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ABSTRACT

The properties of hierarchical nonlinear factor anal-
ysis (HNFA) recently introduced by Valpola and others
[1] are studied by reconstructing missing values. The
variational Bayesian learning algorithm for HNFA has
linear computational complexity and is able to infer the
structure of the model in addition to estimating the pa-
rameters. To compare HNFA with other methods, we
continued the experiments with speech spectrograms
in [2] comparing nonlinear factor analysis (NFA) with
linear factor analysis (FA) and with the self-organising
map. Experiments suggest that HNFA lies between
FA and NFA in handling nonlinear problems. Further-
more, HNFA gives better reconstructions than FA and
it is more reliable than NFA.

1. INTRODUCTION

A typical machine learning task is to estimate a prob-
ability distribution in the data space that best corre-
sponds to the set of real valued data vectors x(t) [3].
This probabilistic model is said to be generative - it can
be used to generate data. Instead of finding the distri-
butions directly, one can assume that sources s(t) have
generated the observations x(t) through a (possibly)
nonlinear mapping f(·):

x(t) = f [s(t)] + n(t) , (1)

where n(t) is additive noise. Principal component anal-
ysis and independent component analysis are linear ex-
amples, but we focus on nonlinear extensions.

It is difficult to visualise the situation if for instance
a 10-dimensional source space is mapped to form a non-
linear manifold in a 30-dimensional data space. There-
fore, some indirect measures for studying the situation
are useful. We use real-world data to make the exper-
iment setting realistic and mark parts of the data to
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be missing for the purpose of controlled comparison.
By varying the configuration of the missing values and
then comparing the quality of their reconstructions, we
measure different properties of the algorithms.

Generative models handle missing values in an easy
and natural way. Whenever a model is found, re-
constructions of the missing values are also obtained.
Other methods for handling missing data are discussed
in [4]. Reconstructions are used here to demonstrate
the properties of hierarchical nonlinear factor analysis
(HNFA) [1] by comparing it to nonlinear factor analysis
(NFA) [5], linear factor analysis (FA) [6] and to the self-
organising map (SOM) [7]. Similar experiments using
only the latter three methods were presented in [2].

FA is similar to principal component analysis
(PCA) but it has an explicit noise model. It is a ba-
sic tool that works well when nonlinear effects are not
important. The mapping f(·) is linear and the sources
s(t) have a diagonal Gaussian distribution. Large di-
mensionality is not a problem. The SOM can be pre-
sented in terms of (1), although that is not the standard
way. The source vector s(t) contains discrete map co-
ordinates which select the active map unit. The SOM
captures nonlinearities and clusters, but has difficul-
ties with data of high intrinsic dimensionality and with
generalisation.

2. VARIATIONAL BAYESIAN LEARNING

FOR NONLINEAR MODELS

Variational Bayesian (VB) learning techniques are
based on approximating the true posterior probabil-
ity density of the unknown variables of the model
by a function with a restricted form. Currently the
most common technique is ensemble learning [8] where
Kullback-Leibler divergence measures the misfit be-
tween the approximation and the true posterior. It
has been applied to ICA and a wide variety of other
models (see [1, 9] for some references).

In ensemble learning, the posterior approximation
q(θ) of the unknown variables θ is required to have a



suitably factorial form q(θ) =
∏

i
qi(θi), where θi are

the subsets of unknown variables. The misfit between
the true posterior p(θ | X) and its approximation q(θ)
is measured by Kullback-Leibler divergence. An addi-
tional term − log p(X) is included to avoid calculation
of the model evidence term p(X) =

∫

p(X, θ)dθ. The
cost function is

C = D(q(θ) ‖ p(θ|X)) − log p(X) =

〈

log
q(θ)

p(X, θ)

〉

,

(2)
where 〈·〉 denotes the expectation over distribution
q(θ). Note that since D(q ‖ p) ≥ 0, it follows that
the cost function provides a lower bound for p(X) ≥
exp(−C). For a more detailed discussion, see [9].

The missing values in data behave like other la-
tent variables and are therefore handled as a part of
θ instead of X. The posterior approximation q(θ) is
estimated during the learning and it can be used as
a reconstruction for the missing values. The fraction
of missing values in the data does not affect computa-
tional complexity substantially.

Beal and Ghahramani [10] compare the VB method
of handling incomplete data to annealed importance
sampling (AIS). In their example, the variational
method works more reliably and about 100 times faster
than AIS. Chan et al. [11] used ICA with VB learning
successfully to reconstruct missing values. A competing
approach without VB by Welling and Weber [12] has
an exponential complexity w.r.t. the data dimensional-
ity. ICA can be seen as FA with a non-Gaussian source
model. Instead of going into that direction, we choose
to stick to the Gaussian source model and concentrate
on extending the mapping to be nonlinear instead.

2.1. Nonlinear factor analysis and hierarchical

nonlinear factor analysis

In [5], a nonlinear generative model (1) was estimated
by ensemble learning and the method was called nonlin-
ear factor analysis (NFA). A more recent version with
an analytical cost function and a linear computational
complexity, is called hierarchical nonlinear factor anal-
ysis (HNFA) [1]. In many respects HNFA is similar to
NFA. The posterior approximation, for instance, was
chosen to be maximally factorial for the sake of compu-
tational efficiency and the terms qi(θi) were restricted
to be Gaussian.

In NFA, a multi-layer perceptron (MLP) network
with one hidden layer was used for modelling the non-
linear mapping f(·):

f(s(t);A,B,a,b) = A tanh[Bs(t) + b] + a , (3)

where A and B are weight matrices, a and b are bias
vectors and the activation function tanh operates on

each element separately. The key idea in HNFA is to
introduce latent variables h(t) before the nonlinearities
and thus split the mapping (3) into two parts:

h(t) = Bs(t) + b + nh(t) (4)

x(t) = Aφ[h(t)] + Cs(t) + a + nx(t) , (5)

where nh(t) and nx(t) are Gaussian noise terms and
the nonlinearity φ(ξ) = exp(−ξ2) again operates on
each element separately. Note that we have included
a short-cut mapping C from sources to observations.
This means that hidden nodes only need to model the
deviations from linearity.

Learning is unsupervised and thus differs in many
ways from standard backpropagation. Each step in
learning tries to minimise the cost function (2). In
NFA, the sources are updated while keeping the map-
ping constant and vice versa. The computational com-
plexity is proportional to the number of paths from
sources to the data, i.e. the product of sizes of the three
layers. In HNFA, all terms qi(θi) of q(θ) are updated
one at a time. The computational complexity is lin-
ear with the number of connections in the model and
thus HNFA scales better than NFA. In both algorithms,
the update steps are repeated for several thousands of
times per parameter.

In NFA, neither the posterior mean nor the variance
of f(·) over q(θ) can be computed analytically. The ap-
proximation based on Taylor series expansion may be
inaccurate if the posterior variance for the input of the
hidden nodes grows too large. This may be the source
of the instability observed in some simulations. Pre-
liminary experiments suggest that it may be possible
to fix the problem at the expense of efficiency.

In HNFA, the posterior mean and variance of the
mappings in (4) and (5) have analytic expressions. This
is possible at the expense of assuming independencies
of the extra latent variables h(t) in the posterior ap-
proximation q(θ). The assumption increases the mis-
fit between the approximated and the true posterior.
Minimisation of (2) pushes the solution in a direction
where the misfit would be smaller. In [13], it is shown
how this can lead to suboptimal separation in linear
ICA. It is difficult to analyse the situation in nonlinear
models, but it can be expected that models with fewer
simultaneously active hidden nodes and thus more lin-
ear mappings are favoured. This should lead to conser-
vative estimates of the nonlinearity of the model.

Since HNFA is built from simple blocks introduced
in [14], learning the structure1 becomes easier. The

1By structure, we mean the sizes of the layers and the con-
nections between the nodes. In principle, we could allow any
directed acyclic graph connecting the latent and observed vari-
ables.
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Fig. 1. Some speech data with and without missing
values and the reconstruction given by HNFA.

cost function (2) relates to the model evidence p(X |
model) and can thus be used to compare structures.
The model is built in stages starting from linear FA,
i.e. HNFA without hidden nodes. See [1] for further
details.

3. EXPERIMENTS

The goal is to study nonlinear models by measuring the
quality of reconstructions of missing values.

The data set consists of speech spectrograms from
several Finnish subjects. Short term spectra are win-
dowed to 30 dimensions with a standard preprocessing
procedure for speech recognition. It is clear that a dy-
namic2 source model would give better reconstructions,
but in this case the temporal information is left out to
ease the comparison of the models. Half of the about
5000 samples are used as test data with some missing
values. Missing values are set in four different ways
to measure different properties of the algorithms (Fig-
ure 2):

1. 38 percent of the values are set to miss randomly
in 4 × 4 patches. (Figure 1)

2. Training and testing sets are randomly permuted
before setting missing values in 4 × 4 patches as
in Setting 1.

3. 10 percent of the values are set to miss randomly
independent of any neighbours. This is an eas-
ier setting, since simple smoothing using nearby
values would give fine reconstructions.

2In [9], NFA was extended to include a model for the dynamics
of the sources. A similar extension for HNFA would lead to
hierarchical nonlinear dynamical factor analysis.
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Fig. 2. Four different experimental settings with the
speech data used for measuring different properties of
the algorithms.

4. Training and testing sets are permuted and 10
percent of the values are set to miss indepen-
dently of any neighbours.

We tried to optimise each method and in the fol-
lowing, we describe how we got the best results. The
SOM was run using the SOM Toolbox with long learn-
ing time, 2500 map units and random initialisations.
One parameter, the width of the softening kernels [2]
that was used in making the reconstruction, was se-
lected based on the results, which is not completely
fair. In other methods, the optimisation was based on
minimising the cost function (2) or its approximation.
NFA was learned for 5000 sweeps through data using
a Matlab implementation. Varying number of sources
were tried out and the best ones were used as the re-
sult. The optimal number of sources was around 12
to 15 and the size used for the hidden layer was 30.
A large enough number should do, since the algorithm
can effectively prune out parts that are not needed.
Some runs with a higher number of sources were good
according to the approximation of the cost function
(2), but a better approximation or a simple look at the
reconstruction error of the observed data showed that
those runs were actually bad. These runs and the ones
that diverged were filtered out.

The details of the HNFA (and FA) implementation
can be found in [1]. In FA, the number of sources was
28. In HNFA, the number of sources at the top layer
was varied and the best runs according to the cost func-
tion were selected. In those runs, the size of the top
layer varied from 6 to 12 and the size of the middle
layer, which is determined during learning, turned out
to vary from 12 to 30. HNFA was run for 5000 sweeps
through data. Each run with NFA or HNFA takes
about 8 hours of processor time, while FA and SOM
are faster.

Several runs were conducted with different random
initialisations but the same data and the same missing
value pattern for each setting and for each method. The



number of runs in each cell is about 30 for HNFA, 4 for
NFA and 20 for the SOM. FA always converges to the
same solution. The mean and the standard deviation
of the mean square reconstruction error are:

FA HNFA NFA SOM
1. 1.87 1.80 ± 0.03 1.74 ± 0.02 1.69 ± 0.02
2. 1.85 1.78 ± 0.03 1.71 ± 0.01 1.55 ± 0.01
3. 0.57 0.55 ± .005 0.56 ± .002 0.86 ± 0.01
4. 0.58 0.55 ± .008 0.58 ± .004 0.87 ± 0.01

The order of results of the Setting 1 follow our
expectations on the nonlinearity of the models. The
SOM with highest nonlinearity gives the best recon-
structions, while NFA, HNFA and finally FA follow
in that order. The results of HNFA vary the most -
there is potential to develop better learning schemes to
find better solutions more often. The sources h(t) of
the hidden layer did not only emulate computational
nodes, but they were also active themselves. Avoiding
this situation during learning could help to find more
nonlinear and thus perhaps better solutions.

In the Setting 2, due to the permutation, the test
set contains vectors very similar to some in the training
set. Therefore, generalisation is not as important as in
the Setting 1. The SOM is able to memorise details
corresponding to individual samples better due to its
high number of parameters. Compared to the Setting
1, SOM benefits a lot and makes clearly the best re-
constructions, while the others benefit only marginally.

The Settings 3 and 4, which require accurate ex-
pressive power in high dimensionality, turned out not
to differ from each other much. The basic SOM has
only two intrinsic dimensions3 and therefore it was
clearly poorer in accuracy. Nonlinear effects were not
important in these settings, since HNFA and NFA were
only marginally better than FA. HNFA was better than
NFA perhaps because it has more latent variables when
counting both s(t) and h(t).

To conclude, HNFA lies between FA and NFA
in performance. HNFA is applicable to high dimen-
sional problems and the middle layer can model part of
the nonlinearity without increasing the computational
complexity dramatically. FA is better than the SOM
when expressivity in high dimensions is important, but
the SOM is better when nonlinear effects are more
important. The extensions of FA, NFA and HNFA,
expectedly performed better than FA in each setting.
HNFA is recommended over NFA because of its relia-
bility. It may be possible to enhance the performance
of NFA and HNFA by new learning schemes whereas
especially FA is already at its limits. On the other

3Higher dimensional SOMs become quickly intractable due to
exponential number of parameters.

hand, FA is best if low computational complexity is
the determining factor.
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