|X,H) = p(X|θ,H)p(θ|H)
p(X|H) . (3.1)

In Equation (3.1), the term p(θ|X,H) is called the posterior probability of the
parameters. It gives the probability of the parameters, when the data and the
model are given. Therefore it contains all the information about the values of
the parameters that can be extracted from the data. The term p(X|θ,H) is
called the likelihood of the data. It is the probability of the data, when the
model and its parameters are given and therefore it can usually be evaluated
rather easily from the definition of the model. The term p(θ|H) is the prior
probability of the parameters. It must be chosen beforehand to reflect one’s
prior belief of the possible values of the parameters. The last term p(X|H) is
called the evidence of the model H. It can be written as

p(X|H) =
∫

p(X|θ,H)p(θ|H)dθ (3.2)

and it ensures that the right hand side of the equation is properly scaled. In
any case it is just a constant that is independent of the values of the parameters
and can thus be usually ignored when inferring the values of the parameters
of the model. This way the Bayes theorem can be written in a more compact
form

p(θ|X,H) ∝ p(X|θ,H)p(θ|H). (3.3)

The evidence is, however, very important when comparing different models.

3.1. Bayesian statistics 13

The key idea in Bayesian statistics is to work with full distributions of pa-
rameters instead of single values. In calculations that require a value for a
certain parameter, instead of choosing a single “best” value, one must use all
the values and weight the results according to the posterior probabilities of the
parameter values. This is called marginalising over the parameter.

3.1.1 Constructing probabilistic models

To use the techniques of probabilistic modelling, one must usually somehow
specify the likelihood of the data given some parameters. Not all models
are, however, probabilistic in nature and have naturally emerging likelihoods.
Many models are defined as generative models by stating how the observed
data could be generated from unknown parameters or latent variables.

For given data vectors x(t), a simple linear generative model could be written
as

x(t) = As(t) (3.4)

where A is an unobserved transformation matrix and vectors s(t) are unob-
served hidden or latent variables. In some application areas the latent variables
are also called sources or factors [6, 35].

One way to turn such a generative model into a probabilistic model is to add
a noise term to the Equation (3.4). This yields

x(t) = As(t) + n(t) (3.5)

where the noise can, for example, be assumed to be zero-mean and Gaussian
as in

n(t) ∼ N(0,Σn). (3.6)

Here Σn denotes the covariance matrix of the noise and it is usually assumed
to be diagonal to make the different components of the noise independent.

This implies a likelihood for the data given by

p(x(t)|A, s(t),Σn,H) = N(x(t); As(t),Σn). (3.7)

For a complete probabilistic model one also needs priors for all the parameters
of the model. For instance hierarchical models and conjugate priors can be
useful mathematical tools here but in the end the priors should be chosen to
represent true prior knowledge on the solution of the problem at hand.

3.2. Posterior approximations 14

3.1.2 Hierarchical models

Many models include groups of parameters that are somehow related or con-
nected. This connection should be reflected in the prior chosen for them.
Hierarchical models provide a useful tool for building priors for such groups.
This is done by giving the parameters a common prior distribution which is
parameterised with new higher level hyperparameters [16].

Such a group would typically include parameters that have a somehow similar
status in the model. Hierarchical models are well suited for neural network
related problems because such connected groups emerge naturally, like for
example the different elements of a weight matrix.

The definitions of the components of the Bayesian nonlinear switching state-
space model in Chapter 5 contain several examples of hierarchical priors.

3.1.3 Conjugate priors

For a given class of likelihood functions p(X|θ), the class P of priors p(θ) is
called a conjugate if the posterior p(θ|X) is of the same class P .

This is a very useful property if the class P consists of a set of probability den-
sities with the same functional form. In such a case the posterior distribution
will also have the same functional form. For instance the conjugate prior for
the mean of a Gaussian distribution is Gaussian. In other words, if the prior of
the mean and the functional form of the likelihood are Gaussian, the posterior
of the mean will also be Gaussian [16].

3.2 Posterior approximations

Even though the Bayesian statistics gives the optimal method for performing
statistical inference, the exact use of those tools is impossible for all but the
simplest models. Even if the likelihood and prior can be evaluated to give an
unnormalised posterior of Equation (3.3), the integral needed for the scaling
term of Equation (3.2) is usually intractable. This makes analytical evaluation
of the posterior impossible.

As the exact Bayesian inference is usually impossible, there are many algo-
rithms and methods that approximate it. The simplest method is to approxi-
mate the posterior with a discrete distribution concentrated at the maximum

3.2. Posterior approximations 15

of the posterior density given by Equation (3.3). This gives a single value for
all the parameters. The method is called maximum a posteriori (MAP) esti-
mation. It is closely related to the classical technique of maximum likelihood
(ML) estimation, in which the contribution of the prior is ignored and only
the likelihood term p(X|θ,H) is maximised [57].

The MAP estimate is troublesome because especially in high dimensional
spaces, high probability density does not necessarily have anything to do with
high probability mass, which is the quantity of interest. A narrow spike can
have very high density, but because of its very small width, the actual prob-
ability of the studied parameter belonging to it is small. In high dimensional
spaces the width of the mode is much more important than its height.

As an example, let us consider a simple linear model for data x(t)

x(t) = As(t) (3.8)

where both A and s(t) are unknown. This is the generative model for standard
PCA and ICA [27].

Assuming that both A and s(t) have unimodal prior distributions centered at
the origin, the MAP solution will typically give very small values for s(t) and
very large values for A. This is because there are so many more parameters
in s(t) than in A that it pays off to make the sources very close to their prior
most probable value, even at the cost of A having huge values. Of course such
a solution cannot make any sense, because the source values must be specified
very precisely in order to describe the data. In simple linear models such
behaviour can be suppressed by restricting the values of A suitably. In more
complex models there usually is no way to restrict the values of the parameters
and using better approximation methods is essential.

The same problem in a two dimensional case is illustrated in Figure 3.1.1 The
mean of the two dimensional distribution in the figure lies near the centre of the
square where most of the probability mass is concentrated. The narrow spike
has high density but it is not very massive. Using a gradient based algorithm
to find the maximum of the distribution (MAP estimate) would inevitably lead
to the top of the spike. The situation of the figure may not look that bad but
the problem gets much worse when the dimensionality is higher.

1The basic idea of the figure is due to Barber and Bishop [2].

3.2. Posterior approximations 16

Figure 3.1: High probability density does not always imply high probability
mass. The spike on the right has the highest density even though most of the
mass is near the centre.

3.2.1 Model selection

According to the marginalisation principle, the correct way to compare differ-
entmodels in the Bayesian framework is to always use all the models, weighting
their results by the respective posterior probabilities. This is a computation-
ally demanding approach and it may be desirable to use only one model, even
if it does not lead to optimal results. The rest of the section concentrates on
finding suitable criteria for choosing just one “best” model.

Occam’s razor is an old scientific principle which states that when trying to
explain some phenomenon, the simplest model that can adequately explain
it should be chosen. There is no point in choosing an overly complex model
when even a much simpler one would do. A very complex model will be able
to fit the given data almost perfectly but it will not be able to generalise very
well. On the other hand, very simple models will not be able to describe the
essential features of the data. One must make a compromise and choose a
model with enough but not too much complexity [57, 10].

MacKay showed in [37] how this can be done in the Bayesian framework by
evaluating and comparing model evidences. The evidence of a model Hi is
defined as the probability p(X|Hi) of the data given the model. This is just
the scaling factor in the denominator of the Bayes theorem in Equation (3.1)

3.2. Posterior approximations 17

and it can be evaluated as shown in Equation (3.2).

True Bayesian comparison of the models would require using Bayes theorem
to get the posterior probability of the model as

p(Hi|X) ∝ p(X|Hi)p(Hi). (3.9)

If, however, there is no reason to prefer one model over another, one can
choose a uniform prior for all the models. This way the posterior probability
of a model is directly proportional to the evidence. There is no need to use
a prior on the models to penalise complex ones, the evidence will do that
automatically.

Figure 3.2 shows how the model evidence can be used to choose the right
model.2 In the figure the horizontal axis ranges through all the possible data
sets. The curves show the values of evidence for different models and different
data sets. As the distributions p(X|Hi) are all normalised, the area under
each curve is equal.

A simple model like H1 can only describe a small range of possible data sets.
It gives a high evidence for those but nothing for the rest. A very complex
model like H2 can describe a much larger variety of data sets. Therefore it has
to spread its predictions more thinly than model H1 and gives lower evidence
for simple data sets. And for a data set like X1 lying there in the middle,
both the extremes will lose to model H3 which is just good enough for that
data and therefore just the model called for by Occam’s razor.

After this point the explicit references to the model H in expressions for dif-
ferent probabilities are omitted. This is done purely to simplify the notation.
It should be noted that in the Bayesian framework, all the probabilities are
conditional to some assumptions because they are always subjective.

3.2.2 Stochastic approximations

The basic idea in stochastic approximations is to somehow get samples from
the true posterior distribution. This is usually done by constructing a Markov
chain for the model parameters θ whose stationary distribution corresponds to
the posterior distribution p(θ|X). Simulation algorithms doing this are called
Markov chain Monte Carlo (MCMC) methods.

The most important of such algorithms is the Metropolis–Hastings algorithm.
To use it, one must be able to compute the unnormalised posterior of Equa-

2The idea of the figure is due to Dr. David MacKay [37].

3.2. Posterior approximations 18

PSfrag replacements

p(X|H1)

p(X|H2)

p(X|H3)

X1

Figure 3.2: How model evidence embodies Occam’s razor [37]. For given data
set X1, the model with just right complexity will have the highest evidence.

tion (3.3). In addition one must specify a jumping distribution for the param-
eters. This can be almost any reasonable distribution that models possible
transitions between different parameter values. The algorithm works by get-
ting random samples from the jumping distribution and then either taking
the suggested transition or rejecting it, depending on the ratio of the pos-
terior probabilities of the two values in question. The normalising factor of
the posterior is not needed as only the ratio of the posterior probabilities is
needed [16].

Neal [44] discusses the use of MCMC methods for neural networks in detail.
He also presents some modifications to the basic algorithms to improve their
performance for large neural network models.

3.2.3 Laplace approximation

Laplace’s method approximates the integral of a function
∫
f(w)dw by fitting

a Gaussian at the maximum ŵ of f(w), and computing the volume under the
Gaussian. The covariance of the fitted Gaussian is determined by the Hessian
matrix of log f(w) at the maximum point ŵ [40].

The same name is also used for the method of approximating the posterior
distribution with a Gaussian centered at the maximum a posteriori estimate.
This can be justified by the fact that under certain regularity conditions, the

3.2. Posterior approximations 19

posterior distribution approaches Gaussian distribution as the number of sam-
ples grows [16].

Despite using a full distribution to approximate the posterior, Laplace’s method
still suffers from most of the problems of MAP estimation. Estimating the vari-
ances at the end does not help if the procedure has already lead to an area of
low probability mass.

3.2.4 EM algorithm

The EM algorithm was originally presented by Dempster et al. in 1977 [13].
They presented it as a method of doing maximum likelihood estimation for
incomplete data. Their work formalised and generalised several old ideas. For
example Baum et al. [3] used very similar methods with hidden Markov models
several years earlier.

The term “incomplete data” refers to a case where the complete data consists
of two parts, only one of which is observed. Missing part can only be inferred
based on how it affects the observed part. A typical example would be the
generative model in Section 3.1.1, where the x(t) are the observed dataX and
the sources s(t) are the missing data S.

The same algorithm can be easily interpreted in the Bayesian framework. Let
us assume that we are trying to estimate the posterior probability p(θ|X) for
some model parameters θ. In such a case, the Bayesian version gives a point
estimate for posterior maximum of θ.

The algorithm starts at some initial estimate θ̂0. The estimate is improved it-
eratively by first computing the conditional probability distribution p(S|θ̂i,X)
of the missing data given the current estimate of the parameters. After this, a
new estimate θ̂i+1 for the parameters is computed by maximising the expecta-
tion of log p(θ|S,X) over the previously calculated p(S|θ̂i,X). The first step
is called the expectation step (E-step) and the latter is called maximisation
step (M-step) [16, 57].

An important feature in the EM algorithm is that it gives the complete prob-
ability distribution for the missing data and uses point estimates only for the
model parameters. It should therefore give better results than simple MAP
estimation.

Neal and Hinton showed in [45] that the EM algorithm can be interpreted as

3.3. Ensemble learning 20

minimisation of the cost function given by

C = Eq(S)

[
log

q(S)

p(X,S|θ)

]
= Eq(S)

[
log

q(S)

p(S|X,θ)

]
− log p(X|θ) (3.10)

where at step t, q(S) = p(S|θ̂t−1,X). The notation Eq(S)[· · ·] means that the
expectation is taken over the distribution q(S). This interpretation can be
used to justify many interesting variants of the algorithm.

3.3 Ensemble learning

Ensemble learning is a relatively new concept suggested by Hinton and van
Camp in 1993 [23]. It allows approximating the true posterior distribution
with a tractable approximation and fitting it to the actual probability mass
with no intermediate point estimates.

The posterior distribution of the model parameters θ, p(θ|X,H), is approxi-
mated with another distribution or approximating ensemble q(θ). The objec-
tive function chosen to measure the quality of the approximation is essentially
the same cost function as the one for EM algorithm in Equation (3.10) [38]

C(θ) = Eq(θ)

{
log

q(θ)

p(θ,X|H)

}
=

∫
q(θ) log

q(θ)

p(θ,X|H)dθ. (3.11)

Ensemble learning is based on finding an optimal function to approximate an-
other function. Such optimisation methods are called variational methods and
therefore ensemble learning is sometimes also called variational learning [30].

A closer look at the cost function C(θ) shows that it can be represented as a
sum of two simple terms

C(θ) =

∫
q(θ) log

q(θ)

p(θ,X|H)dθ =

∫
q(θ) log

q(θ)

p(θ|X,H)p(X|H)dθ

=

∫
q(θ) log

q(θ)

p(θ|X,H)dθ − log p(X|H).
(3.12)

The first term in Equation (3.12) is the Kullback–Leibler divergence between
the approximate posterior q(θ) and the true posterior p(θ|X,H). A simple
application of Jensen’s inequality [52] shows that the Kullback–Leibler diver-

3.3. Ensemble learning 21

gence D(q||p) between two distributions q(θ) and p(θ) is always nonnegative:

−D(q(θ)||p(θ)) =
∫

q(θ) log
p(θ)

q(θ)
dθ

≤ log

∫
q(θ)

p(θ)

q(θ)
dθ = log

∫
p(θ)dθ = log 1 = 0.

(3.13)

Since the logarithm is a strictly concave function, the equality holds if and
only if p(θ)/q(θ) = const., i.e. p(θ) = q(θ).

The Kullback–Leibler divergence is not symmetric and it does not obey the
triangle inequality, so it is not a metric. Nevertheless it can be considered a
kind of a distance measure between probability distributions [12].

Using the inequality in Equation (3.13) we find that the cost function C(θ) is
bounded from below by the negative logarithm of the evidence

C(θ) = D(q(θ)||p(θ|X,H))− log p(X|H) ≥ − log p(X|H) (3.14)

and there is equality if and only if q(θ) = p(θ|X,H).

Looking at this the other way round, the cost function gives a lower bound on
the model evidence with

p(X|H) ≥ e−C(θ). (3.15)

The error of this estimate is governed by D(q(θ)||p(θ|X,H)). Assuming the
distribution q(θ) has been optimised to fit well to the true posterior, the error
should be rather small. Therefore it is possible to approximate the evidence by
p(X|H) ≈ e−C(θ). This allows using the values of the cost function for model
selection as presented in Section 3.2.1 [35].

An important feature for practical use of ensemble learning is that the cost
function and its derivatives with respect to the parameters of the approximat-
ing distribution can be easily evaluated for many models. Hinton and van
Camp [23] used a separable Gaussian approximating distribution for a single
hidden layer MLP network. After that many authors have used the method
for different applications.

3.3.1 Information theoretic approach

In their original paper [23], Hinton and van Camp approached ensemble learn-
ing from an information theoretic point of view by using theMinimum Descrip-
tion Length (MDL) Principle [61]. They developed a new coding method for

3.3. Ensemble learning 22

noisy parameter values which led to the cost function of Equation (3.11). This
allows interpreting the cost C(θ) in Equation (3.11) as a description length for
the data using the chosen model.

The MDL principle asserts that the best model for given data is the one that
attains the shortest description of the data. The description length can be
evaluated in bits and it represents the length of the message needed to transmit
the data. The idea is that one builds a model for the data and then sends
the description of that model and the residual of the data that could not be
modelled. Thus the total description length is L(data) = L(model)+L(error).

The code length is related to probability because according to the coding
theorem, an event x1 having probability p(x1) can be coded using − log2 p(x1)
bits, assuming both the sender and the receiver know the distribution p.

In their article Hinton and van Camp developed a method for encoding the
parameters of the model in such a way, that the expected code length is the
one given by Equation (3.11). Derivation of this result can be found in the
original paper by Hinton and van Camp [23] or in the doctoral thesis [57] by
Harri Valpola.

Chapter 4

Building blocks of the model

The nonlinear switching state-space model is a combination of two well known
models, the hidden Markov model (HMM) and the nonlinear state-space model
(NSSM). In this chapter, a brief review of previous work on these models and
their combinations is presented. Section 4.1 deals with HMMs and Section 4.2
with NSSMs. Section 4.3 discusses some of the combinations of the two models.

The HMM and linear state-space model (SSM) are actually rather closely
related. They can both be interpreted as linear Gaussian models [50]. The
greatest difference between the models is that the SSM has continuous hidden
states whereas the HMM has only discrete states. Roweis and Ghahramani
have written a review [50] that nicely shows the common properties of the
models. This thesis will nevertheless follow the more standard formulations,
which tend to hide these connections.

4.1 Hidden Markov models

Hidden Markov models (HMMs) are latent variable models based on the Markov
chains. HMMs are widely used especially in speech recognition and there is
an extensive literature on them. The tutorial by Rabiner [48] is often consid-
ered a definitive guide to HMMs in speech recognition. Ghahramani [17] gives
another introduction with some more recent extensions to the basic model.

Before going into details of HMMs, some of the basic properties of Markov
chains are first reviewd briefly.

23

4.1. Hidden Markov models 24

4.1.1 Markov chains

AMarkov chain is a discrete stochastic process with discrete states and discrete
transformations between them. At each time instant the system is in one of
the N possible states, numbered from one to N . At regularly spaced discrete
times, the system switches its state, possibly back to the same state. The initial
state of the chain is denoted M1 and the states after each time of change are
M2,M3, Standard first order Markov chain has the additional property
that the probabilities of the future states depend only on the current state and
not the ones before it [48]. Formally this means that

p(Mt+1 = j|Mt = i,Mt−1 = k, . . .) = p(Mt+1 = j|Mt = i) ∀t, i, j, k. (4.1)

This is called the Markov property of the chain.

Because of the Markov property, the complete probability distribution of the
states of a Markov chain is defined by the initial distribution πi = p(M1 = i)
and the state transition probability matrix

aij = p(Mt+1 = j|Mt = i), 1 ≤ i, j ≤ N. (4.2)

Let us denote π = (πi) and A = (aij). In the general case the transition
probabilities could be time dependent, i.e. aij = aij(t), but in this thesis only
the time independent case is considered.

This allows the evaluation of the probability of a sequence of states M =
(M1,M2, . . . ,MT), given the model parameters θ = (A,π), as

p(M |θ) = πM1

[
T−1∏

t=1

aMtMt+1

]
. (4.3)

4.1.2 Hidden states

Hidden Markov model is basically a Markov chain whose internal state cannot
be observed directly but only through some probabilistic function. That is,
the internal state of the model only determines the probability distribution of
the observed variables.

Let us denote the observations by X = (x(1), . . . , x(T)). For each state, the
distribution p(x(t)|Mt) is defined and independent of the time index t. The
exact form of this conditional distribution depends on the application. In the

4.1. Hidden Markov models 25

simplest case there is only a finite number of different observation symbols. In
this case the distribution can be characterised by the point probabilities

bi(m) = p(x(t) = m|Mt = i), ∀i,m. (4.4)

Letting B = (bi(m)) and the parameters θ = (A,B,π), the joint probability
of an observation sequence and a state sequence can be evaluated by simple
extension to Equation (4.3)

p(X,M |θ) = πM1

[
T−1∏

t=1

aMtMt+1

][
T∏

t=1

bMt
(x(t))

]
. (4.5)

The posterior probability of a state sequence can be derived from this as

p(M |X,θ) =
1

P (X|θ)πM1

[
T−1∏

t=1

aMtMt+1

][
T∏

t=1

bMt
(x(t))

]
(4.6)

where P (X|θ) =
∑

M
P (X,M |θ).

4.1.3 Continuous observations

An obvious extension to the basic HMM model is to allow continuous obser-
vation space instead of a finite number of discrete symbols. In this model the
parameters B cannot be described as a simple matrix of point probabilities
but rather as a complete pdf over the continuous observation space for each
state. Therefore the values of bi(m) in Equation (4.4) must be replaced with
a continuous probability distribution

bi(x(t)) = p(x(t)|Mt = i), ∀x(t), i. (4.7)

This model is called continuous density hidden Markov model (CDHMM). The
probability of an observation sequence evaluated in Equation (4.5) stays the
same. The conditional distributions bi(x(t)) can in principle be arbitrary but
usually they are restricted to be finite mixtures of simple parametric distribu-
tions, like Gaussians [48].

4.1.4 Learning algorithms

Rabiner [48] lists three basic problems for HMMs:

4.1. Hidden Markov models 26

1. Given the observation sequence X and the model θ, how can the prob-
ability p(X|θ) be computed efficiently?

2. Given the observation sequence X and the model θ, how can the corre-
sponding optimal state sequence M be estimated?

3. Given the observation sequence X, how can the model parameters θ be
optimised to better describe the observations?

Problem 1 is not a learning problem but rather one needed in evaluating the
model. Its difficulty comes from the fact that one needs to calculate the sum
over all the possible state sequences. This can be diverted by calculating the
probabilities recursively with respect to the length of the observation sequence.
This operation forms one half of the forward–backward algorithm and it is very
typical for HMM calculations. The algorithm uses an auxiliary variable αi(t)
which is defined as

αi(t) = p(x1:t,Mt = i|θ). (4.8)

Here we have used the notation x1:t = (x(1), . . . , x(t)).

The algorithm to evaluate p(X|θ) proceeds as follows:

1. Initialisation:
αj(1) = bj(x(1))πj

2. Iteration:

αj(t+ 1) =

[
N∑

i=1

αi(t)aij

]
bj(x(t+ 1))

3. Termination:

p(X|θ) =
N∑

i=1

αi(T).

The solution of Problem 2 is much more difficult. Rabiner uses classical statis-
tics and interprets it as a maximum likelihood estimation problem for the state
sequence, the solution of which is given by the Viterbi algorithm. A Bayesian
solution to the problem can be found with a simple modification of the solution
of the next problem which essentially uses the posterior of the hidden states.

Rabiner’s statement of Problem 3 is more precise than ours and asks for the
maximum likelihood solution optimising p(X|θ) with respect to θ. This prob-
lem is solved by the Baum–Welch algorithm which is an application of the EM
algorithm to the problem.

4.1. Hidden Markov models 27

The Baum–Welch algorithm uses the complete forward–backward procedure
with a backward pass to compute βi(t) = p(xt:T |Mt = i,θ). This can be done
very much like the forward pass:

1. Initialisation:
βi(T) = bi(x(T))

2. Iteration:

βi(t) = bi(x(t))

[
N∑

j=1

aijβj(t+ 1)

]
.

The M-step of Baum–Welch algorithm can be expressed in terms of ηij(t), the
posterior probability that there was a transition between state i and state j
at time step t given X and θ. This probability can be easily calculated with
forward and backward variables α and β:

ηij(t) = p(Mt = i,Mt+1 = j|X,θ) =
1

Zn

αi(t)aijβj(t+ 1) (4.9)

where Zn is a normalising constant such that
∑N

i,j=1 ηij(t) = 1. Then the M-
step for aij is

aij =
1

Z ′
n

T−1∑

t=1

ηij(t) (4.10)

where Z ′
n is another constant needed to make the transition probabilities nor-

malised. There are similar update formulas for other parameters. The algo-
rithm can also easily be extended to take into account the possible priors of
different variables [39].

Ensemble learning for hidden Markov models

MacKay showed in [39] how ensemble learning can be applied to learning of
HMMs with discrete observations. With suitable priors for all the variables,
the problem can be solved analytically and the resulting algorithm turns out
to be a rather simple modification of the Baum–Welch algorithm.

MacKay uses Dirichlet distributions as priors for the model parameters θ.
(See Appendix A for the definition of the Dirichlet distribution and some of
its properties.) The likelihood of the model is discrete with respect to all
the parameters and the Dirichlet distribution is the conjugate prior of such a
distribution. Because of this, the posterior distributions of all the parameters

4.2. Nonlinear state-space models 28

are also Dirichlet. The update rule for the parameters Wij of the Dirichlet
distribution of the transition probabilities is

Wij =
T−1∑

t=1

∑

M

q(M)δ(Mt = i,Mt+1 = j) + uaij
(4.11)

where uaij
are the parameters of the prior and q(M) is the approximate pos-

terior used in ensemble learning. The update rules for other parameters are
similar.

The posterior distribution of the hidden state probabilities turns out to be
of exactly the same form as the likelihood in Equation (4.6) but with aij

replaced with a∗ij = exp
(
Eq(A){ln aij}

)
and similarly for bi(x(t)) and πi. The

required expectations over the Dirichlet distribution can be evaluated as in
Equation (A.13) in Appendix A.

4.2 Nonlinear state-space models

The fundamental goal of this work has been to extend the nonlinear state-
space model (NSSM) and learning algorithm for it developed by Dr. Harri
Valpola [58, 60], by adding the possibility of several distinct states for the
dynamical system, as governed by the HMM. The NSSM algorithm is an ex-
tension to earlier nonlinear factor analysis (NFA) algorithm [34].

In this section, some of the previous work on these models is reviewed briefly.
This complements the discussion in Section 2.2.2 as the problem to be solved
is essentially the same. But first let us begin with an introduction to linear
state-space models (SSMs), a generalisation of which the nonlinear version is.

4.2.1 Linear models

The linear state-space model (SSM) is built from a standard linear dynamical
system in Equation (2.4). However, the state is not observed directly but only
through another linear mapping. The basic model can be described by a pair
of equations:

s(t+ 1) = Bs(t) +m(t)

x(t) = As(t) + n(t)
(4.12)

where x(t) ∈ Rn, t = 1, . . . , T are the observations and s(t) ∈ Rm, t = 1, . . . , T
are the hidden internal states of the dynamical system. These internal states

4.2. Nonlinear state-space models 29

stay in the so called state-space — hence the name state-space model. Vectors
m(t) and n(t) are the process and the observation noise, respectively. The
mappings A and B are the linear observation and prediction mappings.

As we saw in Section 2.1.2, the possible dynamics of such a linear model are
very restricted. The process noise may help in keeping the whole system from
converging to a single point, but still the system cannot explain any interesting
complex phenomena.

Linear SSMs are nevertheless used widely because they are very efficient to
use and provide a good enough short-term approximation for many cases even
if the true dynamics are nonlinear.

The most famous variant of linear SSMs is the Kalman filter [31, 41, 32]. It
gives a learning algorithm for the model defined by Equation (4.12) assuming
all the parameters are Gaussian and certain independence assumptions are met.
Kalman filtering is used in several application because it is easy to implement
and efficient.

4.2.2 Extension from linear to nonlinear

The nonlinear state-space model is in principle a very simple extension of the
linear model. All that needs to be done is to replace the linear mappings A
and B of Equation (4.12) with general nonlinear mappings to get

s(t+ 1) = g(s(t)) +m(t)

x(t) = f(s(t)) + n(t),
(4.13)

where f and g are sufficiently smooth nonlinear mappings and all the other
variables are as in Equation (4.12).

One of the greatest difficulties with the nonlinear model is that while a linear
mapping A : Rm → Rn can be uniquely determined by m · n real numbers
(the elements of the corresponding matrix), there is no way to do the same for
nonlinear mappings. Representing an arbitrary nonlinear mapping with even
moderate accuracy requires much more parameters.

While the matrix form provides a natural parameterisation for linear map-
pings, no such evident approach exists for nonlinear mappings. There are sev-
eral ways to approximate a given nonlinear mapping through different kinds
of series decompositions. Unfortunately such parameterisations are often best
suited for some special classes of functions or are very sensitive to the data

4.2. Nonlinear state-space models 30

and thus useless in the presence of noise. For example in polynomial approx-
imations, the coefficients become very sensitive to the data when the degree
of the approximating polynomial is raised. Trigonometric expansions (Fourier
series) are well suited only for modelling periodic functions.

In neural network literature there are two competing nonlinear function ap-
proximation methods that are both widely used: radial–basis function (RBF)
and multilayer perceptron (MLP) networks. They are both universal function
approximators, meaning that given enough “neurons” they can model any
function to the desired degree of accuracy [21].

In this work we use only MLP networks, so they are now discussed in greater
detail.

4.2.3 Multilayer perceptrons

An MLP is a network of simple neurons called perceptrons. The basic concept
of a single perceptron was introduced by Rosenblatt in 1958. The perceptron
computes a single output from multiple real-valued inputs by forming a linear
combination according to its input weights and then possibly putting the out-
put through some nonlinear activation function. Mathematically this can be
written as

y = ϕ(
n∑

i=1

wixi + b) = ϕ(wTx+ b) (4.14)

where w denotes the vector of weights, x is the vector of inputs, b is the bias
and ϕ is the activation function. A signal-flow graph of this operation is shown
in Figure 4.1 [21, 5].

The original Rosenblatt’s perceptron used a Heaviside step function as the
activation function ϕ. Nowadays, and especially in multilayer networks, the
activation function is often chosen to be the logistic sigmoid 1/(1+ e−x) or the
hyperbolic tangent tanh(x). They are related by (tanh(x)+1)/2 = 1/(1+e−2x).
These functions are used because they are mathematically convenient and are
close to linear near origin while saturating rather quickly when getting away
from the origin. This allows MLP networks to model well both strongly and
mildly nonlinear mappings.

A single perceptron is not very useful because of its limited mapping ability.
No matter what activation function is used, the perceptron is only able to
represent an oriented ridge-like function. The perceptrons can, however, be
used as building blocks of a larger, much more practical structure. A typical

4.2. Nonlinear state-space models 31

PSfrag replacements

x1

x2

x3

xn

w1

w2

w3

wn

+1

b

ϕ(·)

...

y

Figure 4.1: Signal-flow graph of the perceptron

multilayer perceptron (MLP) network consists of a set of source nodes forming
the input layer, one or more hidden layers of computation nodes, and an output
layer of nodes. The input signal propagates through the network layer-by-
layer. The signal-flow of such a network with one hidden layer is shown in
Figure 4.2 [21].

The computations performed by such a feedforward network with a single
hidden layer with nonlinear activation functions and a linear output layer can
be written mathematically as

x = f(s) = Bϕ(As+ a) + b (4.15)

where s is a vector of inputs and x a vector of outputs. A is the matrix
of weights of the first layer, a is the bias vector of the first layer. B and b
are, respectively, the weight matrix and the bias vector of the second layer.
The function ϕ denotes an elementwise nonlinearity. The generalisation of the
model to more hidden layers is obvious.

While single-layer networks composed of parallel perceptrons are rather limited
in what kind of mappings they can represent, the power of an MLP network
with only one hidden layer is surprisingly large. As Hornik et al. and Funahashi
showed in 1989 [26, 15], such networks, like the one in Equation (4.15), are
capable of approximating any continuous function f : Rn → Rm to any given
accuracy, provided that sufficiently many hidden units are available.

4.2. Nonlinear state-space models 32

PSfrag replacements
ϕ

ϕ

ϕ ϕ ϕ

∑

∑

∑∑

input layer

hidden layer

output layer

nonlinear neuron

linear neuron

Figure 4.2: Signal-flow graph of an MLP

MLP networks are typically used in supervised learning problems. This means
that there is a training set of input–output pairs and the network must learn
to model the dependency between them. The training here means adapting
all the weights and biases (A,B, a and b in Equation (4.15)) to their optimal
values for the given pairs (s(t),x(t)). The criterion to be optimised is typically
the squared reconstruction error

∑
t ||f(s(t))− x(t)||2.

The supervised learning problem of the MLP can be solved with the back-
propagation algorithm. The algorithm consists of two steps. In the forward
pass, the predicted outputs corresponding to the given inputs are evaluated
as in Equation (4.15). In the backward pass, partial derivatives of the cost
function with respect to the different parameters are propagated back through
the network. The chain rule of differentiation gives very similar computational
rules for the backward pass as the ones in the forward pass. The network
weights can then be adapted using any gradient-based optimisation algorithm.
The whole process is iterated until the weights have converged [21].

The MLP network can also be used for unsupervised learning by using the so
called auto-associative structure. This is done by setting the same values for
both the inputs and the outputs of the network. The extracted sources emerge
from the values of the hidden neurons [24]. This approach is computationally
rather intensive. The MLP network has to have at least three hidden layers for

4.2. Nonlinear state-space models 33

any reasonable representation and training such a network is a time consuming
process.

4.2.4 Nonlinear factor analysis

The NSSM implementation in [58] uses MLP networks to model the two non-
linear mappings in Equation (4.13). The learning procedure for the mappings
is essentially the same as in the simpler NFA model [34], so it is presented
first. The NFA model is also used in some of the experiments to explore the
properties of the data set used.

Like the NSSM is a generalisation of the linear SSM, the NFA is a generalisation
of the well-known linear factor analysis. The NFA can be defined with a
generative data model given by

x(t) = f(s(t)) + n(t), s(t) =m(t) (4.16)

where the noise terms n(t) andm(t) are assumed to be Gaussian. The explicit
mention of the factors being modeled as white noise is included to emphasise
the difference between the NFA and the NSSM. The Gaussianity assumptions
are made because of mathematical convenience, even though the Gaussianity
of the factors is a serious limitation.

In the corresponding linear model the posterior will be an uncorrelated Gaus-
sian, and in the nonlinear model it is approximated with a similar Gaussian.
However, an uncorrelated Gaussian with equal variances in each direction is
spherically symmetric and thus invariant with respect to all possible rotations
of the factors. Even if the variances are not equal, there is a similar rotation
invariance.

In traditional approaches to linear factor analysis this invariance is resolved
by fixing the rotation using different heuristic criteria in choosing the optimal
one. In the neural computation field the research has lead to algorithms like
independent component analysis (ICA) [27] which uses basically the same linear
generative model but with non-Gaussian factors. Similar techniques can also
be applied to nonlinear model as discussed in [34].

The NFA algorithm uses an MLP network as the model of the nonlinearity f .
The model is learnt using ensemble learning. Most of the expectations needed
for ensemble learning for such a model can be evaluated analytically. Only
the terms involving the nonlinearity f must be approximated by using Taylor
series approximation for the function about the posterior mean of the input.

4.2. Nonlinear state-space models 34

The weights of the MLP network are updated with a back-propagation-like
algorithm using the ensemble learning cost function. The unknown inputs of
the network are also updated similarly, contrary to the standard supervised
back-propagation.

All the parameters of the model are assumed to be Gaussian with hierarchical
priors for most of them. The technical details of the model and the learning
algorithm are covered in Chapters 5 and 6. Those chapters do, however, deal
with the more general NSSM but the NFA emerges as a special case when all
the temporal structure is ignored.

4.2.5 Learning algorithms

The most important NSSM learning algorithm for this work is the one by Dr.
Harri Valpola [58, 60]. It uses MLP networks to model the nonlinearities and
ensemble learning to optimise the model. It is discussed in detail in Sections 5.2
and 6.2 and it will therefore be skipped for now.

Even though it is not exactly a learning algorithm for complete NSSMs, the
extended Kalman filter (EKF) is an important building block for many such
algorithms. The EKF extends standard Kalman filtering for nonlinear models.
The nonlinear functions f and g of Equation (4.13) must be known in advance.
The algorithm works by linearising the functions about the estimated posterior
mean. The posterior probability of the state variables is evaluated with a
forward-backward type iteration by assuming the posterior of each sample to
be Gaussian [42, 28, 32].

Briegel and Tresp [7] present an NSSM that uses MLP networks as the model
of the nonlinearities. The learning algorithm is based on Monte-Carlo gener-
alised EM algorithm, i.e. an EM algorithm with stochastic estimates for the
conditional posteriors at different steps. The Monte-Carlo E-step is further
optimised by generating the samples of the hidden states from an approximate
Gaussian distribution instead of the true posterior. The approximate posterior
is found using either the EKF or an alternative similar method.

Roweis and Ghahramani [51, 19] use RBF networks to model the nonlinearities.
They use standard EM algorithm with EKF for the approximate E-step. The
parameterisation of the RBF network allows an exact M-step for some of the
parameters. All the parameters of the network can not, however, be adapted
this way.

4.3. Previous hybrid models 35

4.3 Previous hybrid models

There are numerous different hybrid models combining the HMM and a contin-
uous model. As HMMs have been used most extensively in speech recognition,
most of the hybrids have also been created for that purpose. Trentin and
Gori [56] present a survey of speech recognition systems combining the HMM
with some neural network model. These models are motivated by the end re-
sult of recognising speech by finding the correct HMM state sequence for the
sequence of uttered phonemes. This is certainly one worthy goal but a good
switching SSM can also be very useful in other time series modelling tasks.

The basic idea of all the hybrids is to use the SSM or another continuous
dynamical model to describe the short-term dynamics of the data while the
HMM describes longer-term changes. In speech modelling, for instance, the
HMM would govern the desired sequence of phonemes while the SSM models
the actual production of the sound, the dynamics of the mouth, the vocal cord
etc.

The models presented here can be divided into two classes. First there are the
true switching SSMs, i.e. combinations of the HMM and a linear SSM. The
second class consists of models that combine the HMM with another dynamical
model which is a continuous one but not a true SSM.

4.3.1 Switching state-space models

There are several possible architectures for switching SSMs. Figure 4.3 shows
some of the most basic ones [43]. The first subfigure corresponds to the case
where the function g and possibly the model for noise m(t) in Equation (4.13)
are different for different states. In the second subfigure, the function f and
the noise n(t) depend on the switching variable. Some combination of these
two approaches is of course also possible. The third subfigure shows an inter-
esting architecture proposed by Ghahramani and Hinton [18] in which there
are several completely separate SSMs and the switching variable chooses be-
tween them. Their model is especially interesting as it uses ensemble learning
to infer the model parameters.

One of the problems with switching SSMs is that the exact E-step of the
EM algorithm is intractable, even if the individual continuous hidden states
are Gaussian. Assuming the HMM has N states, the posterior of a single
state variable s(1) will be a mixture of N Gaussians, one for each HMM state
M1. When this is propagated forward according to the dynamical model, the

4.3. Previous hybrid models 36

PSfrag replacements

s(1) s(2)

M1 M2

x(1) x(2)

(a) Switching
dynamics

PSfrag replacements

s(1) s(2)

M1 M2

x(1) x(2)

(b) Switching
observations

PSfrag replacements

s1(1) s1(2)

sn(1) sn(2)

M1 M2

x(1) x(2)

...
...

(c) Indepen-
dent dynamical
models [18]

Figure 4.3: Bayesian network representations of some switching state-space
model architectures. The round nodes represent Gaussian variables and the
square nodes are discrete. The shaded nodes are observed while the white ones
are hidden.

mixture grows exponentially as the number of possible HMM state sequences
increases. Finally, when the full observation sequence of length T is taken into
account, the posterior of each s(t) will be a mixture of N T Gaussians.

Ensemble learning is a very useful method in developing a tractable algo-
rithm for the problem, although there are other heuristic methods for the
same purpose. The other methods typically use some greedy procedure in col-
lapsing the distribution and this may cause inaccuracies. This is not a problem
with ensemble learning — it considers the whole sequence and minimises the
Kullback–Leibler divergence, which in this case has no local minima.

4.3.2 Other hidden Markov model hybrids

To complete the review, two models that combine the HMM with another
dynamical model that is not an SSM are now presented.

The hidden Markov ICA algorithm by Penny et al. [47] is an interesting vari-

4.3. Previous hybrid models 37

ant of the switching SSMs. It has both switching dynamics and observation
mapping, but the dynamics are not modelled with a linear dynamical system.
Instead, the observations are transformed to independent components which
are then each predicted separately with a generalised autoregressive (GAR)
model. This allows using samples from further back for the prediction but
everything is done strictly separately for all the components.

The MLP/HMM hybrid by Chung and Un [11] uses an MLP network for
nonlinear prediction and an HMM to model its prediction errors. The predictor
operates in the observation space so the model is not an NSSM. The prediction
errors are modeled with a mixture-of-Gaussians for each HMM state. The
model is trained using maximum likelihood and a discriminative criterion for
minimal classification error in a speech recognition application.

Chapter 5

The model

In this chapter, it is shown how the two separate models of the previous chap-
ter, the hidden Markov model (HMM) and the nonlinear state-space model
(NSSM), can be combined into one switching NSSM. The chapter begins with
Bayesian versions of the two individual models, the HMM in Section 5.1 and
the NSSM in Section 5.2. The switching model is introduced in Section 5.3.

5.1 Bayesian continuous density hidden Markov

model

In Section 4.1.4, a Bayesian formulation of the HMM based on the work of
MacKay [39] is presented. This model is now extended for continuous obser-
vations instead of discrete ones.

Normally continuous density hidden Markov models (CDHMMs) use a mixture
model like mixture-of-Gaussians as the distribution of the observations for a
given state. This is, however, unnecessarily complicated for the HMM/NSSM
hybrid so single Gaussians will be used as the observation model.

5.1.1 The model

The basic model is the same as the one presented in Section 4.1. The hid-
den state sequence is denoted by M = (M1, . . . ,MT) and other parame-
ters by θ. The exact form of θ will be specified later. The observations

38

5.1. Bayesian continuous density hidden Markov model 39

X = (x(1), . . . ,x(T)), given the corresponding hidden state, are assumed to
be Gaussian with diagonal covariance matrix.

Given the HMM state sequence M , the individual observations are assumed
to be independent. Therefore the likelihood of the data can be written as

P (X|M ,θ) =
T∏

t=1

N∏

k=1

p(xk(t)|Mt). (5.1)

Because of the Markov property, the prior distribution of the probabilities of
the hidden states can also be written in factorial form:

P (M |θ) = p(M1|θ)
T−1∏

t=1

p(Mt+1|Mt,θ). (5.2)

The factors of Equations (5.1) and (5.2) are defined to be

p(xk(t)|Mt = i) = N(xk(t); mk(i), exp(2vk(i))) (5.3)

p(Mt+1 = j|Mt = i,θ) = aij (5.4)

p(M1 = i|θ) = πi. (5.5)

The priors of all the parameters defined above are

p(ai,·) = Dirichlet(ai,·; u
(A)
i) (5.6)

p(π) = Dirichlet(π; u(π)) (5.7)

p(mk(i)) = N(mk(i); mmk
, exp(2vmk

)) (5.8)

p(vk(i)) = N(vk(i); mvk
, exp(2vvk

)). (5.9)

These should be written as conditional distributions conditional to the param-
eters of the hyperprior but the conditioning variables have been dropped out
to simplify the notation.

The parameters u(π) and u
(A)
i of the Dirichlet priors are fixed. Their values

should be chosen to reflect true prior knowledge on the possible initial states
and transition probabilities of the chain. In our example of speech recognition
where the states of the HMM represent different phonemes, these values could,
for instance, be estimated from textual data.

All the other parameters mmk
, vmk

,mvk
and vvk

have higher hierarchical priors.
As the number of parameters in such priors grows, only the full structure of

5.1. Bayesian continuous density hidden Markov model 40

the hierarchical prior of mmk
is given. It is:

p(mmk
) = N(mmk

; mmm
, exp(2vmm

)) (5.10)

p(mmm
) = N(mmm

; 0, 1002) (5.11)

p(vmm
) = N(vmm

; 0, 1002). (5.12)

The hierarchical prior of for example m(i) can be summarised as follows:

• The different components of m(i) have different priors whereas the vec-
tors corresponding to different states of the HMM share a common prior,
which is parameterised with mmn

.

• The parameters mmn
corresponding to different components of the orig-

inal vector m(i) share a common prior parameterised with mmm
.

• The parameter mmm
has a fixed noninformative prior.

The set of model parameters θ consists of all these parameters and all the
parameters of the hierarchical priors.

In the hierarchical structure formulated above, the Gaussian prior for the mean
m of a Gaussian is a conjugate prior. Thus the posterior will also be Gaussian.

The parameterisation of the variance with σ2 = exp(2v), v ∼ N(α, β) is some-
what less conventional. The conjugate prior for variance of a Gaussian is the
inverse gamma distribution. Adding a new level of hierarchy for the parame-
ters of such a distribution would, however, be significantly more difficult. The
present parameterisation allows adding similar layers of hierarchy for the pa-
rameters of the priors of m and v. In this parameterisation the posterior of v is
not exactly Gaussian but it may be approximated with one. The exponential
function will ensure that the variance will always be positive and the posterior
will thus be closer to a Gaussian.

5.1.2 The approximating posterior distribution

The approximating posterior distribution needed in ensemble learning is over
all the possible hidden state sequences M and the parameter values θ. The
approximation is chosen to be of a factorial form

q(M ,θ) = q(M)q(θ). (5.13)

5.2. Bayesian nonlinear state-space model 41

The approximation q(M) is a discrete distribution and it factorises as

q(M) = q(M1)
T−1∏

t=1

q(Mt+1|Mt). (5.14)

The parameters of this distribution are the discrete probabilities q(M1 = i)
and q(Mt+1 = i|Mt = j).

The distribution q(θ) is also formed as a product of independent distribution
for different parameters. The parameters with Dirichlet priors have posterior
approximations of a single Dirichlet distribution like for π

q(π) = Dirichlet(π; π̂), (5.15)

or a product of Dirichlet distributions as for A

q(A) =
M∏

i=1

Dirichlet(ai; âi). (5.16)

These will actually be the optimal choices among all possible distributions,
assuming the factorisation q(M ,π,A) = q(M)q(π)q(A).

The parameters with Gaussian priors have Gaussian posterior approximations
of the form

q(θi) = N(θi; θi, θ̃i). (5.17)

All these parameters are assumed to be independent.

5.2 Bayesian nonlinear state-space model

In this section, the NSSM model by Dr. Harri Valpola [58, 60] is presented. The
corresponding learning algorithm for the model will be discussed in Section 6.2.

5.2.1 The generative model

The Bayesian model follows the standard NSSM defined in Equation (4.13):

s(t+ 1) = g(s(t)) +m(t)

x(t) = f(s(t)) + n(t).
(5.18)

5.2. Bayesian nonlinear state-space model 42

PSfrag replacements

s(t−1) s(t) s(t+1)

x(t−1) x(t) x(t+1)

f(·) f(·)f(·)

g(·)g(·) g(·)

· · ·

Figure 5.1: The nonlinear state-space model.

The basic structure of the model can be seen in Figure 5.1.

The nonlinear functions f and g of the NSSM are modelled by MLP net-
works. The networks have one hidden layer and can thus be written as in
Equation (4.15):

f(s(t)) = B tanh[As(t) + a] + b (5.19)

g(s(t)) = s(t) +D tanh[Cs(t) + c] + d (5.20)

where A,B,C and D are the weight matrices of the networks and a,b, c and
d are the bias vectors.

Because the data are assumed to be generated by a continuous dynamical
system, it is reasonable to assume that the values of the hidden states s(t)
do not change very much from one time index to the next one. Therefore the
MLP network representing the function g is used to model only the change.

5.2.2 The probabilistic model

Let us denote the observed data with X = (x(1), . . . ,x(T)), the hidden state
values with S = (s(1), . . . , s(T)) and all the other model parameters with θ.
These other parameters consist of the weights and biases of the MLP networks
and hyperparameters defining the prior distributions of other parameters.

The likelihood

Let us assume that the noise terms m(t) and n(t) in Equation (5.18) are all
independent at different time instants and Gaussian with zero mean. The

5.2. Bayesian nonlinear state-space model 43

different components of the vector are, however, allowed to have different vari-
ances as governed by their hyperparameters. Following the developments of
Section 3.1.1, the model implies a likelihood for the data

p(x(t)|s(t),θ) = N(x(t); f(s(t)), diag[exp(2vn)]) (5.21)

where diag[exp(2vn)] denotes a diagonal matrix with the elements of the vector
exp(2vn) on the diagonal. The vector vn is a hyperparameter that defines the
variances of different components of the noise.

As the values of the noise at different time instants are independent, the full
data likelihood can be written as

p(X|S,θ) =
T∏

t=1

p(x(t)|s(t),θ) =
T∏

t=1

n∏

k=1

p(xk(t)|s(t),θ) (5.22)

where the individual factors are of the form

p(xk(t)|s(t),θ) = N(xk(t); fk(s(t)), exp(2vnk
)). (5.23)

The prior of the states S

Similarly, the prior of the states can be written as

p(S|θ) = p(s(1)|θ)
T−1∏

t=1

p(s(t+ 1)|s(t),θ)

=
m∏

k=1

p(sk(1)|θ)
T−1∏

t=1

p(sk(t+ 1)|s(t),θ)
(5.24)

where
p(sk(t+ 1)|s(t),θ) = N(sk(t+ 1); gk(s(t)), exp(2vmk

)) (5.25)

and
p(sk(1)|θ) = N(sk(1); ms0

k
, exp(2vs0

k
)). (5.26)

The prior of the parameters θ

Let us denote the elements of the weight matrices of the MLP networks by
A = (Aij),B = (Bij),C = (Cij) and D = (Dij). The bias vectors consist
similarly of elements a = (ai),b = (bi), c = (ci) and d = (di).

5.2. Bayesian nonlinear state-space model 44

All the elements of the weight matrices and the bias vectors are assumed to
be independent and Gaussian. Their priors are as follows:

p(Aij) = N(Aij; 0, 1) (5.27)

p(Bij) = N(Bij; 0, exp(2vBj
)) (5.28)

p(ai) = N(ai; ma, exp(2va)) (5.29)

p(bi) = N(bi; mb, exp(2vb)) (5.30)

p(Cij) = N(Cij; 0, exp(2vCi
)) (5.31)

p(Dij) = N(Dij; 0, exp(2vDj
)) (5.32)

p(ci) = N(ci; mc, exp(2vc)) (5.33)

p(di) = N(di; md, exp(2vd)). (5.34)

These distributions should again be written conditional to the corresponding
hyperparameters, but the conditioning variables have been here omitted to
keep the notation simpler.

Each of the bias vectors has a hierarchical prior that is shared among the
different elements of that particular vector. The hyperparameters ma, mb,
mc, md, va, vb, vc and vd all have zero mean Gaussian priors with standard
deviation 100, which is a flat, essentially noninformative prior.

The structure of the priors of the weight matrices is much more interesting.
The prior of A is chosen to be fixed to resolve a scaling indeterminacy between
the hidden states s(t) and the weights of the MLP networks. This is evident
from Equation (5.19) where any scaling in one of these parameters could be
compensated by the other without affecting the results in any way. The other
weight matrices B,C and D have zero mean priors with common variance for
all the weights related to a single hidden neuron.

The remaining variance parameters from the priors of the weight matrices and
from Equations (5.23), (5.25) and (5.26) again have hierarchical priors defined
as

p(vBj
) = N(vBj

; mvB
, exp(2vvB

)) (5.35)

p(vCi
) = N(vCi

; mvC
, exp(2vvC

)) (5.36)

p(vDj
) = N(vDj

; mvD
, exp(2vvD

)) (5.37)

p(vnk
) = N(vnk

; mvn
, exp(2vvn

)) (5.38)

p(vmk
) = N(vmk

; mvm
, exp(2vvm

)) (5.39)

p(vs0
k
) = N(vs0

k
; mv0

s
, exp(2vv0

s
)). (5.40)

The prior distributions of the parameters of these distributions are again zero
mean Gaussians with standard deviation 100.

5.2. Bayesian nonlinear state-space model 45

5.2.3 The approximating posterior distribution

As with the HMM, the approximating posterior distribution is chosen to have
a factorial form

q(S,θ) = q(S)q(θ) = q(S)
∏

i

q(θi). (5.41)

The independent distributions for the parameters θi are all Gaussian with

q(θi) = N(θi; θi, θ̃i) (5.42)

where θi and θ̃i are the variational parameters whose values must be optimised
to minimise the cost function.

Because of the strong temporal correlations between the source values at con-
secutive time instants, the same approach cannot be applied to form q(S).
Therefore the approximation is chosen to be of the form

q(S) =
n∏

k=1

[
q(sk(1))

T−1∏

t=1

q(sk(t+ 1)|sk(t))
]

(5.43)

where the factors are again Gaussian.

The distributions for sk(1) can be handled as before with

q(sk(1)) = N(sk(1); sk(1), s̃k(1)). (5.44)

The conditional distribution q(sk(t+1)|sk(t)) must be modified slightly to in-
clude the contribution of the previous state value. Saving the notation s̃k(t) for
the marginal variance of q(sk(t)), the variance of the conditional distribution
is denoted with

◦
sk(t+ 1). The mean of the distribution,

µsi(t+ 1) = sk(t+ 1) + s̆k(t, t+ 1)[sk(t)− sk(t)], (5.45)

depends linearly on the previous state value sk(t). This yields

q(sk(t+ 1)|sk(t)) = N(sk(t+ 1); µsi(t+ 1),
◦
sk(t+ 1)). (5.46)

The variational parameters of the distribution are thus the mean sk(t+1), the
linear dependence s̆k(t, t + 1) and the variance

◦
sk(t + 1). It should be noted

that this dependence is only to the same component of the previous state value.
The posterior dependence between the different components is neglected.

5.3. Combining the two models 46

The marginal distribution of the states at time instant t may now be evaluated
inductively starting from the beginning. Assuming q(sk(t − 1)) = N(sk(t −
1); sk(t− 1), s̃k(t− 1)), this yields

q(sk(t)) =

∫
q(sk(t)|sk(t− 1))q(sk(t− 1))dsk(t− 1)

= N(sk(t); sk(t),
◦
sk(t) + s̆2k(t− 1, t)s̃k(t− 1)).

(5.47)

Thus the marginal mean is the same as the conditional mean and the marginal
variances can be computed using the recursion

s̃k(t) =
◦
sk(t) + s̆2k(t− 1, t)s̃k(t− 1). (5.48)

5.3 Combining the two models

As we saw in Section 4.3, there are several possible ways to combine the HMM
and the NSSM. The approach with switching dynamics seems more reasonable,
so we shall concentrate on it. Hence the illustration of the NSSM in Figure 5.1
is augmented with the discrete HMM states to get Figure 5.2.

PSfrag replacements

Mt−1 Mt Mt+1

s(t−1) s(t) s(t+1)

x(t−1) x(t) x(t+1)

f(·) f(·) f(·)

g(·)g(·)g(·)

p(s(t−1)|Mt−1) p(s(t)|Mt) p(s(t+1)|Mt+1)

· · ·

· · ·

Figure 5.2: The switching nonlinear state-space model.

In the linear models, switching dynamics are often implemented by having a
completely separate dynamical model for every HMM state. This is of course
the most general approach. In the linear case such an approach is possible

5.3. Combining the two models 47

because of the simplicity of the individual linear models needed for each state.
Unfortunately this is not so in the nonlinear case. Using more than just a
few nonlinear models makes the system computationally far too heavy for any
practical use.

To make things at least a little more computationally tractable, we use only
one nonlinear mapping to describe the dynamics of all the states. Instead
of own dynamics, every HMM state has its own characteristic model for the
innovation process i.e. the description error of the dynamical mapping.

5.3.1 The structure of the model

The probabilistic interpretation of the dynamics of the sources in the standard
NSSM is

p(s(t)|s(t− 1),θ) = N(s(t); g(s(t− 1)), diag[exp(vm)]) (5.49)

where g is the nonlinear dynamical mapping and diag[exp(vm)] is the covari-
ance matrix of the zero mean innovation process i(t) = s(t)− g(s(t− 1)). The
typical linear approach, applied to the nonlinear case, would use a different g
and diag[exp(vm)] for all the different states of the HMM.

The simplified model uses only one dynamical mapping g but has an own
covariance matrix diag[exp(vMj

)] for each HMM state j. In addition to this,
the innovation process is not assumed to be zero-mean but it has a mean
depending on the HMM state. Mathematically this means that

p(s(t)|s(t−1),Mt = j,θ) = N(s(t); g(s(t−1))+mMj
, diag[exp(vMj

)]) (5.50)

where Mt is the HMM state, mMj
and diag[exp(vMj

)] are, respectively, the
mean and the covariance matrix of the innovation process for that state. The
prior model of s(1) remains unchanged.

Equation (5.50) summarises the differences between the switching NSSM and
its components, as they were presented in Sections 5.1 and 5.2. The HMM
“output” distribution is the one defined in Equation (5.50), not the data like-
lihood as in the “stand-alone” model. Similarly the model of the continuous
hidden states in NSSM is slightly different from the one specified in Equa-
tion (5.25).

5.3. Combining the two models 48

5.3.2 The approximating posterior distribution

The approximating posterior distribution is again chosen to be of a factorial
form

q(M ,S,θ) = q(M)q(S)q(θ). (5.51)

The distributions of the state variables are as they were in the individual mod-
els, q(M) as in Equation (5.14) and q(S) as in Equations (5.43)–(5.46). The
distribution of the parameters θ is the product of corresponding distributions
of the individual models, i.e. q(θ) = q(θHMM)q(θNSSM).

There is one additional approximation in the choice of the form of q. This
can be clearly seen from Equation (5.50). After marginalising over Mt, the
conditional probability p(s(t)|s(t−1),θ) will be a mixture of as many Gaussians
as there are states in the HMM. Marginalising out the past will result in an
exponentially growing mixture thus making the problem intractable.

Our ensemble learning approach solves this problem by using only a single
Gaussian as the posterior approximation q(s(t)|s(t−1)). This is of course just
an approximation but it allows a tractable way to solve the problem.

Chapter 6

The algorithm

In this chapter, the learning algorithm used for optimising the parameters of
the models defined in the previous chapter is presented. The structure of this
chapter is essentially the same as in the previous chapter, i.e. the HMM is
discussed in Section 6.1, the NSSM in Section 6.2 and finally the switching
model in Section 6.3.

All the learning algorithms are based on ensemble learning which was intro-
duced in Section 3.3. The sections of this chapter are mostly divided into two
parts, one for evaluating the ensemble learning cost function and the other for
optimising it.

6.1 Learning algorithm for the continuous den-

sity hidden Markov model

In this section, the ensemble learning cost function for the CDHMM model
defined in Section 5.1 is derived and it is shown how its value can be optimised.

6.1.1 Evaluating the cost function

The general cost function of ensemble learning, as given in Equation (3.11), is

C(M ,θ) = Cq + Cp = E [log q(M ,θ)] + E [− log p(M ,θ,X)]

= E [log q(M) + log q(θ)] + E [− log p(X|M ,θ)]

+ E [− log p(M |θ)− log p(θ)]

(6.1)

49

6.1. Learning algorithm for the continuous density hidden Markov model 50

where all the expectations are taken over q(M ,θ). This will be true for all
the similar formulas in this section unless explicitly stated otherwise.

The terms originating from the parameters θ

Assuming the parameters are θ = {θ1, . . . , θN} and the approximation is of
the form

q(θ) =
N∏

i=1

q(θi), (6.2)

the terms of Equation (6.1) originating from the parameters θ can be written
as

E [log q(θ)− log p(θ)] =
N∑

i=1

(E [log q(θi)]− E [log p(θi)]) . (6.3)

In the case of Dirichlet distributions one θi in the previous equation must of
course consist of a vector of parameters for the single distribution.

There are two different kinds of parameters in θ, those with Gaussian dis-
tribution and those with a Dirichlet distribution. In the Gaussian case the
expectation E[log q(θi)] over q(θi) = N(θi; θi, θ̃i) gives the negative entropy of

a Gaussian, −1/2(1+ log(2πθ̃i)), as derived in Equation (A.5) of Appendix A.

The expectation of − log p(θi) can also be evaluated using the formulas of
Appendix A. Assuming

p(θi) = N(θi; m, exp(2v)) (6.4)

where q(θi) = N(θi; θi, θ̃i), q(m) = N(m; m, m̃) and q(v) = N(v; v, ṽ), the
expectation becomes

Cp(θi) = E [− log p(θi)] = E

[
1

2
log(2π exp(2v)) +

1

2
(θi −m)2 exp(−2v)

]

=
1

2
log(2π) + E[v] +

1

2
E
[
(θi −m)2

]
E [exp(−2v)]

=
1

2
log(2π) + v +

1

2

[
(θi −m)2 + θ̃i + m̃

]
exp(2ṽ − 2v)

(6.5)

where we have used the results of Equations (A.4) and (A.6).

For Dirichlet distributed parameters, the procedure is similar. Let us assume
that the parameter c ∈ θ, p(c) = Dirichlet(c; u(c)) and q(c) = Dirichlet(c; ĉ).

6.1. Learning algorithm for the continuous density hidden Markov model 51

Using the notation of Appendix A, the negative entropy of the Dirichlet dis-
tribution q(c), E [log q(c)], can be evaluated as in Equation (A.14) to yield

Cq(c) = E [log q(c)] = logZ(ĉ)−
n∑

i=1

(ĉi − 1)[Ψ(ĉi)−Ψ(ĉ0)]. (6.6)

The special function required in these terms is Ψ(x) = d
dx

ln(Γ(x)), where
Γ(x) is the gamma function. The psi function Ψ(x) is also known as the
digamma function and it can be efficiently evaluated numerically for example
using techniques described in [4]. The term Z(ĉ) is a normalising constant of
the Dirichlet distribution as defined in Appendix A.

The expectation of − log p(c) can be evaluated similarly

Cp(c) = −E [log p(c)] = −E

[
log

(
1

Z(u(c))

n∏

i=1

c
u
(c)
i −1

i

)]

= logZ(u(c))−
n∑

i=1

(u
(c)
i − 1) E [log ci]

= logZ(u(c))−
n∑

i=1

(u
(c)
i − 1)[Ψ(ci)−Ψ(c0)].

(6.7)

The likelihood term

The likelihood term in Equation (6.1) is rather easy to evaluate

Cp(X) = −E [log p(X|M ,θ)]

=
T∑

t=1

M∑

i=1

N∑

k=1

q(Mt = i) E [− log p(xk(t)|Mt = i)]

=
T∑

t=1

M∑

i=1

N∑

k=1

q(Mt = i)

(
1

2
log(2π) + vk(i)

+
1

2

[
(xk(t)−mk(i))

2 + m̃k(i)
]
exp(2ṽk(i)− 2vk(i))

)

(6.8)

where we have used the result of Equation (6.5) for the expectation.

6.1. Learning algorithm for the continuous density hidden Markov model 52

The terms originating from the hidden state sequence M

The term Cq(M) is just a sum over the discrete distribution. It can be further
simplified into

Cq(M) =
∑

M

q(M) log q(M) =
∑

M

q(M) log

(
q(M1)

T−1∏

t=1

q(Mt+1|Mt)

)

=
N∑

i=1

q(M1 = i) log q(M1 = i)

+
T−1∑

t=1

N∑

i,j=1

q(Mt+1 = j,Mt = i) log q(Mt+1 = j|Mt = i).

(6.9)

The other term, Cp(M) can be split down to

Cp(M) = E [− log p(M |θ)] = E [− log p(M1|θ)] +
T−1∑

t=1

E
[
− log aMtMt+1

]

= −
N∑

i=1

q(M1 = i)E [log πi]−
T−1∑

t=1

N∑

i,j=1

q(Mt+1 = j,Mt = i)E [log aij]

(6.10)

where according to Equation (A.13), E [log πi] = Ψ(π̂i) − Ψ(
∑N

j=1 π̂j) and

similarly E [log aij] = Ψ(âij)−Ψ(
∑N

k=1 âik).

The above equations give the value of the cost function for given approximat-
ing distribution q(θ,M). This value is important because it can be used to
compare different models as shown in Section 3.3. Additionally it can be used
to monitor whether the iterative optimisation procedure has converged.

6.1.2 Optimising the cost function

After defining the model and finding a way to evaluate the cost function, the
next problem is to optimise the cost function. This will be done in a way that
is very similar to the EM algorithm, i.e. by updating one part of the model
at a time while keeping all the other parameters fixed. All the optimisation
steps aim at finding a minimum of the cost function with the current values for
fixed parameters. Since all the steps decrease the value of the cost function,
the learning algorithm is guaranteed to converge.

6.1. Learning algorithm for the continuous density hidden Markov model 53

Finding optimal q(M)

Assuming q(θ) is fixed, the cost function can be written, up to an additive
constant, in the form

C(M) =
∑

M

q(M)

[
log q(M)−

∫
q(θ) log p(M |θ)dθ

−
∫

q(θ) log p(X|M ,θ)dθ

]

=
∑

M

q(M)

[
log q(M)−

∫
q(π) log πM1dπ

−
∫ T−1∑

t=1

q(A) log aMtMt+1dA+
T∑

t=1

C(x(t)|Mt)

]

(6.11)

where C(x(t)|Mt) is the value of E[p(x(t)|Mt,θ)], i.e. the “cost” of current
data sample given the HMM state.

By defining

π∗
i = exp

(∫
q(π) log πidπ

)
and a∗ij = exp

(∫
q(A) log aijdA

)
, (6.12)

Equation (6.11) can be written in the form

Cq(M) =
∑

M

q(M) log
q(M)

π∗
M1

[∏T−1
t=1 a

∗
MtMt+1

] [∏T

t=1 exp(−C(x(t)|Mt))
] .

(6.13)

The expression
∫
q(x) log q(x)

p∗(x)
is minimised with respect to q(x) by setting

q(x) = 1
Z
p∗(x) where Z is the appropriate normalising constant [39]. This can

be proved with similar reasoning as in Equation (3.13).

The cost in Equation (6.13) can thus be minimised by setting

q(M) =
1

ZM

π∗
M1

[
T−1∏

t=1

a∗MtMt+1

][
T∏

t=1

exp(−C(x(t)|Mt))

]
(6.14)

where ZM is the appropriate normalising constant.

The derived optimal approximation is very similar in form to the exact pos-
terior in Equation (4.6). Therefore the point probabilities of q(M1 = i) and

6.1. Learning algorithm for the continuous density hidden Markov model 54

q(Mt = j|Mt−1 = i) can be evaluated with a modified forward–backward
iteration. The result is the same as in Equation (4.9) except that in the itera-
tion, πi is replaced with π∗

i , aij is replaced with a∗ij and bi(x) is replaced with
exp(−C(x(t)|Mt = i)).

Finding optimal q(θ) for Dirichlet parameters

Let us now assume that q(M) is fixed and optimise q(A) and q(π). Assuming
that everything else is fixed, the cost function can be written as a functional
of q(A), up to an additive constant

C(A) =

∫
q(A)

[
log q(A)−

N∑

i,j=1

(u
(A)
ij − 1) log aij

−
∑

M

q(M)
T−1∑

t=1

log aMtMt+1

]
dA

=

∫
q(A) log

q(A)
∏N

i,j=1 a
(Wij−1)
ij

dA

(6.15)

where Wij = u
(A)
ij +

∑T−1
t=1 q(Mt = i,Mt+1 = j).

As before, the optimal q(A) is of the form q(A) = 1
ZA
a
(Wij−1)
ij . The update

rule for the parameters âij of q(A) is thus

âij ← Wij = u
(A)
ij +

T−1∑

t=1

q(Mt+1 = j|Mt = i). (6.16)

Similar reasoning for π gives the update rule

π̂i ← u
(π)
i + q(M1 = i). (6.17)

Finding optimal q(θ) for Gaussian parameters

As an example of Gaussian parameters we shall consider mk(i) and vk(i). All
the others are handled in essentially the same way except that there are no
weights needed for different states.

To simplify the notation, all the indices from mk(i) and vk(i) are dropped out
for the remainder of this section. The relevant terms of the cost function are

6.1. Learning algorithm for the continuous density hidden Markov model 55

now, up to an additive constant

C(m, v) =
T∑

t=1

q(Mt = i)

(
v +

1

2

[
(x(t)−m)2 + m̃

]
exp(2ṽ − 2v)

)

+
1

2

[
(m−mm)

2 + m̃
]
exp(2ṽm − 2vm)−

1

2
log m̃

+
1

2

[
(v −mv)

2 + ṽ
]
exp(2ṽv − 2vv)−

1

2
log ṽ.

(6.18)

Let us denote σ2eff = exp(2v−2ṽ), σ2m,eff = exp(2vm−2ṽm) and σ2v,eff = exp(2vv−
2ṽv).

The derivative of this expression with respect to m̃ is easy to evaluate

∂C

∂m̃
=

T∑

t=1

q(Mt = i)
1

2σ2eff
+

1

2σ2m,eff

− 1

2m̃
. (6.19)

Setting this to zero gives

m̃ =

(
T∑

t=1

q(Mt = i)
1

σ2eff
+

1

σ2m,eff

)−1

. (6.20)

The derivative with respect to m is

∂C

∂m
=

T∑

t=1

q(Mt = i)
1

2σ2eff
[m− x(t)] +

1

2σ2m,eff

[m−mm] (6.21)

which has a zero at

m =

[
T∑

t=1

q(Mt = i)
1

2σ2eff
x(t) +

1

2σ2m,eff

mm

]
m̃ (6.22)

where m̃ is given by Equation (6.20).

The solutions for parameters of q(m) are exact. The true posterior for these
parameters is also Gaussian so the approximation is equal to it. This is not
the case for the parameters of q(v). The true posterior for v is not Gaussian.
The best Gaussian approximation with respect to the chosen criterion can still
be found by solving the zero of the derivative of the cost function with respect
to the parameters of q(v). This is done using Newton’s iteration.

6.2. Learning algorithm for the nonlinear state-space model 56

The derivatives with respect to v and ṽ are

∂C

∂v
=

T∑

t=1

q(Mt = i)
(
1−

[
(x(t)−m)2 + m̃

]
exp(2ṽ − 2v)

)
+
v −mv

σ2v,eff
(6.23)

∂C

∂ṽ
=

T∑

t=1

q(Mt = i)
[
(x(t)−m)2 + m̃

]
exp(2ṽ − 2v) +

1

2σ2v,eff
+

1

2ṽ
. (6.24)

These are set to zero and solved with Newton’s iteration.

6.2 Learning algorithm for the nonlinear state-

space model

In this section, the learning procedure for the NSSM defined in Section 5.2
is presented. The structure of the section is essentially the same as in the
previous section on the HMM, i.e. it is first shown how to evaluate the cost
function and then how to optimise it.

6.2.1 Evaluating the cost function

As before, the general cost function of ensemble learning, as given in Equa-
tion (3.11), is

C(S,θ) = Cq + Cp = E [log q(S,θ)] + E [− log p(S,θ,X)]

= E [log q(S) + log q(θ)] + E [− log p(X|S,θ)]
+ E [− log p(S|θ)− log p(θ)]

(6.25)

where the expectations are taken over q(S,θ). This will be the case for the
rest of the section unless stated otherwise.

In the NSSM, all the probability distributions involved are Gaussian so most
of the terms will resemble the corresponding ones of the CDHMM. For the
parameters θ,

Cq(θi) = E [log q(θi)] = −
1

2
(1 + log(2πθ̃i)). (6.26)

6.2. Learning algorithm for the nonlinear state-space model 57

The term Cq(S) is a little more complicated:

Cq(S) = E [log q(S)] =
n∑

k=1

(
E [log q(sk(1))] +

T−1∑

t=1

E [log q(sk(t+ 1)|sk(t))]
)
.

(6.27)

The first term reduces to Equation (6.26) but the second term is a little dif-
ferent:

Eq(sk(t),sk(t+1)) [log q(sk(t+ 1)|sk(t))]
= Eq(sk(t))

{
Eq(sk(t+1)|sk(t)) [log q(sk(t+ 1)|sk(t))]

}

= Eq(sk(t))

{
−1

2
(1 + log(2π

◦
sk(t+ 1)))

}
= −1

2
(1 + log(2π

◦
sk(t+ 1))). (6.28)

The expectation of − log p(θi|m, v) has been evaluated in Equation (6.5), so
the only remaining terms are E [− log p(X|S,θ)] and E [− log p(S|θ)]. They
both involve the nonlinear mappings f and g, so they cannot be evaluated
exactly.

The formulas allowing to approximate the distribution of the outputs of an
MLP network f are presented in Appendix B. As a result we get the posterior
mean of the outputs f k(s) and the posterior variance, decomposed as

f̃k(s) ≈ f̃ ∗
k (s) +

∑

j

s̃j

[
∂fk(s)

∂sj

]2
. (6.29)

With these results the remaining terms of the cost function are relatively easy
to evaluate. The likelihood term is a standard Gaussian and yields

Cp(xk(t)) = E [− log p(xk(t)|s(t),θ)]

=
1

2
log(2π) + vnk

+
1

2

[
(xk(t)− f k(s(t)))

2 + f̃k(s(t))
]
exp(2ṽnk

− 2vnk
).

(6.30)

6.2. Learning algorithm for the nonlinear state-space model 58

The source term is more difficult. The problematic expectation is

αk(t) = E
[
(sk(t)− gk(s(t− 1)))2

]

= E
[
(sk(t) + s̆k(t− 1, t)(sk(t− 1)− sk(t− 1))− gk(s(t− 1)))2

]
+

◦
sk(t)

= s2k(t) +
◦
sk(t) + E

[
s̆2k(t− 1, t)(sk(t− 1)− sk(t− 1))2

+ g2k(s(t− 1)) + 2sk(t)s̆k(t− 1, t)(sk(t− 1)− sk(t− 1))

− 2sk(t)gk(s(t− 1))− 2s̆k(t− 1, t)(sk(t− 1)− sk(t− 1))gk(s(t− 1))
]

= s2k(t) +
◦
sk(t) + s̆2k(t− 1, t)s̃k(t− 1) + g2k(s(t− 1)) + g̃k(s(t− 1))

− 2sk(t)gk(s(t− 1))− 2s̆k(t− 1, t)
∂gk(s(t− 1))

∂sk(t− 1)
s̃k(t− 1)

= (sk(t)− g(s(t− 1)))2 + s̃k(t) + g̃k(s(t− 1))

− 2s̆k(t− 1, t)
∂gk(s(t− 1))

∂sk(t− 1)
s̃k(t− 1)

(6.31)

where we have used the additional approximation

E [s̆k(t− 1, t)(sk(t− 1)− sk(t− 1))gk(s(t− 1))] =

s̆k(t− 1, t)
∂gk(s(t− 1))

∂sk(t− 1)
s̃k(t− 1). (6.32)

Using Equation (6.31), the remaining term of the cost function can be written
as

Cp(sk(t)) = E [− log p(sk(t)|s(t− 1),θ)]

=
1

2
log(2π) + vmk

+
1

2
αk(t) exp(2ṽmk

− 2vmk
).

(6.33)

6.2.2 Optimising the cost function

The most difficult part in optimising the cost function for the NSSM is updat-
ing the hidden states and the weights of the MLP networks. All the hyper-
parameters can be handled in exactly the same way as in the CDHMM case
presented in Section 6.1.2 but ignoring the additional weights caused by the
HMM state probabilities.

Updating the states and the weights is carried out in two steps. First the
value of the cost function is evaluated using the current estimates for all the
variables. This is called forward computation because it consists of a forward
pass through the MLP networks.

6.2. Learning algorithm for the nonlinear state-space model 59

The second, backward computation step consists of evaluating the partial
derivatives of the Cp part of the cost function with respect to the different
parameters. This can be done by moving backward in the network, start-
ing from the outputs and proceeding toward the inputs. The standard back-
propagation calculations are done in the same way. In our case, however, all
the parameters are described by their own posterior distributions, which are
characterised by their means and variances. The cost function is very different
from the standard back-propagation and the learning is unsupervised. This
means that all the calculation formulas are different.

Updating the network weights

Assume θi is a weight in one of the MLP networks and we have evaluated the
partial derivatives ∂Cp/∂θi and ∂Cp/∂θ̃i. The variance θ̃i is easy to update
with a fixed point update rule derived by setting the derivative to zero

0 =
∂C

∂θ̃i
=
∂Cp

∂θ̃i
+
∂Cq

∂θ̃i
=
∂Cp

∂θ̃i
− 1

2θ̃i
⇒ θ̃i =

(
2
∂Cp

∂θ̃i

)−1

. (6.34)

By looking at the form of the cost function for Gaussian terms, we can find an
approximation for the second derivatives with respect to the means as [34]

∂2C

∂θ
2

i

≈ 2
∂Cp

∂θ̃i
=

1

θ̃i
. (6.35)

This allows using an approximate Newton’s iteration to update the mean

θi ← θi −
∂C

∂θi

(
∂2C

∂θ
2

i

)−1

≈ θi −
∂C

∂θi
θ̃i. (6.36)

There are some minor corrections to these update rules as explained in [34].

Updating the hidden states

The basic setting for updating the hidden states is the same as above for
the network weights. The correlations between consecutive states cause some
changes to the formulas and require new ones for adaptation of the correla-
tion coefficients. All the feedforward computations use the marginal variances
s̃k(t) which are not actual variational parameters. This affects the derivatives

6.2. Learning algorithm for the nonlinear state-space model 60

with respect to the other parameters of the state distribution. Let us use the
notation Cp(s̃k(t)) to mean that the Cp part of the cost function is considered
to be a function of the intermediate variables s̃k(1), . . . , s̃k(t) in addition to
the variational parameters. This and Equation (5.48) yield following rules for
evaluating the derivatives of the true cost function:

∂C

∂
◦
sk(t)

=
∂Cp(s̃k(t))

∂s̃k(t)

∂s̃k(t)

∂
◦
sk(t)

+
∂Cq

∂
◦
sk(t)

=
∂Cp(s̃k(t))

∂s̃k(t)
− 1

2
◦
sk(t)

(6.37)

∂C

∂s̆k(t− 1, t)
=

∂Cp(s̃k(t))

∂s̆k(t− 1, t)
+
∂Cp(s̃k(t))

∂s̃k(t)

∂s̃k(t)

∂s̆k(t− 1, t)

=
∂Cp(s̃k(t))

∂s̆k(t− 1, t)
+ 2

∂Cp(s̃k(t))

∂s̃k(t)
s̆k(t− 1, t)s̃k(t− 1).

(6.38)

The term ∂Cp(s̃k(t))/∂s̃k(t) in the above equations cannot be evaluated di-
rectly, but requires again the use of new intermediate variables. This leads to
the recursive formula

∂Cp(s̃k(t))

∂s̃k(t)
=
∂Cp(s̃k(t+ 1))

∂s̃k(t)
+
∂Cp(s̃k(t+ 1))

∂s̃k(t+ 1)

∂s̃k(t+ 1)

∂s̃k(t)

=
∂Cp(s̃k(t+ 1))

∂s̃k(t)
+
∂Cp(s̃k(t+ 1))

∂s̃k(t+ 1)
s̆2k(t, t+ 1).

(6.39)

The terms ∂Cp(s̃k(t+ 1))/∂s̃k(t) are now the ones that can be evaluated with
the backward computations through the MLPs as usual.

The term ∂Cp(s̃k(t))/∂s̆k(t−1, t) is easy to evaluate from Equation (6.33), and
it gives

∂Cp(s̃k(t))

∂s̆k(t− 1, t)
= −∂gk(s(t− 1))

∂sk(t− 1)
s̃k(t− 1) exp(2ṽmk

− 2vmk
). (6.40)

Equations (6.38) and (6.40) yield a fixed point update rule for s̆k(t− 1, t):

s̆k(t− 1, t) =
∂gk(s(t− 1))

∂sk(t− 1)
exp(2ṽmk

− 2vmk
)

(
2
∂Cp(s̃k(t))

∂s̃k(t)

)−1

. (6.41)

The result depends, for instance, on s̆k(t, t + 1) through Equation (6.39), so
the updates must be done in the order starting from the last and proceeding
backward in time.

The fixed point update rule of the variances
◦
sk(t) can be solved from Equa-

tion (6.37):

◦
sk(t) =

(
2
∂Cp(s̃k(t))

∂s̃k(t)

)−1

. (6.42)

6.2. Learning algorithm for the nonlinear state-space model 61

The update rule for the means is similar to that of the weights in Equa-
tion (6.36) but it includes a correction which tries to compensate the simulta-
neous updates of the sources. The correction is explained in detail in [60].

6.2.3 Learning procedure

At the beginning of the learning for a new data set, the posterior means of the
network weights are initialised to random values and the variances to small
constant values. The original data is augmented with delay coordinate em-
bedding, which was presented in Section 2.1.4, so that it consists of multiple
time-shifted copies. The hidden states are initialised with a principal compo-
nent (PCA) [27] projection of the augmented data. It is also used in training
at the beginning of the learning.

The learning procedure of the NSSM consists of sweeps. During one sweep,
all the parameters of the model are updated as outlined above. There are,
however, different phases in learning so that not all the parameters are updated
at the very beginning. These phases are summarised in Table 6.1.

Table 6.1: The different phases of NSSM learning.

Sweeps Updates
0–50 Only the weights of the MLPs are updated, hidden states and

hyperparameters are kept fixed at their initial values.
50–100 Only the weights and the hidden states are updated, hyperpa-

rameters are still kept fixed.
100–1000 Everything is updated using the augmented data.
1000 The original data is restored and the parts of the observation

network f corresponding to the extra data are pruned away.
1000–10000 Everything is updated using the original data.

6.2.4 Continuing learning with new data

Continuing the learning process with the old model but new data requires
initial estimates for the new hidden states. If the new data is a direct contin-
uation of the old, the predictions of the old states provide a reasonable initial
estimate for the new ones and the algorithm can continue the adaptation from
there.

6.3. Learning algorithm for the switching model 62

If the new data forms an entirely separate sequence, the problem is more
difficult. Knowing the model, we can still do much better than starting at
random or using the same initialisation as in the very beginning.

One way to find the estimates is to use an auxiliary MLP network to model
the inverse of the observation mapping f [59]. This MLP can be trained using
standard supervised back-propagation with the estimated means of s(t) and
x(t) as training set. Their roles are of course inverted so that x(t) are the
inputs and s(t) the outputs. The auxiliary MLP cannot give perfect estimates
for the states s(t), but they can usually be adapted very quickly by using the
standard learning algorithm to update only the hidden states.

6.3 Learning algorithm for the switching model

In this section, the learning procedure for the switching model is presented.

6.3.1 Evaluating and optimising the cost function

The switching model is a combination of the two models as shown in Sec-
tion 5.3. Therefore most of the terms of the cost function are exactly as they
were in the individual models. The only difference is in the term Cp(sk(t)) =
E[− log p(sk(t)| · · ·)]. The term αk(t) in Equation (6.31) changes to αk,i(t) for
the case Mt = i and has the value

αk,i(t) = E
[
(sk(t)− gk(s(t− 1))−mMi,k)

2
]

= (sk(t)− g(s(t− 1))−mMi,k)
2 + s̃k(t) + m̃Mi,k

+ g̃k(s(t− 1))− 2s̆k(t− 1, t)
∂gk(s(t− 1))

∂sk(t− 1)
s̃k(t− 1).

(6.43)

With this result the expectation of Equation (6.33) involving the source prior
becomes

Cp(S) = E [− log p(sk(t)|s(t− 1),Mt,θ)]

=
1

2
log(2π) +

N∑

i=1

q(Mt = i)

(
vMi,k +

1

2
αk,i(t) exp(2ṽMi,k − 2vMi,k)

)
.

(6.44)

The update rules will mostly stay the same except that the values of the
parameters of vmk

must be replaced with properly weighted averages of the

6.3. Learning algorithm for the switching model 63

corresponding parameters of vMi,k. The HMM prototype vectors will be taught
using s(t)− g(s(t− 1)) as the data.

6.3.2 Learning procedure

The progress of learning in the switching NSSM is almost the same as in the
plain NSSM. The parameters are updated in similar sweeps and the data are
used in exactly the same way.

The HMM prototype means are initialised to have relatively small random
means and small constant variances. The prototype variances are initialised
to suitable constant values.

The phases in learning the switching model are presented in Table 6.2.

Table 6.2: The different phases of switching NSSM learning.

Sweeps Updates
0–50 Only the weights of the MLPs and the HMM states are up-

dated, continuous hidden states, HMM prototypes and hyper-
parameters are kept fixed at their initial values.

50–100 Only the weights and both the hidden states are updated,
HMM prototypes and hyperparameters are still kept fixed.

100–500 Everything but the HMM prototypes is updated.
500–1000 Everything is updated using the augmented data.
1000 The original data is restored and the parts of the observation

network f corresponding to the extra data are pruned away.
1000–10000 Everything is updated using the original data.

In each sweep of the learning algorithm, the following computations are per-
formed:

• The distributions of the outputs of the MLP networks f and g are eval-
uated as presented in Appendix B.

• The HMM state probabilities are updated as in Equation (6.14).

• The partial derivatives of the cost function with respect to the weights
and inputs of the MLP networks are evaluated by inverting the compu-
tations of Appendix B and using Equations (6.37)–(6.39).

6.3. Learning algorithm for the switching model 64

• The parameters for the continuous hidden states s(t) are updated using
Equations (6.36), (6.41) and (6.42).

• The parameters of the MLP network weights are updated using Equa-
tions (6.34) and (6.36).

• The HMM output parameters are updated using Equations (6.20) and
(6.22), and the results from solving Equations (6.23)–(6.24).

• The hyperparameters of the HMM are updated using Equations (6.16)
and (6.17).

• All the other hyperparameters are updated using similar procedure as
with the HMM output parameters.

6.3.3 Learning with known state sequence

Sometimes we want to use the switching NSSM to model data we already know
something about. With speech data, for instance, we may know the “correct”
sequence of phonemes in the utterance. This does not mean that learning the
HMM part would be unnecessary. The correct segmentation requires deter-
mining the times of transitions between the states. Now only the states the
model has to pass and their order are given.

Such problems can be solved by estimating the HMM states for a modified
model, namely the one that only allows transitions in the correct sequence.
These probabilities can then be transformed back to the true state probabilities
for the adaptation of the other model parameters. The forward–backward
procedure must also be modified slightly as the first and the last state of a
sequence are now known for sure.

When the correct state sequences are known, the different orderings of HMM
states are no longer equivalent. Therefore the HMM output distribution pa-
rameters can, and actually should, all be initialised to zeros. Random initial-
isation could make the output model for certain state very different from the
true output thus making the learning much more difficult.

Chapter 7

Experimental results

A series of experiments was conducted to verify that the switching NSSM
model and the learning algorithm derived in Chapters 5 and 6 really work.
The results of these experiments are presented in this chapter.

All the experiments were done with different parts of one large data set of
speech. In Section 7.1, the data set used and some of its properties are in-
troduced. In Section 7.2, the developed switching NSSM is compared with
standard HMM, NSSM and NFA models. The results of a segmentation ex-
periment are presented in Section 7.3.

7.1 Speech data

The data collection that was used in the experiments consisted of individual
Finnish words, spoken by 59 different speakers. The data has been collected at
the Laboratory of Computer and Information Science. A detailed description
of the data and its collection process can be found in Vesa Siivola’s Master’s
thesis [54].

Due to the complexity of the algorithms used, only a very small fraction of
the whole collection was ever used. The time needed for learning increases
linearly as the amount of data increases and with more data even a single
experiment would have taken months to complete. The data sets used in the
experiments were selected by randomly taking individual words from the whole
collection. In a typical experiment, where the used data set consisted of only a
few dozen words, this meant that practically every word in the set was spoken
by a different person.

65

7.1. Speech data 66

7.1.1 Preprocessing

The preprocessing performed to turn the digitised speech samples to the ob-
servation vectors for the algorithms was as follows:

1. The signal was high-pass filtered to emphasise the important higher fre-
quencies. This was done with a first order FIR filter having the transfer
function H(z) = 1− 0.95z−1.

2. A 256-point Fourier transform with Hamming windowing was calculated
for short overlapping segments. The overlapping part of two consecutive
segments consisted of half of the segments.

3. The frequencies were transformed to Mel -scale to emphasise the impor-
tant features for understanding the speech. This gave a 30 component
vector for each segment.

4. The logarithm of the energies on the Mel -scale was used as observations.

These steps form a rather standard preprocessing procedure for speech recog-
nition [54, 33].

The Mel-scale of frequencies has been designed to model the frequency response
of the human ear. The scale is constructed by asking a näıve listener when she
found the heard sound to have double or half of the frequency of a reference
tone. The resulting scale is close to linear at frequencies below 1000 Hz and
nearly logarithmic above that [54].

Figure 7.1 shows an example of what the preprocessed data looks like.

7.1.2 Properties of the data set

One distinctive property of the data is that it is not very continuous. This
is due to the bad frequency resolution of the relatively short time Fourier
transform used in the preprocessing.

The same data set was used with the static NFA model in [25]. The part used
in these experiments consisted of spectrograms of 24 individual words, spoken
by 20 different speakers. The preprocessed data consisted of 2547 spectrogram
vectors with 30 components.

For studying the dimensionality of the data, linear and nonlinear factor analysis
were applied to the data. The results are shown in Figure 7.2. All the NFA

7.1. Speech data 67

Figure 7.1: An example of the preprocessed spectrogram of a speech segment.
Time increases from left to right and frequency from down to up. White
areas correspond to low energy of the signal and dark areas to high energy.
The word in the segment is “JOHTOPÄÄTÖKSIÄ”, meaning “conclusions”.
Every letter in the written word corresponds to one phoneme in speech. The
silent areas in the middle correspond to the consonants t, p, t and k, thus
revealing the segmentation of the utterance into phonemes.

experiments used an MLP network with 30 hidden neurons. The data manifold
is clearly nonlinear, because nonlinear factor analysis is able to explain it
equally well with fewer components than linear factor analysis. The difference
is especially clear when the number of components is relatively small. Even
though the analysis only uses static models, it can be used to estimate a lower
bound for the number of continuous hidden states used in the experiments
with dynamical models.

A small segment of the original data and its reconstructions with eight non-
linear and linear components are shown in Figure 7.3. The reconstructed
spectrograms are somewhat smoother than the original ones. Still, all the dis-
criminative features of the original spectrum are well preserved in the nonlinear
reconstruction. This means that the dropped components mostly correspond
to noise. The linear reconstruction is not as good, especially at the beginning.

The extracted nonlinear factors, rotated with linear ICA, are shown in Fig-
ure 7.4. They seem rather smooth so it seems plausible that the dynamic
models would be able to model the data better. The representation of the
data given by the nonlinear factors seems, however, somewhat more difficult
to interpret. It is rather difficult to see how the different factors affect the
predicted outputs.

7.2. Comparison with other models 68

0 5 10 15 20 25

10
−1

10
0

Number of sources

R
em

ai
ni

ng
 e

ne
rg

y

linear FA
nonlinear FA

Figure 7.2: The remaining energy of the speech data as a function of the
number of extracted components using linear and nonlinear factor analysis.

7.2 Comparison with other models

In this section, a comparative test between the switching NSSM and some
other standard models is presented. The goodness of the models is measured
with the model evidence, i.e. the likelihood p(X|Hi) for given data set X and
model Hi. The theory behind this comparison is presented in Section 3.2.1.
The values of the evidence are evaluated using the variational approximation
given by ensemble learning.

7.2. Comparison with other models 69

Figure 7.3: A short fragment of the data used in the experiment. The first
subfigure shows the original data, the second shows the reconstruction from
8 nonlinear components and the last shows the reconstruction from 8 linear
components. Both the models used were static and did not use any temporal
information on the signals. The results would have been exactly the same for
any permutation of the data vectors.

7.2.1 The experimental setting

All the models used the same preprocessed data set as in Section 7.1.2. The
individual words were processed separately in the preprocessing and all the
dynamical models were instructed to treat each word individually, i.e. not to
make predictions across word boundaries.

The models used in the comparison were:

• A continuous density HMM with Gaussian mixture observation model.

7.2. Comparison with other models 70

Figure 7.4: Extracted NFA factors corresponding to the data fragment in
Figure 7.3, rotated with linear ICA.

This was a simple extension to the model presented in Section 5.1 that
replaced the Gaussian observation model with mixtures-of-Gaussians.
The number of Gaussians was the same for all the states but it was
optimised by running the algorithm with several values and using the
best result. The model was initialised with sufficiently many states and
unused extra states were pruned.

• The nonlinear factor analysis model, as presented in Section 4.2.4. The
model had 15 dimensional factors and 30 hidden neurons in the observa-
tion MLP network.

• The nonlinear SSM, as presented in Section 5.2. The model had 15
dimensional state-space and 30 hidden neurons in both MLP networks.

• The switching NSSM, as presented in Section 5.3. The model was essen-

7.2. Comparison with other models 71

tially a combination of the HMM and NSSM models except that it used
Gaussian observation model for the HMM.

The parameters of the HMM priors for the initial distribution u(π) and the
transition matrix u(A) were all set to ones. This corresponds to a flat, nonin-
formative prior. The choice does not affect the performance of the switching
NSSM very much. The HMM, on the other hand, is very sensitive to the prior.

The data used with the plain HMM was additionally decorrelated with prin-
cipal component analysis (PCA) [27]. This improved the performance a lot
compared to the situation without the decorrelation, as the prototype Gaus-
sians were restricted to be uncorrelated. The other algorithms can include the
same transformation to the output mapping so it was not necessary to do it
by hand. Using the nondecorrelated data has the advantage that it is “human
readable” whereas the decorrelated data is much more difficult to interpret.

7.2.2 The results

The results reached by different models are summarised in Table 7.1. The
static NFA model gets the worst score in describing the data. It is a little
faster than the NSSM and switching NSSM but significantly slower than the
HMM. The HMM is a little better and it is clearly the fastest of the algorithms.
The NSSM is significantly better than the HMM but takes quite a lot more
time. The switching NSSM is a clear winner in describing the data but it is
also the slowest of all the algorithms. The difference in speeds of NSSMs with
and without switching is relatively small.

Table 7.1: The results of the model comparison experiment. The second col-
umn contains the values of the ensemble learning cost function attained. Lower
values are better. The values translate to probabilities as p(X|H) ≈ e−C . The
third column contains a rough estimate on the time needed to run one simu-
lation with Matlab on a single relatively fast RISC processor.

Model Cost function value Time needed
NFA 111 041 A few days
HMM 104 654 About an hour
NSSM 90 955 About a week
Switching NSSM 82 410 More than a week

7.3. Segmentation of annotated data 72

The simulations with NFA, NSSM and switching NSSM were run using a
15 dimensional latent space. The results would probably have been slightly
better with larger dimensionality, but unfortunately the current optimisation
algorithm used for the models is somewhat unstable above that limit. Opti-
misation of the structures of the MLP networks would also have helped, but it
would have taken too much time to be practical. The present results are thus
the ones attained by taking the best of a few simulations with the same fixed
structure but different random initialisations.

7.3 Segmentation of annotated data

In this section, an experiment dealing with data segmentation is presented.
The correct phoneme sequence for each segment of the speech data is known
but the correct segmentation, i.e. the times of the transitions between the
phonemes, is not. Therefore it is reasonable to see whether the model can
learn to find the correct segmentation.

The HMM used in this experiment had four states for each phoneme of the
data. These states were linked together in a chain. Transitions from “outside”
were allowed only to the first state and then forward in the chain until the last
internal state of the phoneme was reached. This is a standard procedure in
speech recognition to model the duration of the phonemes.

7.3.1 The training procedure

In this experiment, the switching NSSM is used in a partially supervised mode,
i.e. it is trained as explained in Section 6.3.3. Using only this modification does
not, however, lead to good results. The computational complexity of the NSSM
learning allows using only a couple of thousands of samples of data. With the
preprocessing used in this work, this means that the NSSM must be trained
with only a few dozen words. This training material is not at all enough to
learn models for all the phonemes, as many of them appear only a few times
in the training data set.

To circumvent this problem, the training of the model was split into several
phases. In the first phase, the complete model was trained with a data set of
23 words forming some 5069 sample vectors. This should be enough for the
NSSM part to find a reasonable representation for the data. The number of
sweeps for this training was 10000. After this step no NSSM parameters were

7.3. Segmentation of annotated data 73

adapted any more.

The number of words in the training set of the first phase is small when com-
pared to the data set of the previous experiment. This is due to inclusion of
significant segments of silence to the samples. It is important for the model to
also learn a good model for silence, since in real life speech is always embedded
into silence or plain background noise.

In the second phase, the training data set was changed to a new one for con-
tinuing training the HMM. The new data set consisted of 786 words forming
100064 sample vectors. The continuous hidden states for the new data were
initialised with an auxiliary MLP as presented in Section 6.2.4. Then the stan-
dard learning algorithm was used for 10 sweeps to adapt only the continuous
states.

Updating just the HMM and leaving the NSSM out saved a significant amount
of time. As Table 7.1 shows, HMM training is about two orders of magnitude
faster than NSSM training. Using just the HMM part takes about 20 % of the
time needed by the complete switching NSSM. The rest of the improvement
is due to the fact that the HMM training converges with far fewer iterations.
These savings allowed using a much larger data set to efficiently train the
HMM part.

7.3.2 The results

After the first phase of training with the small data set, the segmentations
done by the algorithm seem pretty random. This can be seen from Figure 7.5.
The model has not even learnt how to separate the speech signal from the
silence at the beginning and end of the data segments.

After the full training the segmentations seem rather good, as Figures 7.6 and
7.7 show. This is a very encouraging result, considering that the segmentations
are performed using only the innovation process (the last subfigure) of the
NSSM which consists mostly of the leftovers of the other parts of the model.
The results should be significantly better with a model that gives the HMM a
larger part in predicting the data.

7.3. Segmentation of annotated data 74

10 20 30 40 50 60 70 80

>

V

A

S

E

N

<

10 20 30 40 50 60 70 80

10

20

30

10 20 30 40 50 60 70 80

2
4
6
8

10
12

10 20 30 40 50 60 70 80

2
4
6
8

10
12

Figure 7.5: An example of the segmentation given by the algorithm after
the first phase of learning. The states ‘>’ and ‘<’ correspond to silence at the
beginning and the end of the utterance. The first subfigure shows the marginal
probabilities of the HMM states for each sample. The second subfigure shows
the data, the third shows the continuous hidden states s(t) and the last shows
the innovation processes s(t) − g(s(t − 1)). The HMM does its segmentation
solely based on the values of the innovation process, i.e. the last subfigure. The
word in the figure is “VASEN” meaning “left”.

7.3. Segmentation of annotated data 75

10 20 30 40 50 60 70 80

>

V

A

S

E

N

<

10 20 30 40 50 60 70 80

10

20

30

10 20 30 40 50 60 70 80

2
4
6
8

10
12

10 20 30 40 50 60 70 80

2
4
6
8

10
12

Figure 7.6: An example of the segmentation given by the algorithm after
complete learning. The data and the meanings of the different parts of the
figure are the same as in Figure 7.5. The results are significantly better though
not yet quite perfect.

7.3. Segmentation of annotated data 76

20 40 60 80 100 120 140

>
P
O
H
J
A
N
M
A
L
A
<

20 40 60 80 100 120 140

10

20

30

20 40 60 80 100 120 140

2
4
6
8

10
12

20 40 60 80 100 120 140

2
4
6
8

10
12

Figure 7.7: Another example of segmentation given by the algorithm after
complete learning. The meanings of the different parts of the figure are the
same as in Figures 7.5 and 7.6. The figure illustrates the segmentation of a
longer word. The result shows several relatively probable paths, not just one
as in the previous figures. The word in the figure is “POHJANMAALLA”.
The double phonemes are treated as one in the segmentation.

Chapter 8

Discussion

In this work, a Bayesian switching nonlinear state-space model (switching
NSSM) and a learning algorithm for its parameters were developed. The
switching model combines two dynamical models, a hidden Markov model
(HMM) and a nonlinear state-space model (NSSM). The HMM models long-
term behaviour of the data and controls the NSSM which describes the short-
term dynamics of the data. In order to be used in practice, the switching NSSM
is, like any other model, needs an efficient method to learn its parameters. In
this work, the Bayesian approximation method called ensemble learning was
used to derive a learning algorithm for the model.

The requirements of the learning algorithm set some limitations for the struc-
ture of the model. The learning algorithm for the NSSM which was used as
the starting point for this work was computationally intensive. Therefore the
additions needed for the switching model had to be designed very carefully to
avoid making the model computationally intractable. Most existing switching
state-space model structures use entirely different dynamical models for each
state of the HMM. Such an approach would have resulted in a more powerful
model, but the computational burden would have been too great to be prac-
tical. Therefore the developed switching model uses the same NSSM for all
the HMM states. The HMM is only used to model the prediction errors of the
NSSM.

The ensemble learning based learning algorithm seems well suited for the
switching NSSM. This kind of models usually suffer from the problem that
the exact posterior of the hidden states is an exponentially growing mixture
of Gaussian distributions. The ensemble learning approach solves this prob-
lem elegantly by finding the best approximate posterior consisting only of a

77

8. Discussion 78

single Gaussian distribution. It would also be possible to approximate the
posterior with a mixture of a few Gaussian distributions instead of the single
Gaussian. This would, however, increase the computational burden quite a lot
while achieving little gain.

Despite the suboptimal model structure, the switching model performs re-
markably well in the experiments. It outperforms all the other tested models
in the speech modelling problem by a large margin. Additionally, the switching
model yields a segmentation of the data to different discrete dynamical states.
This allows using the model for many different segmentation tasks.

For a segmentation problem, the closest competitor of the switching NSSM is
the plain HMM. The speech modelling experiment shows that the switching
NSSM is significantly better in modelling the speech data than the HMM.
This means that the switching model can get more out of the same data.
The greatest problem of the switching model is the computational cost. It
is approximately two orders of magnitude slower to train than the HMM.
The difference in actually using the fully trained models should, however, be
smaller. Much of the difference in training times is caused by the fact that
the weights of the MLP networks take very many iterations of the training
algorithm to converge. When the system is in operation and the MLPs are not
trained, the other parts needed for recognition purposes converge much more
quickly. The usage of the switching model in such a recognition system has
not been thoroughly studied. Therefore it might be possible to find ways of
optimising the usage of the model to make it comparable with the HMM.

In the segmentation experiment, the switching model learnt the desired seg-
mentation of an annotated data set of individual words of speech to different
phonemes. However, the initial experiments on using the model for recognition,
i.e. finding the segmentation without the annotation, are not as promising. The
poor recognition performance is probably due to the fact that the HMM part
of the model only uses the prediction error of the continuous NSSM. When the
state of the dynamics changes, the prediction error grows. Thus it is easy for
the HMM to see that something is changing but not how it is changing. The
HMM would have to have more influence on the description of the dynamics
of the data to know which state the system is going to.

The design of the model was motivated by computational efficiency and the re-
sulting algorithm seems successful in that sense. The learning algorithm for the
switching model is only about 25 % slower than the corresponding algorithm
for the NSSM. This could probably still be improved as Matlab is far from an
optimal programming environment for HMM calculations. The forward and
backward calculations of the MLP networks, which require evaluating the Ja-

8. Discussion 79

cobian matrix of the network at each input point, constitute the slowest part
of the NSSM training. Those parts remain unchanged in the switching model
and still take most of the time.

There are at least two important lines of future work: giving the model more
expressive power by making better use of the HMM part and optimising the
speed of the NSSM part.

Improving the model structure to give the HMM a larger role would be impor-
tant to make the model work in recognition problems. The HMM should be
given control over at least some of the parameters of the dynamical mapping.
It is, however, difficult to do this without increasing the computational burden
of using the model. Time usually helps in this respect as the computers become
faster. Joining the two component models together more tightly would also
make the learning algorithm even more complicated. Nevertheless, it might be
possible to find a better compromise between the computational burden and
the power of the model.

Another way to help with the essentially same problem would be optimising
the speed of the NSSM. The present algorithm is very good in modelling the
data but it is also rather slow. Using a different kind of a structure for the
model might help with the speed problem. This would, however, probably
require a completely new architecture for the model.

All in all, the nonlinear switching state-space models form an interesting field
of study. At present, the algorithms seem computationally too intensive for
most practical uses, but this is likely to change in the future.

Appendix A

Standard probability
distributions

A.1 Normal distribution

The normal distribution, which is also known as the Gaussian distribution,
is ubiquitous in statistics. The averages of identically distributed random
variables are approximately normally distributed by the central limit theorem,
regardless of their original distribution[16]. This section concentrates on the
univariate normal distribution, as the general multivariate distribution is not
needed in this thesis.

The probability density of the normal distribution is given by

p(x) = N(x; µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
. (A.1)

The parameters of the distribution directly yield the mean and the variance of
the distribution: E[x] = µ, Var[x] = σ2.

The multivariate case is very similar:

p(x) = N(x; µ,Σ) =
1√
2π
|Σ|− 1

2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(A.2)

where µ is the mean vector and Σ the covariance matrix of the distribution.
For our purposes it is sufficient to note that when the covariance matrix Σ is
diagonal, the multivariate normal distribution reduces to a product of inde-
pendent univariate normal distributions.

80

A.2. Dirichlet distribution 81

By the definition of the variance

σ2 = Var[x] = E[(x− µ)2] = E[x2 − 2xµ+ µ2]

= E[x2]− 2µE[x] + µ2 = E[x2]− µ2.
(A.3)

This gives
E[x2] = µ2 + σ2. (A.4)

The negative differential entropy of the normal distribution can be evaluated
simply as

E[log p(x)] = −1

2
log(2πσ2)− 1

2
E

[
(x− µ)2

σ2

]
= −1

2
(log(2πσ2) + 1). (A.5)

Another important expectation for our purposes is [35]

E[exp(−2x)] =
∫

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
exp(−2x)dx

=
1√
2πσ2

∫
exp

(
−(x− µ)2 + 4xσ2

2σ2

)
dx

=
1√
2πσ2

∫
exp

(
−x

2 − 2µx+ µ2 + 4xσ2

2σ2

)
dx

=
1√
2πσ2

∫
exp

(
− [x+ (2σ2 − µ)]2 + 4µσ2 − 4(σ2)2

2σ2

)
dx

=
1√
2πσ2

∫
exp

(
− [x+ (2σ2 − µ)]2

2σ2

)
exp

(
2σ2 − 2µ

)
dx

= exp
(
2σ2 − 2µ

)
.

(A.6)

A plot of the probability density function of the normal distribution is shown
in Figure A.1.

A.2 Dirichlet distribution

The multinomial distribution is a discrete distribution which gives the prob-
ability of choosing a given collection of m items from a set of n items with
repetitions and the probabilities of each choice given by p1, . . . , pn. These
probabilities are the parameters of the multinomial distribution [16].

A.2. Dirichlet distribution 82

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure A.1: Plot of the probability density function of the unit variance zero
mean normal distribution N(0, 1).

The Dirichlet distribution is the conjugate prior of the parameters of the multi-
nomial distribution. The probability density of the Dirichlet distribution for
variables p = (p1, . . . , pn) with parameters u = (u1, . . . , un) is defined by

p(p) = Dirichlet(p; u) =
1

Z(u)

n∏

i=1

pui−1
i (A.7)

when p1, . . . , pn ≥ 0;
∑n

i=1 pi = 1 and u1, . . . , un > 0. The parameters ui can
be interpreted as “prior observation counts” for events governed by pi. The
normalisation constant Z(u) becomes

Z(u) =

∏n

i=1 Γ(ui)

Γ(
∑n

i=1 ui)
. (A.8)

Let u0 =
∑n

i=1 ui. The mean and variance of the distribution are [16]

E[pi] =
ui

u0
(A.9)

and

Var[pi] =
ui(u0 − ui)

u20(u0 + 1)
. (A.10)

When ui → 0, the distribution becomes noninformative. The means of all the
pi stay the same if all ui are scaled with the same multiplicative constant. The
variances will, however, get smaller as the parameters ui grow. The pdfs of the
Dirichlet distribution with certain parameter values are shown in Figure A.2.

A.2. Dirichlet distribution 83

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5
u = 0.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
u = 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
u = 2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
u = 16

Figure A.2: Plots of one component of a two dimensional Dirichlet distribution.
The parameters are chosen such that u1 = u2 = u with the values for u shown
above each individual image. Because both the parameters of the distribution
are equal, the distribution of the other component will be exactly the same.

In addition to the standard statistics given above, using ensemble learning for
parameters with Dirichlet distribution requires the evaluation of the expecta-
tion E[log pi] and the negative differential entropy E[log p(p)].

The first expectation can be reduced to evaluating the expectation over a two
dimensional Dirichlet distribution for

(p, 1− p) ∼ Dirichlet(ui, u0 − ui) (A.11)

which is given by the integral

E[log pi] =

1∫

0

Γ(u0)

Γ(ui)Γ(u0 − ui)
pui−1(1− p)u0−ui−1 log p dp. (A.12)

A.2. Dirichlet distribution 84

This can be evaluated analytically to yield

E[log pi] = Ψ(ui)−Ψ(u0) (A.13)

where Ψ(x) = d
dx

ln(Γ(x)) is also known as the digamma function.

By using this result, the negative differential entropy can be evaluated

E[log p(p)] = E

[
log

(
1

Z(u)

n∏

i=1

pui−1
i

)]

= − logZ(u) +
n∑

i=1

(ui − 1) E[log pi]

= − logZ(u) +
n∑

i=1

(ui − 1)[Ψ(ui)−Ψ(u0)]

(A.14)

Appendix B

Probabilistic computations for
MLP networks

In this appendix, it is shown how to evaluate the distribution of the outputs
of an MLP network f , assuming the inputs s and all the network weights
are independent and Gaussian. These equations are needed in evaluating the
ensemble learning cost function of the Bayesian NSSM in Section 6.2.

The exact model for our single-hidden-layer MLP network f is

f(s) = Bϕ(As+ a) + b. (B.1)

The structure is shown in Figure B.1. The assumed distributions for all the
parameters, which are assumed to be independent, are

si ∼ N(si, s̃i) (B.2)

Aij ∼ N(Aij, Ãij) (B.3)

Bij ∼ N(Bij, B̃ij) (B.4)

ai ∼ N(ai, ãi) (B.5)

bi ∼ N(bi, b̃i). (B.6)

The computations in the first layer of the network can be written as yi =
ai +

∑
j Aijsj. Since all the parameters involved are independent, the mean

85

B. Probabilistic computations for MLP networks 86

Outputs (data)

Inputs (sources)

Figure B.1: The structure of an MLP network with one hidden layer.

and the variance of yi are

yi = ai +
∑

j

Aijsj (B.7)

ỹi = ãi +
∑

j

[
A
2

ij s̃j + Ãij

(
s2j + s̃j

)]
. (B.8)

Equation (B.8) follows from the identity

Var[α] = E[α2]− E[α]2. (B.9)

The nonlinear activation function is handled with a truncated Taylor series
approximation about the mean yi of the inputs. Using a second order approx-
imation for the mean and first order for the variance yields

ϕ(yi) ≈ ϕ(yi) +
1

2
ϕ′′(yi)ỹi (B.10)

ϕ̃(yi) ≈ [ϕ′(yi)]
2
ỹi. (B.11)

The reason why these approximations are used is that they are the best ones
that can be expressed in terms of the input mean and variance.

The computations of the output layer are given by fi(s) = bi +
∑

j Bijϕ(yj).
This may look the same as the one for the first layer, but there is the big

B. Probabilistic computations for MLP networks 87

difference that the yj are no longer independent. Their dependence does not,
however, affect the evaluation of the mean of the outputs, which is

f i(s) = bi +
∑

j

Bijϕ(yj). (B.12)

The dependence between yj arises from the fact that each si may potentially
affect all of them. Hence, the variances of si would be taken into the account
incorrectly if yj were assumed independent.

Two possibly interfering paths can be seen in Figure B.1. Let us assume that
the net weight of the left path is 1 and the weight of the right path −1, so that
the two paths cancel each other out. If, however, the outputs of the hidden
layer are incorrectly assumed to be independent, the estimated variance of the
output will be greater than zero. The same effect can also happen the other way
round when constructive inference of the two paths leads to underestimated
output variance.

The effects of different components of the inputs on the outputs can be mea-
sured using the Jacobian matrix ∂f(s)/∂s of the mapping f with elements
(∂fi(s)/∂sj). This leads to the approximation for the output variance

f̃i(s) ≈
∑

j

(
∂fi(s)

∂sj

)2

s̃j + b̃i+

∑

j

[
B
2

ijϕ̃
∗(yj) + B̃ij

(
ϕ2(yj) + ϕ̃(yj)

)] (B.13)

where ϕ̃∗(yj) denotes the posterior variance of ϕ(yj) without the contribution
of the input variance. It can be computed as

ỹ∗i = ãi +
∑

j

Ãij

(
s2j + s̃j

)
(B.14)

ϕ̃∗(yi) ≈ [ϕ′(yi)]
2
ỹ∗i . (B.15)

The needed partial derivatives can be evaluated efficiently at the mean of the
inputs with the chain rule

∂fi(s)

∂sj
=
∑

k

∂fi(s)

∂ϕk

∂ϕk

∂yk

∂yk
∂sj

=
∑

k

Bikϕ
′(yk)Akj. (B.16)

Bibliography

[1] D. K. Arrowsmith and C. M. Place. An Introduction to Dynamical Sys-
tems. Cambridge University Press, Cambridge, 1990.

[2] David Barber and Christopher M. Bishop. Ensemble learning for multi-
layer networks. In Michael I. Jordan, Michael J. Kearns, and Sara A.
Solla, editors, Advances in Neural Information Processing Systems 10,
NIPS*97, pages 395–401, Denver, Colorado, USA, Dec. 1–6, 1997, 1998.
The MIT Press.

[3] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A
maximization technique occurring in the statistical analysis of probabilis-
tic functions of Markov chains. The Annals of Mathematical Statistics,
41(1):164–171, 1970.

[4] J. M. Bernardo. Psi (digamma) function. Applied Statistics, 25(3):315–
317, 1976.

[5] Christopher Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, 1995.

[6] Christopher Bishop. Latent variable models. In Jordan [29], pages 371–
403.

[7] Thomas Briegel and Volker Tresp. Fisher scoring and a mixture of modes
approach for approximate inference and learning in nonlinear state space
models. In Michael S. Kearns, Sara A. Solla, and David A. Cohn, editors,
Advances in Neural Information Processing Systems 11, NIPS*98, pages
403–409, Denver, Colorado, USA, Nov. 30–Dec. 5, 1998, 1999. The MIT
Press.

[8] Martin Casdagli. Nonlinear prediction of chaotic time series. Physica D,
35(3):335–356, 1989.

88

BIBLIOGRAPHY 89

[9] Martin Casdagli, Stephen Eubank, J. Doyne Farmer, and John Gibson.
State space reconstruction in the presence of noise. Physica D, 51(1–
3):52–98, 1991.

[10] Vladimir Cherkassky and Filip Mulier. Learning from Data: Concepts,
Theory, and Methods. John Wiley & Sons, New York, 1998.

[11] Y. J. Chung and C. K. Un. An MLP/HMM hybrid model using nonlinear
predictors. Speech Communication, 19(4):307–316, 1996.

[12] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley series in telecommunications. John Wiley & Sons, New York, 1991.

[13] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38, 1977.

[14] J. Doyne Farmer and John J. Sidorowich. Predicting chaotic time series.
Physical Review Letters, 59(8):845–848, 1987.

[15] Ken-ichi Funahashi. On the approximate realization of continuous map-
pings by neural networks. Neural Networks, 2(3):183–192, 1989.

[16] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.
Bayesian Data Analysis. Chapman & Hall/CRC, Boca Raton, 1995.

[17] Zoubin Ghahramani. An introduction to hidden Markov models and
Bayesian networks. International Journal of Pattern Recognition and Ar-
tificial Intelligence, 15(1):9–42, 2001.

[18] Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for
switching state–space models. Neural Computation, 12(4):831–864, 2000.

[19] Zoubin Ghahramani and Sam T. Roweis. Learning nonlinear dynamical
systems using an EM algorithm. In Michael S. Kearns, Sara A. Solla,
and David A. Cohn, editors, Advances in Neural Information Processing
Systems 11, NIPS*98, pages 599–605, Denver, Colorado, USA, Nov. 30–
Dec. 5, 1998, 1999. The MIT Press.

[20] Monson H. Hayes. Statistical Digital Signal Processing and Modeling. John
Wiley & Sons, New York, 1996.

[21] Simon Haykin. Neural Networks – A Comprehensive Foundation, 2nd ed.
Prentice-Hall, Englewood Cliffs, 1998.

BIBLIOGRAPHY 90

[22] Simon Haykin and Jose Principe. Making sense of a complex world. IEEE
Signal Processing Magazine, 15(3):66–81, 1998.

[23] Geoffrey E. Hinton and Drew van Camp. Keeping neural networks simple
by minimizing the description length of the weights. In Proceedings of the
COLT’93, pages 5–13, Santa Cruz, California, USA, July 26-28, 1993.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Feature extraction through
LOCOCODE. Neural Computation, 11(3):679–714, 1999.

[25] Antti Honkela and Juha Karhunen. An ensemble learning approach to
nonlinear independent component analysis. In Proceedings of the 15th
European Conference on Circuit Theory and Design (ECCTD’01), Espoo,
Finland, August 28–31, 2001. To appear.

[26] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2(5):359–
366, 1989.

[27] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component
Analysis. John Wiley & Sons, 2001. In press.

[28] O. L. R. Jacobs. Introduction to Control Theory. Oxford University Press,
Oxford, second edition, 1993.

[29] Michael I. Jordan, editor. Learning in Graphical Models. The MIT Press,
Cambridge, Massachusetts, 1999.

[30] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and
Lawrence K. Saul. An introdution to variational methods for graphical
models. In Jordan [29], pages 105–161.

[31] Rudolf E. Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME, Journal of Basic Engineering, 82:35–45,
1960.

[32] Edward W. Kamen and Jonathan K. Su. Introduction to Optimal Esti-
mation. Springer, London, 1999.

[33] Mikko Kurimo. Using Self-Organizing Maps and Learning Vector Quan-
tization for Mixture Density Hidden Markov Models. PhD thesis, Helsinki
University of Technology, Espoo, 1997. Published in Acta Polytechnica
Scandinavica, Mathematics, Computing and Management in Engineering
Series No. 87.

BIBLIOGRAPHY 91

[34] Harri Lappalainen and Antti Honkela. Bayesian nonlinear independent
component analysis by multi-layer perceptrons. In Mark Girolami, editor,
Advances in Independent Component Analysis, pages 93–121. Springer,
Berlin, 2000.

[35] Harri Lappalainen and James W. Miskin. Ensemble learning. In Mark
Girolami, editor, Advances in Independent Component Analysis, pages
76–92. Springer, Berlin, 2000.

[36] Peter M. Lee. Bayesian Statistics: An Introduction. Arnold, London,
second edition, 1997.

[37] David J. C. MacKay. Bayesian interpolation. Neural Computation,
4(3):415–447, 1992.

[38] David J. C. MacKay. Developments in probabilistic modelling with neural
networks—ensemble learning. In Neural Networks: Artificial Intelligence
and Industrial Applications. Proceedings of the 3rd Annual Symposium on
Neural Networks, Nijmegen, Netherlands, 14-15 September 1995, pages
191–198, Berlin, 1995. Springer.

[39] David J. C. MacKay. Ensemble learning for hidden Markov models. Avail-
able from http://wol.ra.phy.cam.ac.uk/mackay/, 1997.

[40] David J. C. MacKay. Choice of basis for Laplace approximation. Machine
Learning, 33(1):77–86, 1998.

[41] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 1.
Academic Press, New York, 1979.

[42] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 2.
Academic Press, New York, 1982.

[43] Kevin Murphy. Switching Kalman filters. Technical report, Department
of Computer Science, University of California Berkeley, 1998.

[44] Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of
Lecture Notes in Statistics. Springer, New York, 1996.

[45] Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm
that justifies incremental, sparse, and other variants. In Jordan [29], pages
355–368.

[46] Jacob Palis, Jr and Welington de Melo. Geometric Theory of Dynamical
Systems. Springer, New York, 1982.

BIBLIOGRAPHY 92

[47] William D. Penny, Richard M. Everson, and Stephen J. Roberts. Hidden
Markov independent component analysis. In Mark Girolami, editor, Ad-
vances in Independent Component Analysis, pages 3–22. Springer, Berlin,
2000.

[48] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–
286, 1989.

[49] S. Neil Rasband. Chaotic Dynamics of Nonlinear Systems. John Wiley &
Sons, New York, 1990.

[50] Sam T. Roweis and Zoubin Ghahramani. A unifying review of linear
Gaussian models. Neural Computation, 11(2):305–345, 1999.

[51] Sam T. Roweis and Zoubin Ghahramani. An EM algorithm for in-
dentification of nonlinear dynamical systems. Submitted for publica-
tion. Preprint available from http://www.gatsby.ucl.ac.uk/~roweis/

publications.html, 2000.

[52] Walter Rudin. Real and Complex Analysis. McGraw-Hill, Singapore, third
edition, 1987.

[53] Tim Sauer, James A. Yorke, and Martin Casdagli. Embedology. Journal
of Statistical Physics, 65(3/4):579–616, 1991.

[54] Vesa Siivola. An adaptive method to achieve speaker independence in a
speech recognition system. Master’s thesis, Helsinki University of Tech-
nology, Espoo, 1999.

[55] Floris Takens. Detecting strange attractors in turbulence. In David Rand
and Lai-Sang Young, editors, Dynamical systems and turbulence, War-
wick 1980, volume 898 of Lecture Notes in Mathematics, pages 366–381.
Springer, Berlin, 1981.

[56] Edmondo Trentin and Marco Gori. A survey of hybrid ANN/HMMmodels
for automatic speech recognition. Neurocomputing, 37:91–126, 2001.

[57] Harri Valpola. Bayesian Ensemble Learning for Nonlinear Factor Analy-
sis. PhD thesis, Helsinki University of Technology, Espoo, 2000. Published
in Acta Polytechnica Scandinavica, Mathematics and Computing Series
No. 108.

BIBLIOGRAPHY 93

[58] Harri Valpola. Unsupervised learning of nonlinear dynamic state–space
models. Technical Report A59, Helsinki University of Technology, Espoo,
2000.

[59] Harri Valpola, Xavier Giannakopoulos, Antti Honkela, and Juha
Karhunen. Nonlinear independent component analysis using ensemble
learning: Experiments and discussion. In Petteri Pajunen and Juha
Karhunen, editors, Proceedings of the Second International Workshop on
Independent Component Analysis and Blind Signal Separation, ICA 2000,
pages 351–356, Espoo, Finland, June 19–22, 2000.

[60] Harri Valpola and Juha Karhunen. An unsupervised ensemble learning
method for nonlinear dynamic state–space models. A manuscript to be
submitted to a journal, 2001.

[61] Christopher S. Wallace and D. M. Boulton. An information measure for
classification. The Computer Journal, 11(2):185–194, 1968.

[62] Hassler Whitney. Differentiable manifolds. Annals of Mathematics,
37(3):645–680, 1936.

