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Abstract. In this paper the variational Bayesian method for learningnonlinear
state-space models introduced by Valpola and Karhunen in 2002 is applied to pre-
diction in the ESTSP’07 time series prediction competitiondata set. The data set
is pre-processed by approximately removing the periodic component of the data
and the nonlinear state-space model is only learned on the residuals. The model
uses multilayer perceptron (MLP) networks to model the nonlinearities of the sys-
tem which allows the modelling of complex dynamical processes. The variational
Bayesian learning approach is resistant to overfitting and allows comparison of dif-
ferent model structures using the derived lower bound on marginal log-likelihood.
The desired predictions are evaluated as the mean of a Monte Carlo approximation
of the predictive distribution.

1 Introduction

Traditionally, time series prediction is done using modelsbased directly on the past ob-
servations of the time series. Perhaps the two most important classes of neural network
based solutions used for nonlinear prediction are feedforward autoregressive neural net-
works and recurrent autoregressive moving average neural networks [10]. However,
instead of modelling the system based on past observations,it is also possible to model
the same information in a more compact form with a state-space model [3].

This paper uses the nonlinear state-space model (NSSM) introduced by Valpola and
Karhunen in 2002 [11] to model a time series. The primary goalof the paper is to apply
this publicly available1 NSSM to the task of time-series prediction as a black box tool.

The nonlinearities of both the dynamics and the mapping fromthe states to obser-
vations are modelled with multilayer perceptron (MLP) networks. Training a nonlinear
state-space model is a computationally challenging task and prone to overfitting. The
NSSM in [11] uses variational Bayesian learning, which is both resistant against over-
fitting and computationally effective compared to e.g. sampling methods.

1http://www.cis.hut.fi/projects/bayes/software/



2 Nonlinear State-Space Models by Variational Bayesian Learning

2.1 The Model

The variational Bayesian nonlinear state-space model introduced by Valpola and Karhunen
in [11] uses a general nonlinear state-space model for the observationsx(t)

s(t) = g(s(t − 1), θg) + m(t) (1)

x(t) = f(s(t), θf ) + n(t) (2)

with statess(t), Gaussian innovationm and noisen, and multi-layer perceptron (MLP)
networks to model the nonlinearitiesf andg. The functional form of the MLP networks
is given by

g(s(t − 1), θg) = s(t − 1) + D tanh(Cs(t − 1) + c) + d (3)

f(s(t), θf ) = B tanh(As(t) + a) + b, (4)

whereA, B, C, andD are the network weight matrices anda, b, c, andd are the bias
vectors. Inference and learning in the model can be made morereliable and efficient
than in [11] by using the new linearisation described in [5].

2.2 Variational Bayes

Variational Bayesian learning [7, 2] is based on approximating the posterior distribu-
tion p(θ, S|X ,H) with a tractable approximationq(θ, S|ξ), whereX = {x(t)|t =
1, . . . , T} is the data,S = {s(t)|t = 1, . . . , T} are the latent state values,θ are the pa-
rameters of the modelH, andξ are the (variational) parameters of the approximation.
The approximation is fitted by maximising a lower bound on marginal log-likelihood

B =

〈

log
p(X, S, θ|H)

q(S, θ|ξ)

〉

= log p(X|H) − DKL (q(S, θ|ξ)||p(S, θ|X,H)), (5)

where〈·〉 denotes expectation overq. This is equivalent to minimising the Kullback–
Leibler divergenceDKL (q||p) betweenq andp [6, 2].

The posterior approximations for the network weights and biases, as well as all the
other model parameters except latent states are modelled asGaussian distributions with
a diagonal covariance. The posterior approximation for thelatent states is modelled as a
Gaussian distribution with an almost diagonal covariance.The correlation between the
corresponding componentssj(t) andsj(t− 1) of subsequent state vectors is modelled,
however. This is a realistic minimal assumption for modelling the dynamical system
and does not increase the computational cost significantly [11].

2.3 Learning

The nonlinear state-space model is learned by numerically maximising the bound (5).
This optimisation requires evaluating the value of the bound and its gradient with re-
spect to all the variational parametersξ. To speed up this optimisation, a conjugate



gradient method is used to update the variational parameters of the latent states and the
MLP network weights and biases instead of the heuristic algorithm presented in [11].
The other model parameters are updated as described in [11].

At the beginning of the learning, the network weights and biases are initialised to
random values drawn from a Gaussian distribution. The latent states are initialised
to the first principal components of embedded data vectors [11]. To ensure that the
learning does not get stuck in a local minimum early on, the latent states and the model
hyperparameters are not updated until the network weights and biases have converged
to reasonable values. It is also useful to use multiple different initialisations to avoid
local minima.

Modelling noise as part of the state-space model means that the model can filter out
most of the noise in the original data set. Dynamics of these smoothed-out observations
are often easier to learn than the dynamics of the original data set. State-space based
approach can also typically model the system in a more compact form than a neural
network model based directly on the past observations.

The variational Bayesian approach also provides a straightforward way to perform
model selection. The lower bound on marginal log-likelihoodB can be used as a mea-
sure of model quality between models with different structure such as different number
of hidden units or different dimensionality of the state-space. Even if there is not enough
data for methods such as cross-validation, this lower boundcan still be used to evaluate
relative model quality [11].

3 Time series prediction

Given dataX and background assumptionsH, the optimal way to make predictions
of an unknown quantityy with respect to mean-squared error is to use the mean of the
posterior predictive distributionp(y|X,H) as the point prediction [1].

The easiest way to compute predictions of future observations based on the NSSM
is simply to iterate Equation (1) starting from the posterior mean of the latent states
corresponding to the last observed data sample. In some cases it can be desirable to
ignore the innovation processm(t) (process noise) while doing these computations, as
long predictions can lead to very high variance and the mean values of the predictions
thus converge to the long term mean over very long predictionwindows.

Even though the same techniques that are used in learning canalso be used to com-
pute the predictions, sampling methods typically lead to more accurate inference. Using
the same approximation to evaluateg(s(t−1), θg) as in learning consecutively leads to
severe underestimation of predictive variance because theparametersθg used in con-
secutive steps would be assumed to be two independent sets even though they are the
same. This is not a problem in learning which only requires one-step prediction, but for
accurate long-term prediction the sampling approach is necessary.

For this purpose, the state values corresponding to the lastobserved data sample
as well as all the network weights are sampled repeatedly from the variational poste-
rior approximations, and the relevant predictions are evaluated using Eqs. (1) and (2)
iteratively. This can be computationally much more demanding than using the same



procedure as in learning, but in most cases the time requiredfor sampling is still in-
significant compared to the training time of the original model.

In more complicated situations than direct prediction of future values, more ad-
vanced inference methods are needed to take into account theavailable future observa-
tions. This inference can be made more efficient by the methoddescribed in [9]. An
example of this approach is given in [8], where the NSSM described in this paper is
used to make predictions for a cart-pole system and at each time instant the new latent
states are inferred from the latest observations and the future is predicted based on the
model and the control signal.

4 Experiments: Prediction competition

The data set in the experiment was the prediction competition data set for ESTSP’072.
This is a one-dimensional time series with 875 samples. The data set appears strongly
periodic with a period of approximately 52 samples. To make prediction of the time
series easier, the data set is averaged over all the full periods (samples from 1 to 832)
and this average is subtracted from the original data set.

After this preprocessing, a state-space with three dimensions was used to model
the dynamics of the residual time series. A three-dimensional state-space was chosen
because it resulted in the best value for the bound on marginal log-likelihoodB. Both
the observation MLP network and the dynamical MLP network had 20 hidden units.
During 400 first iterations of the learning, an embedded version of the data set was used
as described in [11]. The embedded data vector wasx̂(t) = [xT (t) xT (t − 1) xT (t −
2) xT (t − 4) xT (t − 8) xT (t − 16)]T . The latent states were initialised to the three
first principal components of the embedded data vector. The learning of the model took
about three hours on a 2.2 GHz AMD Opteron processor.

A short overview of the preprocessing and prediction algorithm for a periodic time
seriesx with lengthT , an approximated periodTper and a number of full periodsNper

can be seen in Table 1.
The predictions made using the sampling method with 1000 particles for the next

61 time steps can be seen in Fig. 1. The predictions were computed with the innovation
process ignored. The prediction length of 61 time steps was chosen so that the data set
with the predictions contains 18 full periods of 52 samples.The reconstruction of the
residual data set based on the model can be seen in Fig. 2. The latent state-space can
be seen in Fig. 3. As some of the state components appear clearly periodic, it is likely
that the period of 52 samples used in preprocessing was slightly incorrect. The original
data set may also have contained components with longer periods.

From the Figs. 2 and 3 it is clear that the model of the dynamicsof the residual
system has a large associated uncertainty. This is natural,as the residual data set seen
in Fig. 2 is quite hard to predict as it appears to have very little structure and there is
little data compared to the very broad prior over different models. This uncertainty can
also be seen in the predictions of the states that are very close to the long-term mean,
along with large error bars for the first two states. These large error bars do not affect

2Available at http://estsp2007.org/files/competitiondata.txt



Table 1: Prediction algorithm for periodic data.
Learning:
1. Compute the periodic componentxper over the full periods. The periodic

component is given by
xper(i) = 1

Nper

∑Nper

j=1
x(mod(i, Tper) + (j − 1) · Tper),

where we definemod(a · n, n) = n

2. Subtract the periodic component from the original data set x. The result-
ing residual data set for eachi = 1 . . . T is given by
xres(i) = x(i) − xper(i)

3. Use the NSSM to learn a state-space representation for theresidual data
setxres

Prediction:
4. Sample the initial state for the predictions(T ) and the network parame-

tersθg andθf from the model learned in step 3
5. Iterate Equations (1) and (2) using the values sampled at step 4
6. Add the periodic component back to the predicted samples to get the final

predictions

the predictions of the output, as the contribution of the third state to it is roughly 1000
times larger than those of the first two.

5 Discussion

The NSSM in [11] has been previously applied to several difficult prediction problems.
One such example is the prediction of the dynamics of a complex system consisting of
two Lorenz processes and a harmonic oscillator described in[11]. In [8], the model was
used to predict the dynamics of a cart-pole system and the predictions were then used by
a nonlinear model predictive controller. Even though the NSSM is better suited to mod-
elling higher dimensional systems, it can also be used for modelling one-dimensional
time series as in this paper.

The state-space model from [11] requires that the data set isevenly sampled. How-
ever, the recent extension of the model to continuous-time described in [4] allows the
prediction of unevenly sampled time series as well. Continuous-time models also allow
modelling both the short-term and long-term dynamics of thesystem more easily.

In theory the NSSM could have been used to predict the original data set without
any preprocessing. However, with the limited amount of available data and a flexible
prior over a large space of possible nonlinear models, therewould have been significant
posterior uncertainty on the dynamics and the global prediction would soon have con-
verged to the long-term mean with large variance. In order toattain more meaningful
predictions, more prior information such as the apparent periodicity of the signal have
to be taken into consideration.
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Fig. 1: Top: The original time series and the predicted 61 next time steps. Bottom:
The original time series starting from time instant 800 and the predicted 61 next time
steps. The dotted lines in both figures represent pseudo 95 % confidence intervals. Note
that the intervals are smaller than in reality as the variance caused by the innovation is
ignored.



0 200 400 600 800
−2

−1

0

1

2

3

4

5

0 200 400 600 800
−2

−1

0

1

2

3

4

5

Fig. 2: Top: The original residual data set. Bottom: The meanof the reconstruction of
the residual data set based on the model and its predictions.The reconstructed data set
is the original data set with the observation noise filtered out. The dotted lines represent
pseudo 95 % confidence intervals. The intervals are again smaller than in reality as the
variance caused by the innovation is ignored.
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Fig. 3: The three dimensional latent state-space. Each of the three components of the
state vector and their predictions are shown in its own figure. The dotted lines represent
pseudo 95 % confidence intervals. The intervals are again smaller than in reality as the
variance caused by the innovation is ignored.



6 Conclusion

In this paper we have applied the variational Bayesian NSSM of Valpola and Karhunen [11]
to time series prediction. The prediction results with the ESTSP’07 prediction compe-
tition data set are presented.

Using state-space models for time series prediction has several benefits. The use of
latent states allows easy handling of noisy data as the noisecan be filtered out of the la-
tent states. The state-space also allows creating models for partially observed systems,
where some of the observations are not available. Finally, state-space models can usu-
ally represent the dynamics of the model in a more compact form than a model based
directly on the past observations. Using variational Bayesian methods for learning these
NSSMs is both resistant against overfitting and provides a cost function which can be
used for model comparison.
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