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Abstract

Many real world sequences such as protein sec-

ondary structures or shell logs exhibit a rich in-

ternal structures. Traditional probabilistic mod-

els of sequences, however, consider sequences of

flat symbols only. Logical hidden Markov mod-

els have been proposed as one solution. They

deal with logical sequences, i.e., sequences over

an alphabet of logical atoms. This comes at

the expense of a more complex model selec-

tion problem. Indeed, different abstraction lev-

els have to be explored. In this paper, we pro-

pose a novel method for selecting logical hid-

den Markov models from data called SAGEM.

SAGEM combines generalized expectation max-

imization, which optimizes parameters, with

structure search for model selection using in-

ductive logic programming refinement operators.

We provide convergence and experimental re-

sults that show SAGEM’s effectiveness.

1 Introduction

Hidden Markov models [21] (HMMs) are extremely pop-

ular for analyzing sequential data. Areas of applica-

tion include computational biology, user modeling, and

robotics. Despite their successes, HMMs have a major

weakness: they handle only sequences of flat, i.e., un-

structured symbols. In many applications the symbols

occurring in sequences are structured. Consider, e.g.,

the sequence of UNIX commands emacs lohmms.tex, ls,
latex lohmms.tex, . . . Such data have been used to train

HMMs for anomaly detection [15]. However, as the above

command sequence shows, UNIX commands may have

parameters. Thus, commands are essentially structured

symbols. HMMs cannot easily deal with this type of struc-

tured sequences. Typically, the application of HMMs re-

quires either 1) ignoring the structure of the commands

(i.e., the parameters), or 2) taking all possible parameters

explicitly into account. The former approach results in se-

rious information loss; the latter in a combinatorial explo-

sion in the number of parameters and, as a consequence,

inhibits generalization.

The above sketched problem with HMMs is akin to

the problem of dealing with structured examples in

traditional machine learning algorithms as studied in

the field of inductive logic programming (ILP) [17].

Recently, Kersting et al. [12] proposed logical HMMs

(LOHMMs) as an probabilistic ILP [4] framework that

upgrades HMMs to deal with structure. The key idea

is to employ logical atoms. Using logical atoms, the

above UNIX command sequence can be represented

as emacs(lohmms.tex), ls, latex(lohmms.tex), . . .
LOHMMs have been proven to be useful within bioin-

formatics domains. For instance in [12], the LOHMMs

used to discover structural signatures of protein folds were

simpler but more effective compared to corresponding

HMMs (120 vs. > 62000 parameters). The compactness

and comprehensibility, however, comes at the expense of

a more complex model selection problem. So far, model

selection for LOHMMs has not been investigated. Our

main contribution is SAGEM, German for ’say EM’, a

novel method for selecting LOHMM structures from data.

Selecting a structure is a significant problem for many

reasons. First, eliciting LOHMMs from experts can be

a laborious and expensive process. Second, HMMs are

commonly learned by estimating the maximum likelihood

parameters of a fixed, fully connected model. Such an ap-

proach is not feasible for LOHMMs as different abstraction

levels have to be explored. Third, LOHMMs are strictly

more expressive than HMMs. In [11], LOHMMs are

used to classify tree-structured mRNA data. Finally, the

parameter estimation of a LOHMM is a costly nonlinear

optimization problem, so the naı̈ve search is infeasible.

SAGEM adapts Friedman’s structural EM [6]. It com-

bines a generalized expectation maximization (GEM) algo-

rithm, which optimizes parameters, with structure search

for model selection using ILP refinement operators. Thus,

SAGEM explores different abstraction levels due to ILP re-



finement operators, and, due to a GEM approach, it reduces

the selection problem to a more efficiently solvable one.

The outline of the paper is as follows. Section 2 reviews

LOHMMs and their underlying logical concepts; Section 3

formalizes the model selection problem; in Section 4, we

present a naı̈ve learning algorithm; in Section 5, we intro-

duce a structural, generalized EM – called SAGEM – for

learning LOHMMs. SAGEM is experimentally evaluated

in Section 6. Before concluding we discuss related work.

2 Probabilistic Models for Logical

Sequences

We will briefly review logical Hidden Markov models

(LOHMMs) [12, 13, 11]. The logical component of HMMs

corresponds to a Mealy machine, i.e., to a finite state ma-

chine where the output symbols are associated with tran-

sitions. The key idea to develop probabilistic models for

structured sequences is to replace these flat symbols by ab-

stract symbols, more precisely logical atoms.

First-Order Predicate Logic: A first-order logic alpha-

bet Σ is a set of relation symbols r with arity m ≥ 0,

written r/m, and a set of function symbols f with arity

n ≥ 0, written f/n. An atom r(t1, . . . , tm) is a rela-

tion symbol r followed by a bracketed m-tuple of terms

ti. A term is a variable V or a function symbol f of

arity n immediately followed by a bracketed n-tuple of

terms sj, i.e., f(s1, . . . , sn). A definite clause A← B con-

sists of atoms A and B and can be read as A is true if

B is true. A substitution θ = {V1/t1, . . . , Vk/tk}, e.g.

{X/tex}, is an assignment of terms ti to variables Vi. Ap-

plying a substitution θ to a term, atom or clause e yields

the instantiated term, atom, or clause eθ where all oc-

currences of the variables Vi are simultaneously replaced

by the term ti, e.g. ls(X)← emacs(F, X){X/tex} yields

ls(tex)← emacs(F, tex). A term, atom or clause e is

called ground when it contains no variables, i.e., vars(e) =
∅. The Herbrand base of Σ, denoted as hbΣ, is the set of all

ground atoms constructed with the predicate and function

symbols in Σ. The set GΣ(A) of an atom A consists of all

ground atoms Aθ belonging to hbΣ.

Our running example will be user modeling. For example,

emacs(readme, other) means that the user of type other

writes a command emacs readme to a shell.

Logical Hidden Markov Models (LOHMMs): The se-

quences generated by LOHMMs are sequences of ground

atoms rather than flat symbols. Within LOHMMs,

the flat symbols employed in traditional HMMs are re-

placed by logical atoms such as emacs(F, tex). Each

atom emacs(F, tex) there represents the set of ground

atoms GΣ(emacs(F, tex)), e.g. emacs(readme, tex) ∈
GΣ(emacs(F, tex)).

Additionally, we assume that the alphabet is typed which in

our case means that there is a function mapping every pred-

icate r/m and number 1 ≤ i ≤ m to the set of ground terms

allowed as the i-th argument of predicate r/m. This set is

called the domain of the i-th argument of predicate r/m.

Figure 1 shows a LOHMM graphically. The states, obser-

vations, and transitions of LOHMMs are abstract in the

sense that every abstract state or observation A represents

all possible concrete states in GΣ(A). In Figure 1 solid

edges encode abstract transitions. Let H and B be log-

ical atoms representing abstract states, let O be a logical

atom representing an abstract output symbol. An abstract

transition from state B with probability p to state H and

omitting O is denoted by p : H
O
←− B. If H, B, and O are

all ground, there is no difference to ’normal’ transitions.

Otherwise, if H, B, and O have no variables in common,

the only difference to ‘normal’ transitions is that for each

abstract state (resp. observation) we have to sample which

concrete state (resp. observation) we are in. Otherwise, we

have to remember the variable bindings. More formally, let

BθB ∈ GΣ(B), HθBθH ∈ GΣ(HθB) OθBθHθO ∈ GΣ(OθBθH),
and let µ be a selection distribution. Then with prob-

ability p · µ(HθBθH | HθB) · µ(OθBθHθO | OθBθH), the model

makes a transition from state BθB to HθBθH and emits sym-

bol OθBθHθO.

A selection distribution specifies for each abstract state

(respectively observation) A over the alphabet Σ a dis-

tribution µ(· | A) over GΣ(A). Consider, for ex-

ample, the abstract transition 0.5 : s(f(Z))
o(X,Y,Z)
←−−−−− s(X).

Suppose, BθB = s(1), µ(s(f(3)) | s(f(Z))) = 0.2 and

µ(o(1, 2, 3) | o(1, Y, 3)) = 0.05. Then, from state s(1)

with probability 0.5 × 0.2 × 0.05 = 0.005 the output

symbol is o(1,2,3) and the next state is s(f(3)).

To reduce the model complexity, we employ a naı̈ve

Bayes approach in which – at the expense of a lower

expressivity – functors are neglected and variables are

treated independently. More precisely, for each domain

Di there is a probability distribution PDi
. Let vars(A) =

{V1, . . . , Vl} be the variables occurring in A, and let θ =
{t1/V1, . . . tl/Vl} be a substitution grounding A. Each

Vj is then considered a random variable over the domain

of the first argument of r/m it appears in, denoted by

DVj . Then, µ(Aθ | A) =
∏l

j=1 PDVj
(Vj = tj). For in-

stance, µ(s(f(3)) | s(f(Z))) equals P
s/1
1 (3).

Indeed, multiple abstract transitions can match a

given ground state. Consider the abstract states

B1 = emacs(File, tex) and B2 = emacs(File, User) in

Fig. 1 (a). The abstract state B1 is more specific than B2

because there exists a substitution θ = {User/tex} such

that B2θ = B1, i.e., B2 subsumes B1. Therefore

GΣ(B1) ⊆ GΣ(B2) and the first transition can be re-

garded as more informative than the second one. It should

therefore be preferred over the second one when starting
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Figure 1: Logical hidden Markov models. The vertices represent abstract (hidden) states. Solid edges encode abstract

transitions. Dotted edges indicate that two abstract states behave in exactly the same way. Dashed edge denote the more

general than relation. The LOHMMs are described in the text.

e.g. from emacs(hmm1, tex). We will also say that the

transitions of the first abstract state are more specific

than the second ones; encoded by dashed edges. These

considerations lead to the conflict resolution strategy 1

of only considering the maximally specific transitions

that apply to a state in order to determine the successor

states. This implements a kind of exception handling or

default reasoning and is akin to Katz’s back-off n-gram

models [10]. In back-off n-gram models, the most detailed

model that is deemed to provide sufficiently reliable

information about the current context is used. That is, if

one encounters an n-gram that is not sufficiently reliable,

then back-off to use an (n− 1)-gram; if that is not reliable

either then back-off to level n− 2, etc.

Finally, dotted edges denote that two abstract states behave

in exactly the same way. If we follow a transition to an

abstract state with an outgoing dotted edge, we will auto-

matically follow that edge making appropriate unifications.

Definition 1 A logical hidden Markov model (LOHMM) is

a tuple M = (Σ, µ,∆) where Σ is a logical alphabet, µ
a selection probability over Σ and ∆ is a set of abstract

transitions. Let B be the set of all atoms that occur as the

body part of transitions in ∆. We require

∀B ∈ B :
∑

p:H
O←−B∈∆

p = 1. (1)

In [11] it is proven that LOHMMs specify a unique prob-

ability measure over hbΣ. Here, we would like to ex-

emplify that LOHMMs are generative models. Consider

the model in Fig. 1(a). Starting from start, it chooses

an initial abstract state, say emacs( , tex) with probabil-

ity 0.7. Here, denotes an anonymous variable which

is read and treated as distinct, new variables each time it

is encountered. Forced to follow the dotted edge, it en-

ters the abstract state emacs(F, U). In each abstract state,

1Another conflict resolution strategy would be smoothing, i.e. ,
considering all matching abstract states. We chose not to use
smoothing to keep the LOHMM locally interpretable, i.e. to have
a single abstract body for each ground state.

the model samples values for all variables that are not

instantiated yet according to the selection distribution µ.

Since the value of U was already instantiated in the pre-

vious abstract state emacs(F, tex), the model has only to

sample a value for F, say f1, using µ. Now, it selects

a transition, say, to latex(F, tex) with probability 0.6.

Since F is shared among the head and the body, the state

latex(f1, tex) is selected with probability 1.0. The ob-

servation emacs(f1) is emitted from emacs(F) with prob-

ability 1.0 using µ. Now, the model goes over to, say

ls(tex), emitting latex(f1) which in turn was sampled

from latex(F). The dotted edge brings us to ls(U) and

automatically unifies U with tex. Emitting ls, we return to

emacs(F, tex) where F now denotes a new filename.

3 The Learning Setting

For traditional HMMs, the learning problem basically col-

lapses to parameter estimation (i.e., estimating the transi-

tion probabilities) because HMMs can be considered to be

fully connected. For LOHMMs, however, we have to ac-

count for different abstraction levels. The model selection

problem can formally be defined as:

Given a set O = {O1, . . . , Om} of data cases indepen-

dently sampled from the same distribution, a set M of

LOHMMs, and a scoring function scoreO :M 7→ R, find

a hypothesis M∗ ∈M that maximizes scoreO.

Each data case Oi ∈ O is a sequence Oi = oi,1oi,2 . . . oi,T
of ground atoms and describes the observations evolving

over time. For instance in the user modeling domain a

data case could be emacs(lohmms), ls, emacs(lohmms).
The corresponding evolution of the system’s state

over time Hi = hi,0hi,1 . . . hi,Ti+1 is hidden, i.e. ,

not specified in Oi. For instance, we do not

know whether emacs(lohmms) has been generated by

emacs(lohmms, prog) or emacs(lohmms, tex).

The hypothesis space M consists of all candidate

LOHMMs to be considered during search. We assume Σ



to be given. Thus, the possible constants which can be se-

lected by µ are apriori known. Each M ∈ M is parame-

terized by a vector λM . Each (legal) choice of λM defines

a probability distribution P (· | M,λM ) over hb(Σ). For

the sake of simplicity, we will denote the underlying logic

program (i.e., the set of abstract transitions without associ-

ated probability values) by M and abbreviate λM by λ as

long as no ambiguities will arise. Furthermore, a syntactic

bias on the transitions to be induced is a parameter of our

framework, as usual in ILP [18]. For instance in the exper-

iments, we only consider transitions which obey the type

constraints induced by the predicates.

As score, we employ scoreO(M,λ) = log P (O |M,λ)−
Pen(M,λ,O). Here, log P (O | M,λ) is the log-

likelihood of the current of model (M,λ). It holds that

the higher the log-likelihood, the closer (M,λ) models the

probability distribution induced by the data. The second

term, Pen(M,λ,O), is a penalty function that biases the

scoring function to prefer simpler models. Motivated by the

minimum description length score for Bayesian networks,

we use the simple penalty Pen(M,λ,O) = |∆| log(m)/2.

It is independent of the model parameters and therefore it

can be neglected when estimating parameters. We assume

that each M covers all possible observation sequences

(over the given language Σ). This guarantees that all new

data cases will get a positive likelihood.

4 A Naı̈ve Learning Algorithm

A simple way of selecting a model structure is the follow-

ing greedy approach:

1: Let λ0 = argmax
λ

scoreO(M0,λ)
2: Loop for k = 0, 1, 2, . . .
3: Find model Mk+1 ∈ ρ(Mk) that maximizes

maxλ scoreO(Mk+1,λ)

4: Let λk+1 = argmax
λ

scoreO(Mk+1,λ)
5: Until convergence, i.e., no improvement in score

It takes as input an initial model M0 and the data O. At

each stage k we choose a model structure and parameters

among the current best model Mk and its neighbors ρ(Mk)
(see below) that have the highest score. It stops, when there

is no improvement in score. In practice, we initialize the

parameters of each model on lines 1 and 3 randomly.

We will now show how to traverse the hypotheses space

and how to estimate parameters for a hypothesis in order to

score it. That is, we will make line 3 more concrete.

Traversing the Hypotheses Space: An obvious candidate

for the initial hypothesis M0 (which we also used in our

experiments) is the fully connected LOHMM built over all

maximally general atoms over Σ, i.e., expressions of the

form r(X1, ..., Xm), where the Xi are different variables.

Now, to traverse the hypothesis spaceM, we have to com-

pute all neighbors of the currently best hypothesis Mk. To

do so, we employ refinement operators traditionally used in

ILP. More precisely, for the language bias considered and

the experiments conducted in the present paper, we used the

refinement operator ρ : M 7→ 2M which selects a single

clause cl ≡ p : H
O
←− B ∈M and adds a minimal specializa-

tion cl′ ≡ p : H′
O
′

←− B′ of cl toM (w.r.t. to θ-subsumption).

Specializing a single abstract transition means instantiat-

ing or unifying variables, i.e., cl′ ≡ cl θ for some substitu-

tion θ. When adding cl′ to Mk, we have to ensure that (1)

the same observation and hidden state sequences are still

covered and (2) the list of bodies B
′ after applying ρ(M)

should remain well-founded, that is, for each ground state,

there is a unique maximally specific body in B
′. Both con-

ditions together guarantee that the most specific body cor-

responding to a state always exists and is unique. Condi-

tion (1) can only be violated if B′ 6∈ B. In this case, we

add transitions with B′ and maximally general heads and

observations. Condition (2) is established analogously. We

complete the keep the list of bodies well-founded by adding

new bodies (and therefore abstract transitions) in a similar

way as described above.

Consider refining the LOHMM in Fig. 1 (b). When adding

ls(U)
latex(lohmm)
←−−−−−−−− latex(lohmm, U), hence introducing

the more specific abstract state latex(lohmm, U), further

variants of the same abstract transition but with different

heads have to be added. Otherwise condition (1) would be

violated as the resulting LOHMM does not cover the same

sequences as the original one; the state latex(lohmm, U)
can only be left via ls(U) and not e.g. via emacs( , U). On

the other hand, we have to be careful when subsequently

adding abstract transitions for the body latex(F, tex).
The problem is that we do not know which abstract body to

select in state latex(lohmm, tex). To fulfill condition (2),

you need to add abstract transitions for an additional, third

abstract state latex(lohmm, tex), too.

Parameter Estimation: In the presence of hidden vari-

ables maximum log-likelihood (ML) parameter estimation

is a numerical optimization problem, and all known algo-

rithms involve nonlinear, iterative optimization and mul-

tiple calls to an inference algorithm. The most common

approach for HMMs is the Baum-Welch algorithm, an in-

stance of the EM algorithm [5]. In each iteration l + 1 it

performs two steps:

(E-step) Compute the expectation of the log-

likelihood given the old model (Mk,λk,l) and the

observed data O, i.e., Q(Mk,λ | Mk,λk,l) =

E
[

log P (O,H |Mk,λ) |Mk,λk,l
]

.

Here, O,H denotes the completion of O where the evolu-

tion H of the system’s state over time is made explicit. The

current model (Mk,λk,l) and the observed data O give



us the conditional distribution governing H, and E[·|·] de-

notes the expectation over it. The function Q is called the

expected score.

(M-step) Maximize the expected score

Q(Mk,λ | Mk,λk,l) w.r.t. λ, i.e., λ
k,l+1 =

argmaxλ Q(Mk,λ|Mk,λk,l) .

The naı̈ve greedy algorithm can easily be instantiated us-

ing the EM. The problem, however, is its huge computa-

tional costs. To evaluate a single neighbor, the EM has

to run for a reasonable number of iterations in order to

get reliable ML estimates of λk′

. Each EM iteration re-

quires a full LOHMM inference on all data cases. In to-

tal, the running time per neighbor evaluation is at least

O(#EM iterations · size of data).

5 SAGEM: Structural Generalized EM

To reduce the computational costs, SAGEM (German for

’say EM’) adapts Friedman’s structural EM (SEM) [6].

That is, we take our current model (Mk,λk) and run the

EM algorithm for a while to get reasonably completed data.

We then fix the completed data cases and use them to com-

pute the ML parameters λk′

of each neighbor Mk′

. We

choose the neighbor with the best improvement of the score

as (Mk+1,λk+1) and iterate. More formally, we have

1: Initialize λ0,0 randomly

2: Loop for k = 0, 1, 2, . . .
3: Loop for l = 0, 1, 2, . . .

4: Let λk,l+1 = argmax
λ

Q(Mk,λ |Mk,λk,l)
5: Until convergence or l = lmax

6: Find model Mk+1 ∈ ρ(Mk) that maximizes

maxλ Q(Mk+1,λ |Mk,λk,l)

7: Let λk+1,0 = argmax
λ

Q(Mk+1,λ |Mk,λk,l)
8: Until convergence

The hypotheses space is traversed as described in Section 4,

and again we stop if there is no improvement in score.

The following theorem shows that even when the structure

changes in between, improving the expected score Q al-

ways improves the log-likelihood as well.

Theorem 1 If Q(M,λ | Mk,λk,l) >
Q(Mk,λk,l | Mk,λk,l) holds, then

log P (O |M,λ) > log P (O |Mk,λk,l) holds.

The proof is a simple extension of the argumentation

by [16, Section 3.2 ff.]. To apply the algorithm to select-

ing LOHMMs, we will now show how to choose the best

neighbour 2 in line 6.

2In the following, we will omit some derivation steps due to
space restriction. They can be found in [13]. Furthermore, for the
sake of simplicity, we will not explicitly check that a transition is
maximally specific for ground states.

Let c(b, h, o) denote the number of times the systems pro-

ceeds from ground state b to ground state h emitting ground

observation o. The expected score in line 6 simplifies to

Q(M,λ|Mk,λk,l) (2)

=
∑

b,h,o
E

[

c(b, h, o)
∣
∣
∣Mk,λk,l

]

︸ ︷︷ ︸

=:ec(b,h,o)

· log P (h, o|b,M,λ) .

The term ec(b, h, o) in (2) denotes the expected counts of

making a transition from ground state b to ground state h

emitting ground observation o. The expectation is taken

according to (Mk,λk,l).

An analytical solution, however, of the M-step in line 7
seems to be difficult. In HMMs, the updated transition

probabilities are simply directly proportional to the ex-

pected number of times they are used. In LOHMMs, how-

ever, there is an ambiguity: multiple abstract transitions

(with the same body), can match the same ground transi-

tion (b, h, o). Using ec as sufficient statistics makes the

M step nontrivial. The solution is to improve (2) instead

of maximizing it. Such an approach is called generalized

EM [16]. To do so, we follow a gradient-based optimiza-

tion technique. We iteratively compute the gradient ∇λ

of (2) w.r.t. the parameters of a LOHMM, and, then, take

a step in the direction of the gradient to the point λ + δ∇λ

where δ is the step-size.

For LOHMMs, the gradient w.r.t. (2) consists of partial

derivatives w.r.t. abstract transition probabilities and to se-

lection probabilities. Assume that λ is the transition proba-

bility associated with some abstract transition cl. Now, the

partial derivative of (2) w.r.t. some parameter λ is

∂Q(M,λ |Mk,λk,l)

∂λ

=
∑

b,h,o
ec(b, h, o) ·

∂ log P (h, o | b,M,λ)

∂λ

=
∑

b,h,o

ec(b, h, o)

P (h, o | b,M,λ)
·
∂P (h, o | b,M,λ)

∂λ
(3)

The partial derivative of P (h, o | b,M,λ) w.r.t. λ can be

computed as

P (h, o | b,M,λ)

∂λ
= µ(h | head(cl)θH,M) · µ(o | obs(cl)θHθO,M) (4)

Substituting (4) back into (3) yields

∂Q(M,λ |Mk,λk,l)

∂λ

=
∑

b,h,o

(
ec(b, h, o)

P (h, o | b,M,λ)
· µ(h | head(cl)θH,M)

· µ(o | obs(cl)θHθO,M)

)

(5)



The selection probability follows a naı̈ve Bayes approach.

Therefore, one can show in a similar way as for transition

probabilities that

∂Q(M,λ |Mk,λk,l)

∂λ

=
∑

b,h,o

( ec(b, h, o)

P (h, o | b,M,λ)
·
∑

cl

c(λ, cl, b, h, o)·

· P (cl |M,λ) · µ(h | head(cl)θH,M)·

· µ(o | obs(cl)θHθO,M)
)

(6)

where c(λ, cl, b, h, o) is the number of times that the do-

main element associated with λ is selected to ground cl
w.r.t. h and o.

In the problem at hand, the described method has to be

modified to take into account that λ ∈ [0, 1] and that cor-

responding λ’s sum to 1.0. A general solution, which we

used in our experiments, is to reparameterize the problem

so that the new parameters automatically respect the con-

straints no matter what their values are. To do so, we define

the parameters β where βij ∈ R such that λij = exp(βij)/
(
∑

l exp(βil)). This enforces the constraints given above,

and a local maximum w.r.t. β is also a local maximum w.r.t.

λ, and vice versa. The gradient w.r.t the βij’s can be found

by computing the gradient w.r.t. the λij’s and then deriving

the gradient w.r.t. β using the chain rule.

Discussion on SAGEM: What do we gain from SAGEM

over the naı̈ve approach? The expected ground counts

ec(b, h, o) are used as the sufficient statistics to evaluate

all the neighbors. Evaluating neighbors is thus now in-

dependent of the number and length of the data cases—

a feature which is important for scaling up. More pre-

cisely, the running time per neighbor evaluation is basi-

cally O(#Gradient iterations ·#Ground transitions) be-

cause SAGEM’s gradient approach does not perform

LOHMM inferences.

The greedy approach is not always enough. For instance, if

two hidden states are equivalent, to make them effectively

differ from each other, one needs to make them differ both

in visiting probabilities of the state and in behavior in the

state, possibly requiring two steps for any positive effect.

Fixing the expected counts in SAGEM worsens the prob-

lem, since changes in visiting probabilities of states do not

show up before a LOHMM inference is made. To over-

come this, different search strategies, such as beam search,

can be used: Instead of a current hypothesis, a fixed-size

set of current hypotheses is considered, and their common

neighborhood is searched for the next set.

To summarize, SAGEM explores different abstraction lev-

els due to ILP refinement operators, and, due to a GEM

approach, it reduces the neighborhood evaluation problem

to one that is solvable more efficiently.

50

150

250

350

10 50 100

10 samples
50 samples

100 samples

Figure 2: Speed-up (y axis), i.e., the ratio of time per EM it-

eration (in sec.) and time per SAGEM’s gradient approach

to evaluate neighbors. The speed-up is shown for differ-

ent numbers of sequence lengths (x axis) and for different

numbers of data cases (curves).

6 Experimental Evaluation

Our intentions here are to investigate whether SAGEM can

be applied to real world domains. More precisely, we will

investigate whether SAGEM

H1 speeds-up neighbor evaluation considerably (compared

to the naı̈ve learning algorithm);

H2 finds a comprehensible model;

H3 works in the presence of transition ambiguity;

H4 can be applied to real-world domains and is competitive

with standard machine learning algorithms such as nearest-

neighbor and decision-tree learners.

To this aim, we implemented the SAGEM using the Pro-

log system YAP-4.4.4. The experiments were run on a

Pentium-III-2.3 GHz machine. For the improvement of

expected score, we adapted the scaled conjugate gradient

as implemented in Bishop and Nabney’s Netlab library

(http://www.ncrg.aston.ac.uk/netlab/) with a

maximum number of 10 iterations and 5 random restarts.

Experiments with Synthetic Data: We sampled indepen-

dently 10, 50, 100 sequences of length 10, 50, 100 (100 to

10000 ground atoms in total) from the LOHMM shown in

Fig. 1(a) and computed their ground counts w.r.t. the sam-

ples. We measured the averaged running time in seconds

per iteration for both, the naı̈ve algorithm and SAGEM’s

gradient approach to evaluate neighbors when applied to

the LOHMM shown in Fig. 1(b). The times were mea-

sured using YAP’s built-in statistics/2. The results are

summarized in Fig. 2 showing the ratio of running times of

naı̈ve over SAGEM’s gradient approach. In some cases the

speed-up was more than 400. EM’s lowest running time

was 0.075 seconds (for 10 sequences of length 10). In con-

trast, SAGEM was constantly below 0.017 seconds. This

suggests that H1 holds.

We sampled 2000 sequences of length 15 (30000 ground

atoms) from the LOHMM in Fig. 1(a). There were 4
filenames, 2 users types. The initial hypothesis was the

LOHMM in Fig. 1(b) with randomly initialized parame-

ters. We run SAGEM on the sampled data. 3 Averaged

3The naı̈ve algorithm was no longer used for comparison due



start

hid(C’,P’,C)

endhid(C,P,X)

1.0 : com(C,P) 0.05 : end

0.95 : com(C’,P’)

Figure 3: The initial hypothesis for the experiments with

real-world data is a minimal structure, implying learning

from scratch. C stands for command and P for param-

eters. The hidden state hid contains the new command,

parameters and the latest old command.

over 5 runs, estimating the parameters for the initial hy-

pothesis achieved a score of −47203. In contrast, the score

of SAGEM’s selected model was −26974 which was even

slightly above the score of the original LOHMM (−30521).

This suggests that H3 holds. Moreover, in all runs, SAGEM

included e.g. latex(A, B)
0.61:emacs(A)
←−−−−−−−− emacs(A, B) and

emacs(A, B)
0.48:emacs(A)
←−−−−−−−− latex(A, B) which were not

present in the initial model. This suggests that H2 holds.

Experiments with Real-World Data: Finally, we applied

SAGEM to the data set collected by Greenberg [8]. The

data consists of 168 users of four groups: computer scien-

tists, non-programmers, novices and others. About 300000
commands have been logged in on average 110 sessions per

user. We present here results for two classes: novice-1(NV)

consisting of 2512 ground atoms and non-programmers-

4 (NP) consisting of 5183 ground atoms. We randomly

selected 35 training sessions (about 1500 commands) for

each class. On this data, we let SAGEM select a model

for each class independently, starting from the initial hy-

pothesis described in Fig. 3. To evaluate, we computed

the plug-in estimates of each model for the remaining ses-

sions corrected by the class priors. Averaged over five runs,

the precision (0.94± 0.06 NV, 0.91± 0.02 NP) and recall

values (0.67 ± 0.03 NV, 0.89 ± 0.05 NP) were balanced

and the overall predictive accuracy was 0.92 ± 0.01. Ja-

cobs and Blockeel [9] report that a kNN approach achieved

a precision of 0.91 and J48 (WEKA’s implementation of

Quinlan’s C4.5 decision tree learner) of 0.86 averaged over

ten runs on 50 randomly sampled training examples. This

suggests that H4 holds. The used kNN and J48 methods,

however, do not yield generative models and lack compre-

hensibility. SAGEM’s selected models encoded e.g. “non-

programmers are very likely to type in cd.. after performing

ls in some directory”. This pattern was not present in the

NV model. This suggests that H2 holds.

7 Related Work

Statistical relational learning (SRL) can be viewed as com-

bining ILP principles (such as refinement operators) with

statistical learning, see [3] for an overview and references.

to unreasonable running times.

Most attention, however, has been devoted to developing

highly expressive formalisms. LOHMMs can be seen as

an attempt towards downgrading such highly expressive

frameworks. They retain most of the essential logical fea-

tures but are easier to understand, adapt and learn. For the

same reasons, simple statistical techniques (such as logis-

tic regression or naı̈ve Bayes) have been combined with

ILP refinement oprators for traversing the search space, see

e.g. [20, 14]. They, however, do not select dynamic models.

LOHMMs are related to Anderson et al.’s relational

Markov models (RMMs) [1]. Here, states can be of dif-

ferent types, with each type described by a different set

of variables. The domain of each variable is hierarchi-

cally structured. The main differences are that neither

variable bindings, unification nor hidden states are sup-

ported. RMMs do not select the most-specific transition

to resolve conflicting transitions. Instead, they interpolate

between conflicting ones. This is an interesting option for

LOHMMs because it makes parameter estimation more ro-

bust. On the other hand, it also seems to make it more dif-

ficult to adhere one of our design principles: locally inter-

pretable transitions. Structure learning has been addressed

based on probability estimation trees.

Logical sequences can be converted into binary trees by

putting each instance of a relation symbol into a node. The

left subtree represents the first argument and the right sub-

tree represents the next atom in the list (of observations or

arguments). Methods for learning tree languages [2] can

thus be used for learning probabilistic models for logical

sequences, too. The main differences, though, is that vari-

able bindings are not supported.

LOHMMs are related to several extensions of HMMs such

as factorial HMMs [7]. Here, state variables are decom-

posed into smaller units. The key difference to LOHMMs

is that these approaches do not employ logical concepts.

Finally, SAGEM is related to more advanced HMM model

selection methods. Model merging [22] starts with the most

specific model consistent with the training data and gener-

alizes by successively merging states. Abstract transitions,

however, aim at good generalization, and the most gen-

eral clauses can be considered to be the most informative

ones. Therefore, successive state splitting [19] refines hid-

den states by splitting them into new states. In both cases,

the authors are not aware of adaptions of Friedman’s SEM.

8 Conclusions

A novel model selection method for logical hidden Markov

models called SAGEM has been introduced. SAGEM com-

bines generalized EM, which optimizes parameters, with

structure search for model selection using ILP refinement

operators. Experiments show SAGEM’s effectiveness.

Future work should address other scores; other refinement



operators e.g. handling functors, deleting transitions, and

generalizing hypotheses; logical pruning criteria for hy-

potheses; and efficient storing of ground counts. Moreover,

the authors hope that the presented work will inspire further

research at the intersection of ILP and HMMs.
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