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Summary. In this chapter, a nonlinear extension to independent component anal-
ysis is developed. The nonlinear mapping from source signals to observations is
modelled by a multi-layer perceptron network and the distributions of source sig-
nals are modelled by mixture-of-Gaussians. The observations are assumed to be cor-
rupted by Gaussian noise and therefore the method is more adequately described as
nonlinear independent factor analysis. The nonlinear mapping, the source distribu-
tions and the noise level are estimated from the data. Bayesian approach to learning
avoids problems with overlearning which would otherwise be severe in unsupervised
learning with flexible nonlinear models.

1 Introduction

The linear principal and independent component analysis (PCA and ICA) model
the data as having been generated by independent sources through a linear map-
ping. The difference between the two is that PCA restricts the distribution of the
sources to be Gaussian, whereas ICA does not, in general, restrict the distribution
of the sources.
In this chapter we introduce nonlinear counterparts of PCA and ICA where the

generative mapping form sources to data is not restricted to be linear. The general
form of the models discussed here is

x(t) = f(s(t)) + n(t) . (1)

The vectors x(t) are observations at time t, s(t) are the sources and n(t) the noise.
The function f() is a parametrised mapping from source space to observation space.
It can be viewed as a model about how the observations were generated from the
sources.
Just as their linear counterparts, the nonlinear versions of PCA and ICA can

be used for instance in dimension reduction and feature extraction. The difference
between linear and nonlinear PCA is depicted in Fig. 1. In the linear PCA the
data is described with a linear coordinate system whereas in the nonlinear PCA
the coordinate system is nonlinear. The nonlinear PCA and ICA can be used for
similar tasks as their linear counterparts, but they can be expected to capture the
structure of the data better if the data points lie in a nonlinear manifold instead of
a linear subspace.
Usually the linear PCA and ICA models do not have an explicit noise term n(t)

and the model is thus simply

x(t) = f(s(t)) = As(t) + b . (2)
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Fig. 1. On the left hand side the data is described with a linear coordinate system.
On the right hand side the coordinate system is nonlinear

The corresponding PCA and ICA models which include the noise term are often
called factor analysis and independent factor analysis (FA and IFA) models. The
nonlinear models discussed here can therefore also be called nonlinear factor analysis
and nonlinear independent factor analysis models.
In this chapter, the distribution of sources is modelled with Gaussian density

in PCA and mixture-of-Gaussians density in ICA. Given enough Gaussians in the
mixture, any density can be modelled with arbitrary accuracy using the mixture-
of-Gaussians density, which means that the source density model is universal. Like-
wise, the nonlinear mapping f() is modelled by a multi-layer perceptron (MLP)
network which can approximate any nonlinear mapping with arbitrary accuracy
given enough hidden neurons.
The noise on each observation channel (component of data vectors) is assumed

to be independent and Gaussian, but the variance of the noise on different channels
is not assumed to be equal. The noise could be modelled with a more general
distribution, but we shall restrict the discussion to the simple Gaussian case. After
all, noise is supposed to be something uninteresting and unstructured. If the noise
is not Gaussian or independent, it is a sign of interesting structure which should be
modelled by the generative mapping from the sources.

2 Choosing Among Competing Explanations

Each model with particular values for sources, parameters and noise terms can be
considered as an explanation for the observations. Even with linear PCA and ICA
there are infinitely many possible models which explain the observations completely.
With flexible nonlinear models like an MLP network, the number of possible expla-
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nations is — loosely speaking — even higher (although mathematically speaking,
∞2 would still be ‘only’ ∞).

Fig. 2. The data is generated by two independent evenly distributed sources as
shown on the left. Given enough hidden neurons, an MLP network is able to model
the data as having been generated by a single source through a very nonlinear
mapping, depicted on the right

An example of competing explanations is given in Fig. 2. The data is sampled
from an even distribution inside a square. This is equivalent to saying that two
independent sources, each evenly distributed, have generated the data as shown
on the left hand side of the figure. If we only look at the probability of the data,
the nonlinear mapping depicted on the right hand side of the figure is even better
explanation as it gives very high probabilities to exactly those data points that
actually occurred. However, it seems intuitively clear that the nonlinear model in
Fig. 2 is much more complex than the available data would justify.
The exact Bayesian solution is that instead of choosing a single model, all

models are used by weighting them according to their posterior probabilities. In
other words, each model is taken into account in proportion with how probable
they seem in light of the observations.
If we look at the predictions the above two models give about future data points,

we notice that the more simple linear model with two sources predicts new points
inside the square but the more complex nonlinear model with one source predicts
new points only along the curved line. The prediction given by the more simple
model is evidently closer to the prediction obtained by the exact Bayesian approach
where the predictions of all models would be taken into account by weighting them
according to the posterior probabilities of the models.
With complex nonlinear models like MLP networks, the exact Bayesian treat-

ment is computationally intractable and we are going to resort to ensemble learning,
which is discussed in Chap. 6. In ensemble learning, a computationally tractable
parametric approximation is fitted to the posterior probabilities of the models.



4 Harri Lappalainen, Antti Honkela

In Sect. 6.4.2 it is shown that ensemble learning can be interpreted as finding
the most simple explanation for the observations1. This agrees with the intuition
that in Fig. 2, the simple linear model is better than the complex nonlinear model.
The fact that we are interested in simple explanations also explains why non-

linear ICA is needed at all if we can use nonlinear PCA. The nonlinearity of the
mapping allows the PCA model to represent any time-independent probability den-
sity of the observations as originating from independent sources with Gaussian dis-
tributions. It would therefore seem that the non-Gaussian source models used in
the nonlinear ICA cannot further increase the representational power of the model.
However, for many naturally occurring processes the representation with Gaussian
sources requires more complex nonlinear mappings than the representation with
mixtures-of-Gaussians. Therefore the nonlinear ICA will often find a better expla-
nation for the observations than the nonlinear PCA.
Similar considerations also explain why to use the MLP network for modelling

the nonlinearity. Experience has shown that with MLP networks it is easy to model
fairly accurately many naturally occurring multidimensional processes. In many
cases the MLP networks give a more simple parametrisation for the nonlinearity
than, for example, Taylor or Fourier series expansions.
On the other hand, it is equally clear that the ordinary MLP networks with

sigmoidal nonlinearities are not the best models for all kinds of data. With the
ordinary MLP networks it is, for instance, difficult to model mappings which have
products of the sources. The purpose of this chapter is not to give the ultimate
model for any data but rather to give a good model for many data, from which
one can start building more sophisticated models by incorporating domain-specific
knowledge. Most notably, the source models described here do not assume time-
dependencies, which are often significant.

3 Nonlinear Factor Analysis

This section introduces a nonlinear counterpart of principal component analysis.
As explained in Sect. 1, the model includes a noise term and we shall therefore call
it nonlinear factor analysis. Learning is based on Bayesian ensemble learning which
is introduced in Chap. 6. In order to keep the derivations simple, only Gaussian
probability distributions are used which allows us to utilise many of the formulas
derived in Sect. 6.6.1.
The posterior probability density of the unknown variables is approximated by

a Gaussian distribution. As in Chap. 6, the variances of the Gaussian distributions
of the model are parametrised by logarithm of standard deviation, log-std, because
then the posterior distribution of these parameters will be closer to Gaussian which
then agrees better with the assumption that the posterior is Gaussian.
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x(t)Observations

s(t)Sources

Fig. 3. The mapping from sources to observations is modelled by the familiar MLP
network. The sources are on the top layer and observations in the bottom layer.
The middle layer consists of hidden neurons each of which computes a nonlinear
function of the inputs

3.1 Definition of the Model

The schematic structure of the mapping is shown in Fig. 3. The nonlinearity of each
hidden neuron is the hyperbolic tangent, which is the same as the usual logistic
sigmoid except for a scaling. The equation defining the mapping is

x(t) = f(s(t)) + n(t) = B tanh(As(t) + a) + b + n(t) . (3)

The matrices A and B are the weights of first and second layer and a and b are
the corresponding biases.
The noise is assumed to be independent and Gaussian and therefore the prob-

ability distribution of x(t) is

x(t) ∼ N(f(s(t)), e2vx) (4)

Each component of the vector vx gives the log-std of the corresponding component
of x(t).
The sources are assumed to have zero mean Gaussian distributions and again

the variances are parametrised by log-std vs.

s(t) ∼ N(0, e
2vs) (5)

Since the variance of the sources can vary, variance of the weights A on the first
layer can be fixed to a constant, which we choose to be one, without loosing any

1 The complexity of the explanation is defined as the number of bits it takes to
encode the observation using the model. In this case one would measure the total
code length of the sources s(t), the parameters of the mapping and the noise
n(t).
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generality from the model. This is not case for the second layer weights. Due to the
nonlinearity, the variances of the outputs of the hidden neurons are bounded from
above and therefore the variance of the second layer weights cannot be fixed. In
order to enable the network to shut off extra hidden neurons, the weights leaving
one hidden neuron share the same variance parameter2.

B ∼ N(0, e
2vB ) (6)

The elements of the matrix B are assumed to have a zero mean Gaussian distribution
with individual variances for each column and thus the dimension of the vector vB

is the number of hidden neurons. Both biases a and b have Gaussian distributions
parametrised by mean and log-std.
The distributions are summarised in (7)–(12).

x(t) ∼ N(f(s(t)), e2vx) (7)

s(t) ∼ N(0, e
2vs) (8)

A ∼ N(0, 1) (9)

B ∼ N(0, e
2vB ) (10)

a ∼ N(ma, e
2va) (11)

b ∼ N(mb, e
2vb) (12)

The distributions of each set of log-std parameters are modelled by Gaussian dis-
tributions whose parameters are usually called hyperparameters.

vx ∼ N(mvx , e
2vvx ) (13)

vs ∼ N(mvs , e
2vvs ) (14)

vB ∼ N(mvB
, e

2vvB ) (15)

The prior distributions of ma, va, mb, vb and the six hyperparameters mvs , . . . , vvB

are assumed to be Gaussian with zero mean and standard deviation 100, i.e., the
priors are assumed to be very flat.

3.2 Cost Function

In ensemble learning, the goal is to approximate the posterior pdf of all the unknown
values in the model. Let us denote the observations by X. Everything else in the
model is unknown, i.e., the sources, parameters and hyperparameters. Let us denote
all these unknowns by the vector θ. The cost function measures the misfit between
the actual posterior pdf p(θ|X) and its approximation q(θ|X).

2 A hidden neuron will be shut off if all leaving weights are close to zero. Thinking in
coding terms, it is easier for the network to encode this in one variance parameter
than to encode it independently for all the weights.
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The posterior is approximated as a product of independent Gaussian distribu-
tions

q(θ|X) =
∏

i

q(θi|X) . (16)

Each individual Gaussian q(θi|X) is parametrised by the posterior mean θ̄i and
variance θ̃i of the parameter.
The functional form of the cost function Cθ(X; θ̄, θ̃) is given in Chap. 6. The

cost function can be interpreted to measure the misfit between the actual poste-
rior p(θ|X) and its factorial approximation q(θ|X). It can also be interpreted as
measuring the number of bits it would take to encode X when approximating the
posterior pdf of the unknown variables by q(θ|X).
The cost function is minimised with respect to the posterior means θ̄i and

variances θ̃i of the unknown variables θi. The end result of the learning is therefore
not just an estimate of the unknown variables, but a distribution over the variables.
The simple factorising form of the approximation q(θ|X)makes the cost function

computationally tractable. The cost function can be split into two terms, Cq and Cp,
where the former is an expectation over ln q(θ|X) and the latter is an expectation
over − ln p(X, θ).
It turns out that the term Cq is not a function of the posterior means θ̄i of the

parameters, only the posterior variances. It has a similar term for each unknown
variable.

Cq(X; θ̃) =
∑

i

−
1

2
ln 2πeθ̃i (17)

Most of the terms of Cp are also trivial. The Gaussian densities in (8)–(15) yield
terms of the form

− ln p(θ) =
1

2
(θ − mθ)

2
e
−2vθ + vθ +

1

2
ln 2π (18)

Since θ, mθ and vθ are independent in q, the expectation over q yields

1

2
[(θ̄ − m̄θ)

2 + θ̃ + m̃θ]e
2ṽθ−2v̄θ + v̄θ +

1

2
ln 2π . (19)

Only the term originating from (7) needs some elaboration. Equation (7) yields

− ln p(x) =
1

2
(x − f)2e−2vx + vx +

1

2
ln 2π (20)

and the expectation over q is

1

2
[(x − f̄)2 + f̃ ]e2ṽx−2v̄x + v̄x +

1

2
ln 2π (21)

The rest of this section is dedicated on evaluating the posterior mean f̄ and variance
f̃ of the function f . We shall begin from the sources and weights and show how
the posterior mean and variance can be propagated through the network yielding
the needed posterior mean and variance of the function f at the output. The effect
of nonlinearities g of the hidden neurons are approximated by first and second



8 Harri Lappalainen, Antti Honkela

order Taylor’s series expansions around the posterior mean. Apart from that, the
computation is analytical.
The function f consists of two multiplications with matrices and a nonlinearity

in between. The posterior mean and variance for a product u = yz are

ū = E{u} = E{yz} = E{y}E{z} = ȳz̄ (22)

and

ũ = E{u2} − ū
2 = E{y2

z
2} − (ȳz̄)2 =

E{y2}E{z2} − ȳ
2
z̄
2 = (ȳ2 + ỹ)(z̄2 + z̃) − ȳ

2
z̄
2
, (23)

given that y and z are posteriorly independent. According to the assumption of
the factorising form of q(θ|X), the sources and the weights are independent and we
can use the above formulas. The inputs going to hidden neurons consist of sums of
products of weights and sources, each posteriorly independent, and it is therefore
easy compute the posterior mean and variance of the inputs going to the hidden
neurons; both the means and variances of a sum of independent variables add up.
Let us now pick one hidden neuron having nonlinearity g and input ξ, i.e., the

hidden neuron is computing g(ξ). At this point we are not assuming any particular
form of g although we are going to use g(ξ) = tanh ξ in all the experiments; the
following derivation is general and can be applied to any sufficiently smooth function
g.
In order to be able to compute the posterior mean and variance of the function

g, we are going to apply the Taylor’s series expansion around the posterior mean
ξ̄ of the input. We choose the second order expansion when computing the mean
and the first order expansion when computing the variance. The choice is purely
practical; higher order expansions could be used as well but these are the ones that
can be computed from the posterior mean and variance of the inputs alone.

ḡ(ξ) ≈ g(ξ̄) +
1

2
g
′′(ξ̄)ξ̃ (24)

g̃(ξ) ≈ [g′(ξ̄)]2ξ̃ (25)

After having evaluated the outputs of the nonlinear hidden neurons, it would seem
that most of the work has already been done. After all, it was already shown how
to compute the posterior mean and variance of a weighted sum and the outputs of
the network will be weighted sums of the outputs of the hidden neurons. Unfor-
tunately, this time the terms in the sum are no longer independent. The sources
are posteriorly independent by virtue of the approximation q(θ|X), but the values
of the hidden neurons are posteriorly dependent which enforces us to use a more
complicated scheme for computing the posterior variances of these weighted sums.
The posterior means will be as simple as before, though.
The reason for the outputs of the hidden neurons to be posteriorly dependent

is that the value of one source can potentially affect all the outputs. This is il-
lustrated in Fig. 4. Each source affects the output of the whole network through
several paths and in order to be able to determine the variance of the outputs, the
paths originating from different sources need to be kept separate. This is done by
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s(t)Sources

x(t)Observations

Fig. 4. The converging paths from two sources are shown.
Both input neurons affect the output neuron through two
paths going through the hidden neurons. This means that
the posterior variances of the two hidden neurons are neither
completely correlated nor uncorrelated and it is impossible to
compute the posterior variance of the output neuron without
keeping the two paths separate. Effectively this means com-
puting the Jacobian matrix of the output with respect to the
inputs

keeping track of the partial derivatives ∂g(ξ)
∂si
. Equation (26) shows how the total

posterior variance of the output g(ξ) of one of the hidden neurons can be split into
terms originating from each source plus a term g̃∗(ξ) which contains the variance
originating from the weights and biases, i.e., those variables which affect any one
output through only a single path.

g̃(ξ) = g̃
∗(ξ) +

∑

i

s̃i

[

∂g(ξ)

∂si

]2

(26)

When the outputs are multiplied by weights, it is possible to keep track of how
this affects the posterior mean, the derivatives w.r.t. the sources and the variance
originating from other variables than the sources, i.e., from weights and biases. The
total variance of the output of the network is then obtained by

f̃ = f̃
∗ +

∑

i

s̃i

[

∂f

∂si

]2

, (27)

where f denotes the components of the output and we have computed the posterior
variance of the outputs of the network which is needed in (21). To recapitulate what
is done, the contributions of different sources to the variances of the outputs of the
network are monitored by computing the Jacobian matrix of the outputs w.r.t. the
sources and keeping this part separate from the variance originating from other
variables.
The only approximations done in the computation are the ones approximating

the effect of nonlinearity. If the hidden neurons were linear, the computation would
be exact. The nonlinearity of the hidden neurons is delt with by linearising around
the posterior mean of the inputs of the hidden neurons. The smaller the variances
the more accurate this approximation is. With increasing nonlinearity and variance
of the inputs, the approximation gets worse.
Compared to ordinary forward phase of an MLP network, the computational

complexity is greater by about a factor of 5N , where N is the number of sources.
The factor five is due to propagating distributions instead of plain values. The need
to keep the paths originating from different sources separate explains the factor N .
Fortunately, much of the extra computation can be made into good use later on
when adapting the distributions of variables.
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3.3 Update Rules

Any standard optimisation algorithm could be used for minimising the cost function
C(X; θ̄, θ̃) with respect to the posterior means θ̄ and variances θ̃ of the unknown
variables. As usual, however, it makes sense utilising the particular structure of the
function to be minimised.
Those parameters which are means or log-std of Gaussian distributions, e.g.,

mb, mvB
, va and vvx , can be solved in the same way as the parameters of Gaussian

distribution where solved in Sect. 6.1. Since the parameters have Gaussian priors,
the equations do not have analytical solutions, but Newton-iteration can be used.
For each Gaussian, the posterior mean and variance of the parameter governing
the mean is solved first by assuming all other variables constant and then the same
thing is done for the log-std parameter, again assuming all other variables constant.
Since the mean and variance of the output of the network and thus also the

cost function was computed layer by layer, it is possible to use the ordinary back-
propagation algorithm to evaluate the partial derivatives of the part Cp of the
cost function w.r.t. the posterior means and variances of the sources, weights and
biases. Assuming the derivatives computed, let us first take a look at the posterior
variances θ̃.
The effect of the posterior variances θ̃ of sources, weights and biases on the

part Cp of the cost function is mostly due to the effect on f̃ which is usually very
close to linear (this was also the approximation made in the evaluation of the cost
function). The terms f̃ have a linear effect on the cost function, as is seen in (21),
which means that the over all effect of the terms θ̃ on Cp is close to linear. The
partial derivative of Cp with respect to θ̃ is therefore roughly constant and it is
reasonable to use the following fixed point equation to update the variances:

0 =
∂C

∂θ̃
=

∂Cp

∂θ̃
+

∂Cq

∂θ̃
=

∂Cp

∂θ̃
−

1

2θ̃
⇒ θ̃ =

1

2
∂Cp

∂θ̃

. (28)

The remaining parameters to be updated are the posterior means θ̄ of the
sources, weights and biases. For those parameters it is possible to use Newton iter-
ation since the corresponding posterior variances θ̃ actually contain the information
about the second order derivatives of the cost function C w.r.t. θ̄. It holds

θ̃ ≈
1

∂2C

∂θ̄2

(29)

and thus the step in Newton iteration can be approximated

θ̄ ← θ̄ −

∂Cp

∂θ̄

∂2C

∂θ̄2

≈ θ̄ −
∂Cp

∂θ̄
θ̃ . (30)

Equation (29) would be exact if the posterior pdf p(θ|X) were exactly Gaussian.
This would be true if the mapping f were linear. The approximation in (29) is
therefore good as long as the function f is roughly linear around the current estimate
of θ̄.
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Avoiding Problems Originating from Approximation of the Non-
linearity of the Hidden Neurons. The approximations in (24) and (25) can
give rise to problems with ill defined posterior variances of sources or first layer
weights A or biases a. This is because the approximations take into account only
local behaviour of the nonlinearities g of the hidden neurons. With MLP networks
the posterior is typically multimodal and therefore, in a valley between two max-
ima, it is possible that the second order derivative of the logarithm of the posterior
w.r.t. a parameter θ is positive. This means that the derivative of the Cp part of the
cost function with respect to the posterior variance θ̃ of that parameter is negative,
leading to a negative estimate of variance in (28).
It is easy to see that the problem is due to the local estimate of g since the

logarithm of the posterior eventually has to go to negative infinity. The derivative
of the Cp term w.r.t. the posterior variance θ̃ will thus be positive for large θ̃, but
the local estimate of g fails to account for this.
In order to discourage the network from adapting itself to areas of parameter

space where the problems might occur and to deal with the problem if it nevertheless
occurred, the terms in (24) which give rise to negative derivative of Cp with respect
to θ̃ will be neglected in the computation of the gradients. As this can only make
the estimate of θ̃ in (28) smaller, this leads, in general, to increasing the accuracy
of the approximations in (24) and (25).

Stabilising the Fixed-Point Update Rules. The adaptations rules in (28)
and (30) assume other parameters to be constant. The weights, sources and biases
are updated all at once, however, because it would not be computationally efficient
to update only one at a time. The assumption of independence is not necessarily
valid, particularly for the posterior means of the variables, which may give rise to
instabilities. Several variables can have a similar effect on outputs and when they
are all updated to the values which would be optimal given that the others stay
constant, the combined effect is too large.
This type of instability can be detected by monitoring the directions of updates

of individual parameters. When the problem of correlated effects occurs, consecutive
updated values start oscillating. A standard way to dampen these oscillations in
fixed point algorithms is to introduce a learning parameter α for each parameter
and update it according to the following rule:

α ←

{

0.8α if sign of change was different
min(1, 1.05α) if sign of change was same

(31)

This gives the following fixed point update rules for the posterior means and vari-
ances of the sources, weights and the biases:

θ̄ ← θ̄ − αθ̄

∂Cp

∂θ̄
θ̃ (32)

θ̃ ←
1

[

2
∂Cp

∂θ̃

]α
θ̃
θ̃
1−α

θ̃ (33)

The reason why a weighted geometric rather than arithmetic mean is applied to
the posterior variances is that variance is a scale parameter. The relative effect of
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adding a constant to the variance varies with the magnitude of the variance whereas
the relative effect of multiplying by a constant is invariant.

Using Additional Information for Updating Sources. With sources, it
is possible to measure and compensate some of the correlated effects in the updates.
Recall that the Jacobian matrix of the output f of the network w.r.t. the sources was
computed when taking into account the effects of multiple paths of propagating the
values of sources. This will be used to compensate the assumption of independent
updates, in addition to the learning rates α.
Suppose we have two sources whose effect on outputs are positively correlated.

Assuming the effects independent means that the step will be to large and the
actual step size should be less than what the Newton iteration suggests. This can
be detected from computing the change resulting in the outputs and projecting
it back for each source independently to see how much each source alone should
change to produce the same change in the outputs. The difference between the
change of one source in the update and change resulting from all the updates can
then be used to adjust the step sizes in the update.

B

D
C

OO
D

A

C

B

A

Fig. 5. Illustration of the
correction of error resulting
from assuming independent
updates of the sources. The
figures show the effect two
sources have on the outputs.
On the left hand side the ef-
fects of sources on x are pos-
itively correlated and conse-
quently the step sizes are over-
estimated. On the right hand
side the effects are negatively
correlated and the step sizes
are underestimated

Two examples of correction are depicted in Fig. 5. The left hand side graph
shows a case where the effects of sources on the outputs are positively correlated
and the right hand side graph has negatively correlated effects. Current output of
the network is in the origin O and the minimum of the cost function is in point
A. Black arrows show where the output would move if the sources were minimised
independently. The combined updates would then take the output to point B.
As the effects of sources on x are correlated, point B, the resulting overall

change in x, differs from point A. Projecting the point B back to the sources,
comparison between the resulting step size C and the desired step size D can be
used for adjusting the step size. The new step size on the source would be D/C
times the original. With positively correlated effects the adjusting factor D/C is
less then one, but with negatively correlated sources it is greater than one. For the
sake of stability, the corrected step is restricted to be at most twice the original.
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4 Nonlinear Independent Factor Analysis

The nonlinear factor analysis model introduced in the previous section has Gaus-
sian distributions for the sources. In this section we are going to show how that
model can easily be extended to have mixture-of-Gaussians models for sources. In
doing so we are largely following the method introduced in [1] for Bayesian linear
independent factor analysis. The resulting model is a nonlinear counterpart of ICA
or, more accurately, a nonlinear counterpart of independent factor analysis because
the model includes finite noise. The difference between the models is similar to
that between linear PCA and ICA because the first layer weight matrix A in the
network has the same indeterminacies in nonlinear PCA as in linear PCA. The
indeterminacy is discussed in the introductory chapter.
According to the model for the distribution of the sources, there are several

Gaussian distributions and at each time instant, the source originates from one of
them. Let us denote the index of the Gaussian from which the source si(t) originates
by Mi(t). The model for the distribution for the ith source at time t is

p(si(t)|θ) =
∑

Mi(t)

P (Mi(t)|θ)p(si(t)|θ, Mi(t)) , (34)

where p(si(t)|θ, Mi(t) = j) is a time-independent Gaussian distribution with its
own mean mij and log-std vij . The probabilities P (Mi(t)|θ) of different Gaussians
are modelled with time-independent soft-max distributions.

P (Mi(t) = j|θ) =
ecij

∑

j′
ecij′

(35)

Each combination of different Gaussians producing the sources can be consid-
ered a different model. The number of these models is enormous, of course, but their
posterior distribution can still be approximated by a similar factorial approximation
which is used for other variables.

Q(M|X) =
∏

Mi(t)

Q(Mi(t)|X) (36)

Without losing any further generality, we can now write

q(si(t), Mi(t)|θ) = Q(Mi(t)|θ)q(si(t)|θ, Mi(t)) , (37)

which yields

q(si(t)|θ) =
∑

j

q(Mi(t) = j|θ)Q(si(t)|θ, Mi(t) = j) . (38)

This means that the approximating ensemble for the sources has a form similar to
the prior, i.e., an independent mixture of Gaussians, although the posterior mixture
is different at different times.
Due to the assumption of factorial posterior distribution of the models, the cost

function can be computed as easily as before. Let us denote Q(Mi(t) = j|θ) = ṡij(t)
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and the posterior mean and variance of q(si(t)|θ, Mi(t) = j) by s̄ij(t) and s̃ij(t). It
easy to see that the posterior mean and variance of si(t) are

s̄i(t) =
∑

j

ṡij(t)s̄ij(t) (39)

s̃i(t) =
∑

j

ṡij(t)[s̃ij(t) + (s̄ij(t) − s̄i(t))
2] . (40)

After having computed the posterior mean s̄i and variance s̃i of the sources, the
computation of the Cp part of the cost function proceeds as with nonlinear factor
analysis in the previous section. The Cq part yields terms of the form

q(si(t)|X) ln q(si(t)|X) =
∑

j

ṡij(t)q(si(t)|Mi(t) = j, X) ln
∑

j

ṡij(t)q(si(t)|Mi(t), X) =

∑

j

ṡij(t)q(si(t)|Mi(t) = j, X) ln ṡij(t)q(si(t)|Mi(t), X) =

∑

j

ṡij(t)[ln ṡij(t) + q(si(t)|Mi(t) = j, X) ln q(si(t)|Mi(t) = j, X)] (41)

and we have thus reduced the problem to a previously solved one. The terms
q(si(t)|Mi(t), X) ln q(si(t)|Mi(t), X) are the same as for the nonlinear factor analy-
sis and otherwise the equation has the same form as in model selection in Chap. 6.
This is not surprising since the terms Q(Mi(t)|X) are the probabilities of different
models and we are, in effect, therefore doing factorial model selection.
Most update rules are the same as for nonlinear factor analysis. Equations (39)

and (40) bring the terms ṡij(t) for updating the means mij and log-std parameters
vij of the sources. It turns out that they both will be weighted with ṡij , i.e., the
observation is used for adapting the parameters in proportion to the posterior prob-
ability of that observation originating from that particular Gaussian distribution.

5 Experiments

5.1 Learning Scheme

The learning scheme for all the experiments was the same. First, linear PCA is used
to find sensible initial values for the posterior means of the sources. The method
was chosen because it has given good results in initialising the model vectors of a
self-organising map (SOM). The posterior variances of the sources are initialised to
small values. Good initial values are important for the method since the network
can effectively prune away unused parts as will be seen in the experiments later on.
Initially the weights of the network have random values and the network has quite
bad representation for the data. If the sources were adapted from random values
also, the network would consider many of the sources useless for the representation
and prune them away. This would lead to a local minimum from which the network
would not recover.
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Therefore the sources are fixed at the values given by linear PCA for the first
50 iterations through the whole data. This is long enough for the network to find
a meaningful mapping from sources to the observations, thereby justifying using
the sources for the representation. For the same reason, the parameters controlling
the distributions of the sources, weights, noise and the hyperparameters are not
adapted during the first 100 iterations. They are adapted only after the network
has found sensible values for the variables whose distributions these parameters
control.
In all simulations, the total number of iterations is 7500, where one iteration

means going through all the observations. For nonlinear independent factor analysis
simulations, a nonlinear subspace is estimated with 2000 iterations by the nonlinear
factor analysis after which the sources are rotated with a linear ICA algorithm. In
these experiments, FastICA was used [4]. The rotation of the sources is compensated
by an inverse rotation to the first layer weight matrix A. The nonlinear independent
factor analysis algorithm is then applied for the remaining 5500 iterations.

5.2 Helix
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Fig. 6. The plot on the left shows the data points and the plot on the right shows the
reconstructions made by the network together with the underlying helical subspace.
The MLP network has clearly been able to find the underlying one-dimensional
nonlinear subspace where the data points lie
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Let us first take a look at a toy problem which shows that it is possible to find a
nonlinear subspace and model it with an MLP network in an unsupervised manner.
A set of 1000 data points, shown on the left plot of Fig. 6, were generated from
a normally distributed source s into a helical subspace. The z-axis had a linear
correspondence to the source and the x- and y-axes were sine and cosine: x =
sin(πs), y = cos(πs) and z = s. Gaussian noise with standard deviation 0.05 was
added to all three data components.
One-dimensional nonlinear subspaces were estimated with the nonlinear inde-

pendent factor analysis algorithm. Several different numbers of hidden neurons and
initialisations of the MLP networks were tested and the network which minimised
the cost function was chosen. The best network had 16 hidden neurons. The original
noisy data and the means of the outputs of the best MLP network are shown in
Fig. 6. It is evident that the network was able to learn the correct subspace. Only
the tails of the helix are somewhat distorted. The network estimated the standard
deviations of the noise on different data components to be 0.052, 0.055 and 0.050.
This is in close correspondence with the actual noise level of 0.05.
This problem is not enough to demonstrate the advantages of the method since

it does not prove that the method is able to deal with high dimensional latent
spaces. This problem was chosen simply because it is easy to visualise.

5.3 Nonlinear Artificial Data

Gaussian Sources. The following experiments with nonlinear factor analysis
algorithm demonstrate the ability of the network to prune away unused parts. The
data was generated from five normally distributed sources through a nonlinear map-
ping. The mapping was generated by a randomly initialised MLP network having
20 hidden neurons and ten output neurons. Gaussian noise with standard deviation
of 0.1 was added to the data. The nonlinearity for the hidden neurons was chosen
to be the inverse hyperbolic sine, which means that the nonlinear factor analysis
algorithm using MLP network with tanh-nonlinearities cannot use exactly the same
weights.
Figure 7 shows how much of the energy remains in the data when a number of

linear PCA components are extracted. This measure is often used to deduce the
linear dimension of the data. As the figure shows, there is no obvious turn in the
curve and it would be impossible to deduce the nonlinear dimension.
With the nonlinear factor analysis by MLP networks, not only the number of

the sources but also the number of hidden neurons in the MLP network needs to
be estimated. With the Bayesian approach this is not a problem, as is shown in
Figs. 8 and 9. The cost function exhibits a broad minimum as a function of hidden
neurons and a saturating minimum as a function of sources. The reason why the cost
function saturates as a function of sources is that the network is able to effectively
prune away unused sources. In the case of ten sources, for instance, the network
actually uses only five of them.
The pressure to prune away hidden neurons is not as big which can be seen in

Fig. 10. A reliable sign of pruning is the amount of bits which the network uses for
describing a variable. Recall that it was shown in Sect. 6.4.2 that the cost function
can be interpreted as the description length of the data. The description length
can also be computed for each variable separately and this is shown in Fig. 10. The
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Fig. 7. The graph shows the remaining energy in the data as a function of the
number of extracted linear PCA components. The total energy is normalised to
unity (zero on logarithmic scale). The data has been generated from five Gaussian
sources but as the mapping is nonlinear, the linear PCA cannot be used for finding
the original subspace

MLP network had seven input neurons, i.e., seven sources, and 100 hidden neurons.
The upper left plot shown clearly that the network effectively uses only five of the
sources and very few bits are used to describe the other two sources. This is evident
also from the first layer weight matrix A on the upper right plot, which shows the
average description length of the weights leaving each input neuron.
The lower plot of Fig. 10 also shows the average description length of the weight

matrix A, but now the average is taken row-wise and thus tells how many bits are
used for describing the weights arriving to each hidden neuron. It appears that
about six or seven hidden neurons have been pruned away, but the pruning is not
as complete as in the case of sources. This is because for each source the network
has to represent 1000 values, one for each observation vector, but for each hidden
neuron the network only needs to represent five plus twenty (the effective number
of inputs and outputs) values and there is thus much less pressure to prune away a
hidden neuron.

Non-Gaussian Sources. The following experiments demonstrate the ability of
the nonlinear independent factor analysis algorithm to find the underlying latent
variables which have generated the observations.
In these experiments, a similar scheme was used to generate data as with the

Gaussian sources before. Now a total of eight sources was used with four sub-
Gaussian and four super-Gaussian sources. The generating MLP network was also
larger, having 30 hidden neurons and 20 output neurons. The super-Gaussian
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Fig. 8. The value of the cost function is shown as a function of the number of hidden
neurons in the MLP network modelling the nonlinear mapping from five sources
to the observations. Ten different initialisations were tested to find the minimum
value for each number of hidden neurons. The cost function exhibits a broad and
somewhat noisy minimum. The smallest value for the cost function was obtained
using 30 hidden neurons

sources were generated by taking a hyperbolic sine, sinh x, from a normally dis-
tributed random variable and then normalising the variance to unity. In generating
sub-Gaussian sources, inverse hyperbolic sine, sinh−1 x, was used instead of sinh x.
Several different numbers of hidden neurons were tested in order to optimise the

structure of the network, but the number of sources was assumed to be known. This
assumption is reasonable since it is possible to optimise the number of sources sim-
ply by minimising the cost function as the experiments with the Gaussian sources
show. The network which minimised the cost function turned out to have 50 hidden
neurons. The number of Gaussians in each of the mixtures modelling the distribu-
tion of each source was chosen to be three and no attempt was made to optimise
this.
The results are depicted in Figs. 11, 12 and 13. Each figure shows eight scatter

plots, each of which corresponds to one of the eight sources. The original source
which was used for generating the data is on the x-axis and the estimated source in
on the y-axis of each plot. Each point corresponds to one data vector. The upper
plots of each figure correspond to the super-Gaussian and the lower plots to the
sub-Gaussian sources. Optimal result would be a straight line which would mean
that the estimated values of the sources coincide with the true values.
Figure 11 shows the result of a linear FastICA algorithm [4]. The linear ICA is

able to retrieve the original sources with 0.7 dB signal to noise ratio. In practise a
linear method could not deduce the number of sources and the result would be even
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Fig. 9. The value of the cost function is shown as a function of the number of
sources. The MLP network had 30 hidden neurons. Ten different initialisations
were tested to find the minimum value for each number of sources. The cost func-
tion saturates after five sources and the deviations are due to different random
initialisation of the network

worse. The poor signal to noise ratio shows that the data really lies in a nonlinear
subspace.
Figure 12 depicts the results after 2000 iterations with nonlinear factor analysis

followed by a rotation with a linear FastICA. Now the signal to noise ratio is 13.2 dB
and the sources have clearly been retrieved. Figure 13 shows the final result after
another 5500 iterations with nonlinear independent factor analysis algorithm. The
signal to noise ratio has further improved to 17.3 dB.
It would also be possible to avoid using the nonlinear independent factor analysis

algorithm by running first 7500 iterations with linear factor analysis algorithm and
then applying the linear ICA. The disadvantage would be that the cost function
would not take into account the non-Gaussianity. The signal to noise ratio after
7500 iterations with linear factor analysis algorithm followed by the linear ICA
was 14.9 dB, which shows that taking the non-Gaussianity into account during
estimation of the nonlinear mapping helps the nonlinear independent factor analysis
algorithm to find better estimates for the sources.

5.4 Process Data

This data set consists of 30 time series of length 2480 measured from different
sensors from an industrial pulp process. An expert has preprocessed the signals by
roughly compensating for time lags of the process which originate from the finite
speed of pulp flow through the process.
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Fig. 10. The network is able to prune away unused parts. This can be monitored
by measuring the description length of different variables. The sources and hidden
neurons are sorted by decreasing description length

In order to get an idea of the dimensionality of the data, linear factor analysis
was applied to the data. The result is shown in Fig. 14. The same figure shows
also the results with nonlinear factor analysis. It appears that the data is quite
nonlinear since the nonlinear factor analysis is able to explain as much data with
10 components as the linear factor analysis with 21 components.
Several different numbers of hidden neurons and sources where tested with dif-

ferent random initialisations with nonlinear factor analysis and it turned out that
the cost function was minimised for a network having 10 sources and 30 hidden neu-
rons. The same network was chosen for nonlinear independent factor analysis, i.e.,
after 2000 iterations with linear factor analysis the sources were rotated with Fas-
tICA and each source was modelled with a mixture of three Gaussian distributions.
The resulting sources are shown in Fig. 15.
Figure 16 shows the 30 original time series of the data set, one time series per

plot, and in the same plots below the original time series are the reconstructions
made by the network, i.e., the posterior means of the output of the network when
the inputs were the estimated sources shown in Fig. 15. The original signals shown
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Fig. 11. Original sources are on the x-axis of each scatter plot and the sources
estimated by a linear ICA are on the y-axis. Signal to noise ratio is 0.7 dB
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Fig. 12. Scatter plots of the sources after 2000 iterations of nonlinear factor analysis
followed by a rotation with a linear ICA. Signal to noise ratio is 13.2 dB
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Fig. 13. The network in Fig. 12 has been further trained for 5500 iterations with
nonlinear independent factor analysis. Signal to noise ratio is 17.3 dB
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Fig. 15. The ten estimated sources from the industrial pulp process. Time increases
from left to right

Fig. 16. The 30 original time series are shown on each plot on top of the recon-
struction made from the sources shown in Fig. 15

great variability but the reconstructions are strikingly accurate. In some cases it
even seems that the reconstruction is less noisy than the original signal. This is
somewhat surprising since the time dependencies in the signal were not included
in the model. The observation vectors could be arbitrarily shuffled and the model
would still give the same result.
Initial studies are pointing to the direction that the estimated source signals can

have meaningful physical interpretations. The results are encouraging but further
studies are needed to verify the interpretations of the signals.
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6 Comparison with Existing Methods

The idea of representing the data with a nonlinear coordinate system is by no means
new and several algorithms for learning the coordinate system have been proposed.

6.1 SOM and GTM

Self-organising maps (SOM) [5] and generative topographic mapping (GTM) [2]
define a nonlinear coordinate system by stating the coordinates of lattice points
called model vectors. The methods are in wide use, particularly the computation-
ally efficient SOM, but the dimension of the latent space is normally quite small.
Two-dimensional latent space is the most typical one because it allows an easy
visualisation for human users.
The disadvantage of SOM and GTM is that the number of parameters required

to describe the mapping from latent variables to observations grows exponentially
with the dimension of the latent space. Our main motivation for using MLP net-
work as the nonlinear mapping is that its parametrisation scales linearly with the
dimension of the latent space. In this respect the mapping of MLP network is much
closer to a linear mapping which has been proven to be applicable for very high
dimensional latent spaces. SOM and GTM would probably be better models for
the helical data set in Sect. 5.2, but the rest of the experiments have latent spaces
whose dimensions are so large that SOM or GTM models would need very many
parameters.

6.2 Auto-Associative MLPs

Auto-associative MLP networks have been used for learning similar mappings as we
have done. Both the generative model and its inversion are learned simultaneously,
but separately without utilising the fact that the models are connected. This means
that the learning is much slower than in this case where the inversion is defined as
a gradient descent process.
Much of the work with auto-associative MLPs uses point estimates for weights

and sources. As argued in the beginning of the chapter, it is then impossible to
reliably choose the structure of the model and problems with over- or underlearning
may be severe. Hochreiter and Schmidhuber have used and MDL based method
which does estimate the distribution of the weights but has no model for the sources
[3]. It is then impossible to measure the description length of the sources.

6.3 Generative Learning with MLPs

MacKay and Gibbs briefly report using stochastic approximation to learn a gener-
ative MLP network which they called a density network because the model defines
a density of the observations [6]. Although the results are encouraging, they do not
prove the advantages of the method over SOM or GTM because the model is very
simple; noise level is not estimated from the observations and the latent space had
only two dimensions. The computational complexity of the method is significantly
greater than in the parametric approximation of the posterior presented here, but
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it might be possible to combine the methods by finding initial approximation of
the posterior probability with parametric approximation and then refining it with
more elaborate stochastic approximation.
In [7], a generative MLP network was optimised by gradient based learning.

The cost function was reconstruction error of the data and a point estimate was
used for all the unknown variables. As argued in Sect. 2, this means that it is not
possible to optimise model structure and the method is prone to overfitting.

7 Discussion

7.1 Validity of the Approximations

The posterior pdf of all the unknown variables was approximated with a Gaussian
density with diagonal covariance, which means that the variables were assumed
independent given the observations. The Gaussianity assumption is not severe since
the parametrisation is chosen so as to make the posterior close to Gaussian. If the
hidden neurons were linear, the posterior of the sources, weights and biases would,
in fact, be exactly Gaussian. Gaussian approximation therefore penalises strong
nonlinearities to some extent.
The posterior independence seems to be the most unrealistic assumption. It

is probable that a change in one of the weights can be compensated by changing
the values of other weights and sources, which means that they have posterior
dependencies.
In general, the cost function tries to make the approximation of the posterior

more accurate, which means that during learning the posterior will also try to be
more independent. In PCA, the mapping has a degeneracy which will be used by the
algorithm to do exactly this. In linear PCA the mapping is such that the sources
are independent a posteriori. In the nonlinear factor analysis, the dependencies
of the sources are different in different parts of the latent space and it would be
reasonable to model these dependencies. Computational load would not increase
significantly since the Jacobian matrix computed in the algorithm can be used
also for estimating the posterior interdependencies of the sources. For the sake of
simplicity, the derivations were not included here.
It should be possible to do the same for the nonlinear independent factor anal-

ysis, but it would probably be necessary to assume the different Gaussians of each
source to be independent. Otherwise the posterior approximation of Q(M|X) would
be computationally too intensive.
The other approximation was done when approximating the nonlinearities of the

hidden neurons by Taylor’s series expansions. For small variances this is valid and it
is therefore good to check that the variances of the inputs for the hidden neurons are
not outside the range where the approximation is valid. In the computation of the
gradients, some terms were neglected to discourage the network from adapting itself
to areas of parameter space where the approximation is inaccurate. Experiments
have proven that this seems to be working. For the network which minimised the
cost function in Fig. 8, for instance, the maximum variance of the input for a hidden
neurons was 0.06. Even this maximum value is safely below the values where the
approximation could become too inaccurate.
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7.2 Initial Inversion by Auxiliary MLP

During learning, both the sources and the mapping of the network evolve together.
When the network is presented new data, it is necessary to find the estimates
of the sources corresponding to the new data. This can be difficult using similar
update process as was used in learning because it is possible that during learning
the network develops local minima which make later inversion difficult.
Experiments have shown that it is possible to learn an auxiliary MLP network

which will estimate the mapping from observations to sources and can thus be
used to initialise the sources given new data. The resulting system with two MLP
networks resembles auto-associative MLP network. As was argued before, learning
only the generative model is faster than learning a deeper auto-associative MLP
with both the generative model and its inverse. Initial experiments have also shown
that updates of the sources after the initialisation with the auxiliary MLP network
lead to better estimates of the sources.

7.3 Future Directions

In principle, both the nonlinear factor analysis and independent factor analysis
can model any time-independent distribution of the observations. MLP networks
are universal approximators for mappings and mixture-of-Gaussians for densities.
This does not mean, however, that the models described here would be optimal for
any time-independent data sets, but the Bayesian methods which were used in the
derivation of the algorithms allow easy extensions to more complicated models. It
is also easy to use Bayesian model comparison to decide with model is most suited
for the data set at hand.
An important extension would be the modelling of dependencies between con-

secutive sources s(t) and s(t + 1) because many natural data sets are time series.
For instance both the speech and process data sets used in the experiments clearly
have strong time-dependencies.
In the Bayesian framework, treatment of missing values is simple which opens

up interesting possibilities for the nonlinear models described here. A typical pat-
tern recognition task can often be divided in unsupervised feature extraction and
supervised recognition phases. Using the proposed method, the MLP network can
be used for both phases. The data set for the unsupervised feature extraction would
have only the raw data and the classifications would be missing. The data set for
supervised phase would include both the raw data and the desired outputs and the
network. From the point of view of the method presented here, there is no need
to make a clear distinction between unsupervised and supervised learning phases
as any data vectors can have any combination of missing values. The network will
model the joint distribution of all the observations and it is not necessary to specify
which of the variables will be the classifications and which are the raw data.
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