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Abstract. In this paper the variational Bayesian method for learminglinear
state-space models introduced by Valpola and Karhunen@@ applied to pre-
diction in the ESTSP’07 time series prediction competitilata set. The data set
is pre-processed by approximately removing the periodiopmment of the data
and the nonlinear state-space model is only learned on sduads. The model
uses multilayer perceptron (MLP) networks to model the imelrities of the sys-
tem which allows the modelling of complex dynamical proesssThe variational
Bayesian learning approach is resistant to overfitting dlod/a comparison of dif-
ferent model structures using the derived lower bound orgimalrlog-likelihood.
The desired predictions are evaluated as the mean of a Mamte & proximation
of the predictive distribution.

1 Introduction

Traditionally, time series prediction is done using modbelsed directly on the past ob-
servations of the time series. Perhaps the two most impai@sses of neural network
based solutions used for nonlinear prediction are feedfohautoregressive neural net-
works and recurrent autoregressive moving average neataforks [10]. However,
instead of modelling the system based on past observatigma)so possible to model
the same information in a more compact form with a stateespaadel [3].

This paper uses the nonlinear state-space model (NSSMjlinted by Valpola and
Karhunen in 2002 [11] to model a time series. The primary gb#ie paper is to apply
this publicly availablé NSSM to the task of time-series prediction as a black box tool

The nonlinearities of both the dynamics and the mapping fitoerstates to obser-
vations are modelled with multilayer perceptron (MLP) n@tks. Training a nonlinear
state-space model is a computationally challenging tagkpaone to overfitting. The
NSSM in [11] uses variational Bayesian learning, which ithtresistant against over-
fitting and computationally effective compared to e.g. siamgomethods.

http://www.cis.hut.fi/projects/bayes/software/



2 Nonlinear State-Space Models by Variational Bayesian L earning

2.1 TheMod€

The variational Bayesian nonlinear state-space modeldated by Valpola and Karhunen
in [11] uses a general nonlinear state-space model for thereationsc(t)

s(t) = g(s(t —1),6g) + m(?) 1)
x(t) = £(s(¢), O¢) + n(t) (2)

with states(¢), Gaussian innovatiom and noisen, and multi-layer perceptron (MLP)
networks to model the nonlineariti€sandg. The functional form of the MLP networks
is given by

g(s(t—1),0g) =s(t — 1)+ Dtanh(Cs(t —1)+c) +d (3)
f(s(t),0¢) = Btanh(As(t) + a) + b, 4)

whereA, B, C, andD are the network weight matrices aadb, ¢, andd are the bias
vectors. Inference and learning in the model can be made mebiable and efficient
than in [11] by using the new linearisation described in [5].

2.2 Variational Bayes

Variational Bayesian learning [7, 2] is based on approxingathe posterior distribu-
tion p(@, S| X, H) with a tractable approximatiogn(@, S|¢), whereX = {x(t)|t =
1,...,T}isthe dataS = {s(t)|t = 1,...,T} are the latent state valugsare the pa-
rameters of the modé¥, and¢ are the (variational) parameters of the approximation.
The approximation is fitted by maximising a lower bound ongiraal log-likelihood

B p(X,S,0|H)
B‘@ 4(5.0]¢)

where(-) denotes expectation over This is equivalent to minimising the Kullback—
Leibler divergencék, (¢||p) between; andp [6, 2].

The posterior approximations for the network weights aras®s, as well as all the
other model parameters except latent states are model@dwessian distributions with
a diagonal covariance. The posterior approximation fotatent states is modelled as a
Gaussian distribution with an almost diagonal covariafi¢e correlation between the
corresponding componenis(t) ands; (¢t — 1) of subsequent state vectors is modelled,
however. This is a realistic minimal assumption for modejlthe dynamical system
and does not increase the computational cost significahtlly [

}mwmm—MM@mmwﬂxmxw>

2.3 Learning

The nonlinear state-space model is learned by numericakimising the bound (5).
This optimisation requires evaluating the value of the liband its gradient with re-
spect to all the variational paramete&s To speed up this optimisation, a conjugate



gradient method is used to update the variational parameténe latent states and the
MLP network weights and biases instead of the heuristicrialyn presented in [11].
The other model parameters are updated as described in [11].

At the beginning of the learning, the network weights andségare initialised to
random values drawn from a Gaussian distribution. The tattates are initialised
to the first principal components of embedded data vectdrs [Io ensure that the
learning does not get stuck in a local minimum early on, thenfestates and the model
hyperparameters are not updated until the network weigtds&ses have converged
to reasonable values. It is also useful to use multiple whffeinitialisations to avoid
local minima.

Modelling noise as part of the state-space model meandthatoddel can filter out
most of the noise in the original data set. Dynamics of thessothed-out observations
are often easier to learn than the dynamics of the origint slet. State-space based
approach can also typically model the system in a more cotripaen than a neural
network model based directly on the past observations.

The variational Bayesian approach also provides a stifaigteird way to perform
model selection. The lower bound on marginal log-likeliidbcan be used as a mea-
sure of model quality between models with different streesuch as different number
of hidden units or different dimensionality of the statesp. Even if there is not enough
data for methods such as cross-validation, this lower baandstill be used to evaluate
relative model quality [11].

3 Timeseriesprediction

Given dataX and background assumptiofi§ the optimal way to make predictions
of an unknown quantity with respect to mean-squared error is to use the mean of the
posterior predictive distributiop(y| X, ) as the point prediction [1].

The easiest way to compute predictions of future obsemstiased on the NSSM
is simply to iterate Equation (1) starting from the posterieean of the latent states
corresponding to the last observed data sample. In soms itasEn be desirable to
ignore the innovation processa(t) (process noise) while doing these computations, as
long predictions can lead to very high variance and the mahres of the predictions
thus converge to the long term mean over very long predictionows.

Even though the same techniques that are used in learnirgjs@be used to com-
pute the predictions, sampling methods typically lead toea@curate inference. Using
the same approximation to evalugi@s(t — 1), 8¢) as in learning consecutively leads to
severe underestimation of predictive variance becauspétaneter®, used in con-
secutive steps would be assumed to be two independent sgtsheugh they are the
same. This is not a problem in learning which only requires-step prediction, but for
accurate long-term prediction the sampling approach isssary.

For this purpose, the state values corresponding to thebkssrved data sample
as well as all the network weights are sampled repeatediy ffee variational poste-
rior approximations, and the relevant predictions arewatald using Egs. (1) and (2)
iteratively. This can be computationally much more demagdhan using the same



procedure as in learning, but in most cases the time reqéoresampling is still in-
significant compared to the training time of the original relod

In more complicated situations than direct prediction dife values, more ad-
vanced inference methods are needed to take into accouatdiiable future observa-
tions. This inference can be made more efficient by the medesdribed in [9]. An
example of this approach is given in [8], where the NSSM dksdrin this paper is
used to make predictions for a cart-pole system and at eahitistant the new latent
states are inferred from the latest observations and thiecfig predicted based on the
model and the control signal.

4 Experiments. Prediction competition

The data set in the experiment was the prediction competitida set for ESTSP'G7
This is a one-dimensional time series with 875 samples. Hite skt appears strongly
periodic with a period of approximately 52 samples. To matadjztion of the time
series easier, the data set is averaged over all the fubge(samples from 1 to 832)
and this average is subtracted from the original data set.

After this preprocessing, a state-space with three dimessivas used to model
the dynamics of the residual time series. A three-dimerdistate-space was chosen
because it resulted in the best value for the bound on mdigigdikelihood 5. Both
the observation MLP network and the dynamical MLP networtt B8 hidden units.
During 400 first iterations of the learning, an embeddedivarsf the data set was used
as described in [11]. The embedded data vectorsas= [x(t) xT(t — 1) xT'(t —

2) xT(t — 4) xT'(t — 8) xT'(t — 16)]T. The latent states were initialised to the three
first principal components of the embedded data vector. &ming of the model took
about three hours on a 2.2 GHz AMD Opteron processor.

A short overview of the preprocessing and prediction atharifor a periodic time
seriesx with lengthT’, an approximated peridf,.,, and a number of full periodd/,.,
can be seen in Table 1.

The predictions made using the sampling method with 100fictes for the next
61 time steps can be seen in Fig. 1. The predictions were catpuith the innovation
process ignored. The prediction length of 61 time steps Wasen so that the data set
with the predictions contains 18 full periods of 52 samplElse reconstruction of the
residual data set based on the model can be seen in Fig. 2afEm $tate-space can
be seen in Fig. 3. As some of the state components appeadlygeaiodic, it is likely
that the period of 52 samples used in preprocessing waglglighorrect. The original
data set may also have contained components with longerdseri

From the Figs. 2 and 3 it is clear that the model of the dynamidbe residual
system has a large associated uncertainty. This is natgr#the residual data set seen
in Fig. 2 is quite hard to predict as it appears to have vetig lfitructure and there is
little data compared to the very broad prior over differentdels. This uncertainty can
also be seen in the predictions of the states that are vesg ttothe long-term mean,
along with large error bars for the first two states. Thesgelarror bars do not affect

2Available at http://estsp2007.org/files/competitidata. txt



Table 1: Prediction algorithm for periodic data.

Learning:

1. Compute the periodic componegt, over the full periods. The periodi
component is given by
Xper (1) = Nie'r‘ Zjvzpir x(mod(i, Tper) + (j — 1) - Tper),
where we definenod(a - n,n) =n

2. Subtract the periodic component from the original datxs&he result-
ing residual data set for ea¢h=1...T is given by
Xres (1) = X(4) — Xper ()

3. Use the NSSM to learn a state-space representation foesitual data
SetX,es

Prediction:

4. Sample the initial state for the predictisfl") and the network parame
ters@, and@ ; from the model learned in step 3

5. Iterate Equations (1) and (2) using the values samplegas

6. Add the periodic component back to the predicted samplgsttthe final
predictions

()

the predictions of the output, as the contribution of thedtstate to it is roughly 1000
times larger than those of the first two.

5 Discussion

The NSSM in [11] has been previously applied to several difffigrediction problems.
One such example is the prediction of the dynamics of a cargylstem consisting of
two Lorenz processes and a harmonic oscillator describgd [nIn [8], the model was
used to predict the dynamics of a cart-pole system and thiégpiens were then used by
a nonlinear model predictive controller. Even though thé&SNSs better suited to mod-
elling higher dimensional systems, it can also be used fatefiog one-dimensional
time series as in this paper.

The state-space model from [11] requires that the data setisly sampled. How-
ever, the recent extension of the model to continuous-tiesetibed in [4] allows the
prediction of unevenly sampled time series as well. Comwtirsstime models also allow
modelling both the short-term and long-term dynamics ofsygtem more easily.

In theory the NSSM could have been used to predict the olligiata set without
any preprocessing. However, with the limited amount of latéé data and a flexible
prior over a large space of possible nonlinear models, tlvetgd have been significant
posterior uncertainty on the dynamics and the global ptistiavould soon have con-
verged to the long-term mean with large variance. In ordexttain more meaningful
predictions, more prior information such as the apparenbgeity of the signal have
to be taken into consideration.
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Fig. 1: Top: The original time series and the predicted 61t tiexe steps. Bottom:

The original time series starting from time instant 800 amel predicted 61 next time
steps. The dotted lines in both figures represent pseudo @mfitlence intervals. Note
that the intervals are smaller than in reality as the vagarazised by the innovation is
ignored.



0 200 400 600 800

-1r

20 200 400 600 800

Fig. 2: Top: The original residual data set. Bottom: The mefthe reconstruction of
the residual data set based on the model and its predicfitresteconstructed data set
is the original data set with the observation noise filtengtd ®he dotted lines represent
pseudo 95 % confidence intervals. The intervals are agaitiesrttzan in reality as the
variance caused by the innovation is ignored.
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Fig. 3: The three dimensional latent state-space. Eachedhtiee components of the
state vector and their predictions are shown in its own figline dotted lines represent
pseudo 95 % confidence intervals. The intervals are agailiesrttean in reality as the
variance caused by the innovation is ignored.



6 Conclusion

In this paper we have applied the variational Bayesian NSB¥alpola and Karhunen [11]
to time series prediction. The prediction results with tf8TEP’07 prediction compe-
tition data set are presented.

Using state-space models for time series prediction hasadyenefits. The use of
latent states allows easy handling of noisy data as the naisee filtered out of the la-
tent states. The state-space also allows creating modgiaftally observed systems,
where some of the observations are not available. Finad{e-space models can usu-
ally represent the dynamics of the model in a more compant than a model based
directly on the past observations. Using variational Beremethods for learning these
NSSMs is both resistant against overfitting and providessa femction which can be
used for model comparison.
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