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Abstract— It is common to have both observed and missing missingness of the value can depend on the actual value. But
values in data. This paper concentrates on the case wherejn these textbooks, a value is either observed or missing and
a value can be somewhere between those two ends, par’[lallythere is no option in between. Heitjan and Rubin [10], [11]

observed and partially missing. To achieve that, a method of using . . .
evidence nodes in a Bayesian network is studied. Different ways ofdeflne coarse data which means that we might observe (no

handling inaccuracies are discussed in examples and the proposedmore and no less than) that a data valuéelongs to some
approach is justified in the experiments with real image data. set, sayx € [a,b). Examples include rounded and out-of-

Also, a justification is given for the standard preprocessing step scale measurements. In this case, the value is not entirely
of adding a tiny amount of noise to the data, when a continuous- missing, since we observe to which set it belongs to. Zhang
valued model is used for discrete-valued data. and Honavar [12] use decision trees with partially specified
data. They can specify discrete values at different levéls o
precision, e.g. the same shape can be described as a patygon i

Most of the data sets collected in real life are not perfegjeneral or a square in specific. These hierarchies are aaspeci
They contain errors and missing values. There are also casgse of coarse data.
where some observations are left out on purpose, e.g. not alCoarse data is already quite close to “fuzziness”. The gap
patients are sent to all laboratory tests. Also, some obsers closed completely by using a fuzzy membership function
tions are more accurate or reliable than others. Usuallsethes(z) < [0, 1] as virtual evidence fox, instead of the regular
is some knowledge about these inaccuracies, but it is oftegt membership restriction. | will stay in the Bayesian feam
ignored in machine learning. Fuzzy logic, on the other han@iork and not use fuzzy logic. Section Il describes two ways
is based on modeling inaccuracies. of introducing fuzzy membership functions into Bayesian

Bayesian networks [1], [2] are very popular with the artifinetworks. Section Il briefly reviews the variational Baiges
cial intelligence and machine learning communities. They aframework for background. Two examples that illustratéedif
graphical models [3] where nodes represent random vasabét phenomena concerning partially observed values aea giv
and the lack of arcs represents conditional independerigeSection IV. Experiments with independent factor analysi
assumptions. A complex system is built by combining simplein image data are described in Section V. Subsequently, the
parts. Traditional Bayesian networks use discrete vafablmatters are discussed and concluded.
but in this paper, the emphasis is on continuous variables.

The experiments are run with Bayes blocks [4] that use !l- VIRTUAL EVIDENCE FORCONTINUOUS-VALUED
variational Bayesian learning. They can handle missingesl VARIABLES
in a straightforward manner [5]. Figure 1 shows examples of membership functiéf),

How to exploit the best features of the Bayesian and tlehich can describe different types of observations: 1) An
fuzzy frameworks? Wald [6] proved that every admissiblexact observation that a person is 183 cm tall. 2) A missing
decision rule is a Bayes decision rule. Fuzzy logic is just @bservation with no knowledge of the height of this partcul
construction of heuristics, but on the other hand, fuzzy-coperson. 3) A coarse observation that the person is taller tha
cepts are very intuitive. For instance, the distinctionnssn 180 cm. 4) Finally, a fuzzy observation that a person is™tall
the concepts cupanda bowlis shown in [7] to be vague and The common sense of peoples heights (no-one can be 3 meters
context-dependent. Pearl [1] studies so called virtuadeavie tall etc.) corresponds to a model or prior experience. The
in Bayesian networks. It means that part of a situation is ngtiestion is, how to combine the knowledge given by the model
carefully modelled but instead some evidence is summariziedthe knowledge given by the membership function.
into virtual evidence. Virtual evidence corresponds esalyn Pearl’s virtual evidence [1] can be implemented as follows.
to fuzzy observations. This paper shows how virtual evidentet us consider a Bayesian network and a single valireit.
can be used with a continuous valued model and what isTd makez partially observed, we add a binary nadealled an
good for. evidence node [13], to it (see Figure 2). The evidence rrode

There are numerous approaches to handling missing valbesz as the only parent and it has no children. The conditional
[8], [9] and some approaches work even in cases where fm@bability function (cpf)p(e = 1 | ) = U(z) is the fuzzy

I. INTRODUCTION



U(Xl) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, since the posterior distribution is fixed @ (x). | call this
the Frozen approachlt can be thought of as knowing that
the true data is distributed in a specific way. This time, all
0 ‘ ‘ ‘ prior information should be included i&r (z) but that might
160 180 200  Xx/cm be difficult in practice.
U(x) Now, let us consider the continuous-valued case and a
1 partial observation that is probably greater than a constant
p c. For that, one can use the Evidence approach with a logistic
0 ‘ | membership function
160 180 200  x/cm 1
U(z) = 1te(@oja’ 2)

Fig. 1. Different types of observations of a person’s heigfup, solid ) )
line: observed value, dashed line: missing value. Bottoniddisle: coarse Where « is a constant that sets the slope or fuzziness of the

pbservation, dashgd line: fuzzy observation. All of thesses can be membership function. This can be implemented with a soft-
interpreted as partially observed values. . .
max node [4] forfe with 2/« andc/« as parents. Using several
different soft-max nodes combined with logical operatjons
\ / / one could build practically arbitrary membership function
Note that the Frozen approach cannot handle unnormalisable
membership functions such as the logistic function.
@ There are also other ways to produce a virtual evidence for
z. One can use for instance the Gaussian evidence node [13].
A partial observation about is that it is aroundry with a
Fig. 2. The noder in a Bayesian network can be either observed (Ieft)\,/arianceUZ- The cpf for a continuous-valued evidence node

missing (middle) or partially observed (right). The nade called an evidence ¢ is defined agp(e | z) = N(e;x,g2)_ Observinge = z
node. A shaded node represents an observed variable andta mdde changes the posterior distribution ofto

represents a latent variable.
p(z | H, X)p(e = o | #,H,X)

membership functio® (x). Now we leaver latent but observe ple = z0) (3)
e = 1. This provides evidence far that corresponds exactly to ocp(x | H, X)ple = zo | )
U(z) and therefore this can be called teidence approach = p(z | H,X)N(z;29,0°),

The modelp(z | H,X) for = given the model structuré(
and the rest of the datX, is combined with the evidence
given bye = 1. Together they form the posterior distribution

plz | H, X, e =1x0) =

corresponding to a Gaussian membership funcligix) =
N (x;20,0%). The last step of (3) becomes clear when noticing
that the difference: — x is normally distributed. The Frozen

(@ | H, X, e=1) = plz | H,X)ple =1]2,H, X) approach with a Gaussian distribution is handled simply by
el se= = ple=1]1,X) @ (@) = N, o).
o p(z | H,X)p(e=1]z)
lIl. VARIATIONAL BAYESIAN LEARNING
=p(z | H,X)U ().

) . ) . Variational Bayesian learning techniques are based on ap-
The partial observatiolV(x) of z is thus further specified by proximating the true posterior probability density of the- u

the model. Note th_at the marginal likelihopde = 1| 7, X) | h5n variables of the model by a function with a restricted
is a constant w.r.tz and can be thus |.gnored. _The Ewdenc_?orm Currently the most common technique is ensemble
approach can be thought of as making a noisy observatq%‘mmg [15], [16], [17], [18] where the Kullback-Leibler

¢ abqutx. The ac'tu'al valgep IS then reconstructed dW'ngdivergence measures the misfit between the approximatidn an
learning by combining prior experiencgxz | H,X) with the true posterior

the evidenceU(x) from the noisy observation. One should In ensemble learning, the posterior approximatigfl) of

pe careful not to mcludg any prior |nformat|on t(z) since the unknown variable8 is required to have a suitably factorial
it would then be taken into account twice. Note also that

U(x) is scaled by a constant, it still produces exactly the same

ev(id2ance. ’ P Y q(6) = H q(6:), )
Morris et al. [14] define soft missing data by fixing a ‘

distribution over each data valug(z) « U(z). A Dirac wheref; denotes a subset of the unknown variables. The misfit

delta function corresponds to a fully observed value, bbetween the true posterip(6 | X) and its approximation(8)

unfortunately a very wide function does not approach a fulig measured by the Kullback-Leibler divergence. An addaio

missing value as will be shown in Section IV-A. In this casderm —In p(X) is included to avoid calculation of the model

the model cannot further specify the partial observatide), evidence termp(X) = [ p(X, 6)d6. The cost function then



has the form [19], [15]
C = D(q(6) || p(6]X)) — In p(X)
= (Ing(0)) — (Inp(X, 0)),

where(-) denotes expectation over the distributigi®). Note
that sinceD(q || p) > 0, it follows that the cost function
provides a lower boung(X) > exp(—C) for the model
evidencep(X).

For each update of the posterior approximatigs; ), the
variablef; requires the prior distributiop(6; | parent$ given
by its parents and the likelihoog(children | 6;, co-parents
obtained from its children. The relevant part of the Kullkac _. .

. . S . Fig. 3. Some x-values of the data are observed only parti@they are
Leibler divergence to be minimised is, up to a ConStaﬂgrked with dotted lines representing their confidence vater Top: A toy

independent of;(6;) data set for a factor analysis problem. Bottom left: In thezEroapproach, the
model needs to adjust to cover the distributions. Bottomtrighthe Evidence
Cla(6)) = (1n
p(

®)

q(ﬁi) approach, the partially observed values are reconstriesed on the model.
0; | parentgp(children| ¢;, co-parents ( ')
6

To make it concrete, let us look at a Gaussian variable no@aussians with fairly large variances that are assumed to be
[4] which is a basic building block for a number of models.known.

A Gaussian variable has two inputsn andv and a cpf ~ The Frozen approach (see Section I) assumes that the data
p(s|m,v) = N(s;m,exp(—v)). The variance is parametrisedis really distributed according to the membership function
this way because then the mean and expected exponential/¢t:(t)) = N(z(t);Z(t),z(t)). Therefore, the model has to
v suffice for computing the cost function. It can be shownover the whole distributions. In the Evidence approactthen
that whens, m andv are mutually independent a posterioripther hand, the posterior distribution (Eq. 1) of the péytia

i.e. g(s,m,v) = q(s)g(m)q(v), Cp(gs(s)) = — (lnp(s|m,v)) observed values can be adjusted based on the model. Figure 3
yields shows the (hypothetical) situation after learning. ThezEro
approach is disturbed by the partially observed valuesredse
Cplq(s)) = %{ (expv) {(<3> — <m>)2 + Var {m} + tne Evidence approach reconstructs them based on the rest of
the data.

+ Var{s}} — (v)+1In 2#} ) When the variancé(t) of a Gaussian membership function
. o ) goes to infinity,U(z(t)) is constant in any finite set. In the
For observed variables this is the only term in the cost fonct £ i400 0 approach, the constant evidence corresponds to a
but for latent variables there is also a te@ipresulting from (fully) missing value. To see what happens in the Frozen

(Ing(s)). Th_ehposterior(?pprpximitiOQ(s) is defi_ned toh.be approach, one can write down the sample variance ofrthe
Gaussian with meas and variance: ¢(s) = N(s;3,3s). This component over the data set

yields

1 _ T
Cila(s)) = —3 In2mes ® Ver(z} = =+ 3" [(#() ~E(2})? +3()] . )
which is the negative entropy of a Gaussian variable with =1
variances. The parameter§ and 5 are optimised during The model has to adjust to account for the variance in the
learning. data. When anyt(¢t) — oo, also the whole sample variance
Var{z} — co. That is, the learning will lead to a degenerate
IV. PHENOMENA WITH PARTIALLY OBSERVEDVALUES  so|ution in which the model for: is unreasonably wide.
This Section gives two examples that illustrate intergstin , )
phenomena that might occur with partially observed valuelé'. Narrow Membership Functions
Both examples concern Gaussian membership functionseln thLet us think about an example of a one-dimensional
first case, the variances are large and a comparison is donésture-of-Gaussians model for data. In case thereladata
the fully missing value. The second case shows how addiggmplesz(1),...,z(T) exactly at the same point, a Gaussian
even the tiniest amount of inaccuracy to the data can makelaster with a meamn = z(1) = --- = z(7") might specialise
difference by getting rid of degenerate solutions. in those samples with a tiny varianeg. Ignoring the rest of
. ) ) the clusters and data samples, the essential likelihoddrfac
A. Wide Membership Functions proportional toT'/o. When the cluster gets narrower,— 0,
Figure 3 depicts an example of two-dimensiofaly) data the posterior density(m,o | H,X) — oo. That is, the
for factor analysis. Factor analysis is a version of priatipsolution is degenerate but it gets an infinitely good scomeN
component analysis (PCA) with a noise model. Some of tlieat the problem occurs even in cage= 1, that is, when
valuesz(t) are only partially observed. Their distributions ar@othing is assumed about the data.
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Fig. 5. The model structure used for the experiments. Each caulesponds
to a matrix of variables. Variance sourcesare used for making the sources
Fig. 4. A model structure representing a single Gaussianeslugth mean sup_er—Gauss_lan. The square node represents an affmeotmaspn with
m containing data samples(1), ..., z(T). On the left, the data points are a weight matrix A and a bias vectob. Hierarchical priors are hidden for
fully observed and on the right, only partially observedeTdark dot at the Claity-

side of a node represents the variance input.

infinitely narrow with no cost. In variational Bayesian leang,
The problem is not that serious when variational Bayesiaescribing the cluster mean with a great accuracy shows up
learning is used instead. Figure 4 depicts the model streictuin the cost. In case there is just one data samyle in the
The cluster mean has a cp¥(m;m,,,exp(—v,)) and a cluster, the advantage in cost is similar to the cost thattwen
posteriorg(m) = N (m;m, m). The cpfs for the data variablesinto describingn well. WhenT > 1, the advantage i#-fold
x(t) areN (z(t); m, exp(—v,)). The essential terms of the costand thus the degenerate solution seems infinitely good. The

function from Equations (7) and (8) are “happy surprise” that the data poinig1),...,z(T) collide
B is as great at all levels of accuracy. But when an explicit
Cla(z,m)) = 3 ({expug)m — (vz)) inaccuracy ofe is introduced, the surprise of data points

_ _ colliding is limited to the level of accuracy An information
5 ((expvg)m —Tnm).  (10)  theoretic point of view [20] to the situation is enlightegin

Solving them to minimize C(q(x, m)) gives
. 1

V. EXPERIMENTS

m = T oxp o) + (op o) (11) A model structure that implements Independent factor
* m analysis (IFA) [16], is depicted in Figure 5 and used for
which is substituted back into (10) to give the experiments. The data vectax$t) are assumed to be
generated from unknown source§t) through an unknown
Cla(a,m)) = linear mapping with noise

1
g L+ In(Texpua) + (expom)) =T ()] (12)  po) | ) = N(x(t); As(t) + b, diag(exp(—v,))), (13)

In caseT > 1, whenw, goes to infinity (corresponding to
0% — 0), the cost goes to negative infinity. This means that
similar degenerate solution, that is rated infinitely gosxsts
in caseT > 1. dist
Let us then assume that the data samples are not exac{Fy
opserved. _Instead, they have a Qaussian membership fanctio  ;(s(¢) | u(t)) = N(s(t); 0, diag(exp(—u(t)))). (14)
with a variancee? > 0. The likelihood term atr does not
change which means that maximum a posteriori learning The variablesA, b, andu(t) have hierarchical priors [9]. The
still prone to the same problem. Variational Bayesian liayn prior of A is sparse (mixture of a Gaussian and a delta function
on the other hand, gets rid of the problem even in cdsesl. at zero) and the other priors are Gaussians.
Figure 4 depicts the model structure with evidence nodes. Th The model is initialised randomly and learned using vari-
posterior ofz(¢) is q(x(t)) = N(z(¢);zZ(t), z(t)) and the cpf ational Bayesian learning. The learning scheme is designed
of an evidence node(t) is p(e(t) | z(t)) = N(e(t); z(t),€%). to minimise the cost functiod in Equation (5) by iterative
Variancesm and z(t) can be solved like in (11) and theupdates, by addition and pruning of weights, and by line
resulting cost is similar to (12) with an additional ternsearch. More details can be found in [21].
(T/2)In({expv,) + €~2). Now the cost approaches positive The first experiment is a comparison of different ways
infinity when v, — oo and thus the degenerate solution nto reconstruct corrupted values, when exact knowledge of
longer exists. the corruption is available. The second experiment shows a
An interpretation of the situation follows. When using &ituation where the learning diverges towards a degenerate
point estimate for the cluster meamn, the cluster can be madesolution. Solution to avoid the problem is given.

wherediag(exp(—v,.))) is a diagonal covariance matrix with
V%lueSeXp applied componentwise to the vectew,, on the
diagonal. The sourcest) have a zero-mean super-Gaussian
ribution generated as a Gaussian with a varying vagianc



Evidence 1 Missing The following observations can be made:

« Evidence: As expected, the Evidence approach was the
best way of reconstructing corrupted values at all corrup-

0.5 o 0.5 ~——r— tion levels. Small corruption leads to accurate reconstruc
I - tions and as the corruption level increases, the Evidence
0 0 setting approaches the Missing setting.
0 0.5 1 0 0.5 1 — X « Missing: The data posteridi) is the same aéAs + b).
- (As+b) The reconstructions are independent of the corruption
Frozen Observed : .
1 level since all the corrupted values were discarded. The

discarded information was so important that the recon-
structions were the worst.

« Frozen: Reconstructions are the second best overall. One
would still need to justify when and why to use the
reconstructions given byAs +b) and not by (x). If
the corruption level increases further, the reconstrastio
become worse than those of the Missing setting.

Fig. 6. Reconstruction error as a function of the amount ofupgion (std). o Observed: Ignoring the corruption mechanism gives the

second worst results. Reconstruction accuracy depends

much on the corruption level.

A. Reconstruction ) )
B. Problem with noiseless data

The first data set consists of 13 different gray-scale nlattura_l_he second data set consists of 13 different diagram-like

images. 1000 samples of 10-by-10-pixel patches are Cho?r%%ges. They have discrete gray-scale values from 0 to 255

randomly. The patches are normalised to zero mean and un|en though mostly they are black and white. Setting 1 has

) . o : Vi
variance. Each pixel has a 10% chance of being corrupted E)a/ added noise, whereas in Setting 2, a tiny amount of

a Gaussian noise with a standard deviation (std) that ISIyeVeféaussian noise with a standard deviation of 0.1 is added to

distributed from 0 to 1. The amount of corruption is assumefl images. After that, figures are normalised to zero-madn a

to be known. That is, in addition to the datdt), the stds =~ . .

R . unit variance. 1000 samples of 6 by 6 image patches are chosen
ve(t) are known. The ICA model initialised with 100 sources . T
. . . randomly. The same ICA-model is used, this time initialised
is learned for 1000 sweeps through the data in four differen .
settings: with an over-complete basis of 50 sources.

. . ] ) ) Figure 7 shows the learning curves for the first 100 sweeps
» Evidence: Evidence approach as defined in Section $hrough the data. In the beginning, the two settings behave
The corrupted data values(;(t) > 0) are marked gimilarly, but after 45 sweeps they start to differ. After010

missing and Gaussian evidence nodes (Eq. 3) are attacB@fbeps, the modelled variance of the data is of the order

to them:p(e;(t) | (1)) = N(ei(t); xi(t), ve,i(t))- 10728 in Setting 1 and the learning is becoming unstable
« Missing: Corrupted values are discarded and treated @$ numerical reasons. The same phenomenon as explained
missing values. in Section IV-B is applying. The learning is diverging towar

« Frozen: Frozen approach as defined in Section Il. Agegenerate solution that is rated infinitely good. Setirig
Gaussian distribution with the given mean and std is fixedaple, even though the original difference in the two sg#ti

over each corrupted data value. was very small.
« Observed: The knowledge about corruption is discardedTpe problem of a degenerate solution is often encountered
and values are treated as observed values. when variances are modelled. As explained in Section IV-B,

The following table shows the root mean square errors ftive problem is not as serious when using variational Bagesia
the reconstruction of corrupted values in different sgiin  learning as when using point estimates, but it still exists.
The solution is to add a tiny amount of noise to the data.
) 031 048 05T 057 Whether it is done by explicitly sampling n_oise_ L_Jsing a

(As + b) 0.34 0.48 0.36 0.38 re_mdom numb_er generator or adding the noise implicitly gisin
either the Evidence or the Frozen approach, makes no real

Both the expectation over the posterior distribution ofadatiifference in results. Explicit sampling is usually the plest
(x(t)) and the conditional probabilityp(x(t) | A,s(t),b)) = and computationally lightest so it has become the standard.
(As(t) + b) are presented, because the Frozen and the Ob-
served settings have the corrupted data directly(:ag))

(the result0.57 is the corruption level). The same results are Some real-world applications for partially observed value
separated into 10 different levels of corruption and shown aould be brought from the fuzzy logic community to machine
curves in Figure 6. Note that the optimal constant predictidearning community. Perhaps the most promising option is to
0 gives the reconstruction errarsince the data is normalised.find some clinical data which would contain information abou

|Evidence Missing Frozen Observed

VI. DISCUSSION



x 10

40 60 80 100

Fig. 7. The behavior of the cost functighduring learning. The diverging
lower curve corresponds to no added noise and the upper tareetiny

amount of added noise. The regular fluctuation is expecterkfliects our
learning process where every tenth iteration is done infardifit manner.
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(1]
(2]
(3]
(4

the inaccuracies. Morris [14] studied speech recognitidth w [5]

soft missing data.

Often, it is known that the data set contains errors, but
it is not known which values are erroneous. This could bé®!

modelled as evidence of evidence. The first evidence noq

would be left latent and its posterior distribution wouldl tee
probability of the corresponding value to be correct or fibe

second evidence node would be observed and it would give
membership function for the first evidence, and through, thafo]

some likelihood factor for the actual data value, too. It lgou

g

be easier to find data for this kind of a model, since it does n[clJ?]

require explicit knowledge of individual errors. Applicats
for outlier detection [22] are already well known.

(11]

Variational Bayesian learning is prone to local minima sp2]
tricks to avoid them during learning are useful. The Gaumssia

evidence node was first used in [13] to keep parts of t

network fixed to initial values until the other parts have

adapted appropriately. The width of the Gaussian evidence
was increased after each iteration until the whole node w;
removed. The persistence of the initialisation could besthu

controlled accurately.

VII. CONCLUSION

17
Partially observed values fill the gap between observed a[nd]
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