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Abstract - We propose a new method for learning
a nonlinear dynamical state-space model in unsuper-
vised manner. The proposed method can be viewed
as a nonlinear dynamic generalization of standard
linear blind source separation (BSS) or independent
component analysis (ICA). Using ensemble learning,
the method finds a nonlinear dynamical process which
can explain the observations. The nonlinearities are
modeled with multilayer perceptron networks. In en-
semble learning, a simpler approximative distribution
is fitted to the true posterior distribution by mini-
mizing their Kullback-Leibler divergence. This also
regularizes the studied highly ill-posed problem. In
an experiment with a difficult chaotic data set, the
proposed method found a much better model for the
underlying dynamical process and source signals used
for generating the data than the compared methods.

I. Introduction

The nonlinear state-space model (NSSM) is a very gen-
eral and flexible model for time series data. The obser-
vation vectors x(t) are assumed to be generated from the
hidden source vectors s(t) of a dynamical system through
a nonlinear mapping f according to Eq. (1):

x(t) = f(s(t)) + n(t) (1)

s(t) = g(s(t− 1)) + m(t) (2)

The sources follow the nonlinear dynamics g defined by
Eq. (2). The terms n(t) and m(t) account for modeling
errors and noise.

We propose an unsupervised method for learning non-
linear state-space models (1)-(2). Multi-layer perceptron
(MLP) networks [1] are used to model the unknown non-
linear mappings f and g, and the noise terms are assumed
to be Gaussian. The MLP network provides an effi-
cient parameterization for mappings in high-dimensional
spaces, and it is a universal approximator for smooth

functions. Similar models using a radial-basis function
network [1] as nonlinearity have been proposed in [2], [3]
and using an MLP network in [4].

In general, the nonlinear dynamical reconstruction
problem addressed in this paper is severely ill-posed [5].
A wide variety of nonlinear transformations can be ap-
plied to the sources and then embedded in the functions
f and g, keeping the predictions unchanged. In this
work, we apply ensemble learning to learn the parameters
and hidden sources or states of the nonlinear state-space
model. Ensemble learning is a recently developed practi-
cal method for fitting a parametric approximation to the
exact posterior probability density function [6], [7]. We
show how ensemble learning can be used to regularize
the dynamical reconstruction problem by restricting the
complexity of the posterior structure of the solution.

The proposed method is a nonlinear dynamical gener-
alization of standard linear blind source separation (BSS)
and independent component analysis (ICA) [8]. Sev-
eral authors have recently applied ensemble learning or
closely related Bayesian methods to the linear ICA prob-
lem [9], [10], [11], [12]. We have previously used ensem-
ble learning also for nonlinear ICA [13], and shown how
the approach can be extended for nonlinear dynamical
models using nonlinear state-space models [14], [15]. A
general discussion of nonlinear ICA and BSS with many
references can be found in Chapter 17 of [8].

Even though the method presented in this paper can
be regarded as a generalization of ICA, the recovered
sources need not be independent. Our method tries to
find the simplest possible explanation for the data, and
hence avoids unnecessary dependencies between the re-
covered sources. If the process being studied cannot be
described as a composition of one-dimensional indepen-
dent processes, the method tries to split it to as small
pieces as possible, as will be seen in the example in Sec-
tion III.



II. Ensemble learning for the NSSM

This section briefly outlines the model and learning
algorithm. A thorough presentation can be found in [16].

A. Model structure

The unknown nonlinear mappings f and g in (1) and (2)
are modeled by multilayer perceptron (MLP) networks
having one hidden layer of sigmoidal tanh nonlinearities.
The function realized by the network can be written in
vector notation as

f(s) = B tanh(As + a) + b (3)

where the tanh nonlinearity is applied componentwise.
A and B are the weight matrices and a and b the bias
vectors of the network. The function g has a similar
structure except that the MLP network is used to model
only the change in the source values:

g(s) = s + D tanh(Cs + c) + d (4)

The noise terms n(t) and m(t) are assumed to be Gaus-
sian and white, so that the values at different time in-
stants and different components at the same time instant
are independent. Let us denote the observation set by
X = (x(1), . . . ,x(T )), source set by S = (s(1), . . . , s(T ))
and all the model parameters by θ. The likelihood of the
observations defined by the model can then be written as

p(X|S,θ) =
∏

i,t

p(xi(t)|s(t),θ)

=
∏

i,t

N(xi(t); fi(s(t)), exp(2vi))
(5)

where N(x; µ, σ2) denotes a Gaussian distribution over
x with mean µ and variance σ2, fi(s(t)) denotes the ith
component of the output of f , and vi is a hyperparameter
specifying the noise variance. The probability p(S|θ) of
the sources S is specified similarly using the function
g. All the parameters of the model have hierarchical
Gaussian priors. For example the noise parameters vi of
different components of the data share a common prior
[13], [16].

The parameterization of the variances through exp(2v)
where v ∼ N(α, β) corresponds to log-normal distribu-
tion of the variance. The inverse gamma distribution
would be the conjugate prior in this case, but log-normal
distribution is close to it, and it is easier to build a hier-
archical prior using log-normal distributions than inverse
gamma distribution.

B. Posterior approximation and regularization

The goal of ensemble learning is to fit a parametric ap-
proximating distribution q(θ,S) to the true posterior
p(θ,S|X). The misfit is measured by the Kullback-
Leibler divergence between the approximation and the
true posterior:

D(q(S,θ)||p(S,θ|X)) = Eq(S,θ)

[
log

q(S,θ)

p(S,θ|X)

]
(6)

where the expectation is calculated over the approxima-
tion q(S,θ). The Kullback-Leibler divergence is always
nonnegative. It attains its minimum of zero if and only
if the two distributions are equal.

The posterior distribution can be written as
p(S,θ|X) = p(S,θ,X)/p(X). The normalizing term
p(X) cannot usually be evaluated, and the actual cost
function used in ensemble learning is thus

C = E

[
log

q(S,θ)

p(S,θ,X)

]

= D(q(S,θ)||p(S,θ|X))− log p(X) ≥ − log p(X).

(7)

Usually the joint probability P (S,θ,X) is a product of
simple terms due to the definition of the model. In this
case p(S,θ,X) = p(X|S,θ)p(S|θ)p(θ) can be written
as a product of univariate Gaussian distributions.

The cost function can be minimized efficiently if a suit-
ably simple factorial form for the approximation is cho-
sen. We use q(θ,S) = q(θ)q(S), where q(θ) =

∏
i q(θi)

is a product of univariate Gaussian distributions. Hence
the distribution for each parameter θi is parameterized
by its mean θi and variance θ̃i. These are the variational
parameters of the distribution to be optimized.

The approximation q(S) takes into account posterior
dependences between the values of sources at consecutive
time instants. The approximation can be written as a
product q(S) =

∏
i [q(si(1))

∏
t q(si(t)|si(t− 1))]. The

value si(t) depends only on si(t − 1) at previous time
instant, not on the other sj(t − 1) with j 6= i. The
distribution q(si(t)|si(t − 1)) is a Gaussian with mean
that depends linearly on the previous value as in µi(t) =
si(t) + s̆i(t−1, t)(si(t−1) - si(t−1)), and variance

◦
si(t).

The variational parameters of the distribution are si(t),
s̆i(t− 1, t) and

◦
si(t).

A positive side-effect of the restrictions on the approxi-
mating distribution q(S,θ) is that the nonlinear dynam-
ical reconstruction problem is regularized and becomes
well-posed. With linear f and g, the posterior distribu-
tion of the sources S would be Gaussian, while nonlinear
f and g result in non-Gaussian posterior distribution.
Restricting q(S) to be Gaussian therefore favors smooth



mappings and regularizes the problem. This still leaves a
rotational ambiguity which is solved by discouraging the
posterior dependences between si(t) and sj(t − 1) with
j 6= i.

C. Evaluating the cost function and updating the param-
eters

The parameters of the approximating distribution are op-
timized with gradient based iterative algorithms. Dur-
ing one sweep of the algorithm all the parameters are
updated once, using all the available data. One sweep
consists of two different phases. The order of the com-
putations in these two phases is the same as in standard
supervised back-propagation [1] but otherwise the algo-
rithm is different. In the forward phase, the distributions
of the outputs of the MLP networks are computed from
the current values of the inputs, and the value of the cost
function is evaluated. In the backward phase, the par-
tial derivatives of the cost function with respect to all
the parameters are fed back through the MLPs and the
parameters are updated using this information.

When the cost function (7) is written for the model de-
fined above, it splits into a sum of simple terms. Most of
the terms can be evaluated analytically. Only the terms
involving the outputs of the MLP networks cannot be
computed exactly. To evaluate those terms, the distri-
butions of the outputs of the MLPs are calculated using
a truncated Taylor series approximation for the MLPs.
This procedure is explained in detail in [13], [16]. In the
feedback phase, these computations are simply inverted
to evaluate the gradients.

Let us denote the two parts of the cost function (7)
arising from the denominator and numerator of the
logarithm respectively by Cp = Eq[− log p] and Cq =
Eq[log q]. The term Cq is a sum of negative entropies
of Gaussians, and has the form

Cq =
∑

i

−
1

2
[1 + log(2πθ̃i)] +

∑

t,i

−
1

2
[1 + log(2π

◦
si(t))].

(8)
The terms in the corresponding sum for Cp are somewhat
more complicated but they are also relatively simple ex-
pectations over Gaussian distributions [13], [14], [16].

An update rule for the posterior variances θ̃i is ob-
tained by differentiating (7) with respect to θ̃i, yielding
[13], [16]

∂C

∂θ̃i

=
∂Cp

∂θ̃i

+
∂Cq

∂θ̃i

=
∂Cp

∂θ̃i

−
1

2θ̃i

(9)

Equating this to zero yields a fixed-point iteration:

θ̃i =

[
2
∂Cp

∂θ̃i

]−1

(10)

The posterior means θi can be estimated from the ap-
proximate Newton iteration [13], [16]

θi ← θi −
∂Cp

∂θi

[
∂2C

∂θ
2

i

]−1

≈ θi −
∂Cp

∂θi

θ̃i (11)

The posterior means si(t) and variances
◦
si(t) of the

sources are updated similarly. The update rule for the
posterior linear dependences s̆i(t−1, t) is also derived by
solving the zero of the gradient [14], [16].

D. Learning scheme

In general the learning proceeds in batches. After each
sweep through the data the distributions q(S) and q(θ)
are updated. There are slight changes to the basic
learning scheme in the beginning of training. The hy-
perparameters governing the distributions of other pa-
rameters are not updated to avoid pruning away parts
of the model that do not seem useful at the moment.
The data is also embedded to have multiple time-shifted
copies to encourage the emergence of sources represent-
ing the dynamics. The embedded data is given by
zT (t) = [xT (t − d), . . . ,xT (t + d)] and it is used for the
first 500 sweeps.

At the beginning, the posterior means of most of the
parameters are initialized to random values. The pos-
terior variances are initialized to small constant values.
The posterior means of the sources s(t) are initialized
using a suitable number of principal components of the
embedded data z(t). They are frozen to these values for
the first 50 sweeps, during which only the MLP networks
f and g are updated. Updates of the hyperparameters
begin after the first 100 sweeps.

III. Experimental results

The dynamical process used to test the NSSM method
was a combination of three independent dynamical sys-
tems. The total dimension of the state space was eight;
the eight original source processes are shown in Fig. 1a.
Two of the dynamical systems were independent Lorenz
systems, each having a three-dimensional nonlinear dy-
namics. The third dynamical system was a harmonic
oscillator which has a linear two-dimensional dynamics.
The three uppermost source signals in Figure 1a corre-
spond to the first Lorenz process, the next three sources
correspond to the second Lorenz process, and the last
two ones to the harmonic oscillator.



The 10-dimensional data vectors x(t) used in learning
are depicted in Fig. 1c. They were generated by non-
linearly mixing the five linear projections of the original
sources shown in Fig. 1b, and then adding some Gaus-
sian noise. The standard deviations of the signal and
noise are 1 and 0.1, respectively. The nonlinear mixing
was carried out using an MLP network having randomly
chosen weights and using sinh−1 nonlinearity. The same
mixing was used in one of the experiments in [13]. The
dimension of the original state space was reduced to five
in order to make the problem more challenging. Now the
dynamics of the observations is needed to reconstruct the
original sources as only five out of eight dimensions are
visible instantaneously.

The posterior means of the sources of the estimated
process after 1,000,000 sweeps are shown in Fig. 1d to-
gether with a predicted continuation. This can be com-
pared with the continuation of the original process in
Fig. 1a. Figure 2 shows a three-dimensional plot of
the state trajectory of one of the original Lorenz pro-
cesses (top) and the corresponding plot for the estimated
sources of the same process (bottom). Note that the
MLP networks modeling f and g could have represented
any rotation of the source space. Hence separation of the
independent processes results only from the form of the
posterior approximation.

The quality of the estimate of the underlying process
was tested by studying the prediction accuracy for new
samples. It should be noted that since the Lorenz pro-
cesses are chaotic, the best that any method can do is to
capture its general long-term behavior - exact numerical
prediction is impossible.

The proposed approach was compared to nonlinear au-
toregressive (NAR) model which makes the predictions
directly in the observation space:

x(t) = h(x(t− 1), . . . ,x(t− d)) + n(t). (12)

The nonlinear mapping h(·) was again modeled by an
MLP network, but now standard back-propagation was
applied in learning. The best performance was given by
an MLP network with 20 inputs and one hidden layer of
30 neurons, and the number of delays was d = 10. The
dimension of the inputs to the MLP network h(·) was
compressed from 100 to 20 using standard PCA. Figure 3
shows the results, averaged over 100 Monte Carlo simula-
tions. The results of the NSSM are from several different
simulations that used different initializations. At each
stage, the one with the smallest cost function value was
chosen. Low cost function values seem to correlate with
good prediction performance even though this would not
necessarily have to be so.

After the first 7500 sweeps the NSSM method was

roughly comparable with the NAR-based method in pre-
dicting the process x(t). The performance improved con-
siderably when learning was continued. The final predic-
tions given by NSSM after 1,000,000 sweeps are excel-
lent up to the time t = 1013 and good up to t = 1022,
while the NAR method is quite inaccurate already after
t ≥ 1003. Here the prediction started at time t = 1000.
We have also experimented with recurrent neural net-
works, which provide slightly better results than the
NAR model but significantly worse than the proposed
NSSM method.
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Fig. 2. The original sampled Lorenz process (top) and the
corresponding three components of the estimated process
(bottom).

IV. Discussion

The NSSM method is in practice able to learn up to
about 15-dimensional latent spaces. This is clearly more
than many other methods can handle. Currently learn-
ing requires a lot of computer time, taking easily days.
Finding means to speed up it is therefore an important
future research topic. The block approach presented in
[17] has smaller computational complexity, and it could
help to reduce the learning time, but we have not yet
tried it with a NSSM.

The proposed method has several potential applica-
tions. In addition to the experiments reported here, es-
sentially the same method has already been successfully
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Fig. 1. a) The eight source signals s(t) of the three original dynamical processes. b) The five linear projections of the sources.

c) The 1000 ten dimensional data vectors x(t) generated by mixing the projection b) nonlinearly and adding noise. d)
The states of the estimated process (t ≤ 1000) and predicted continuation (t > 1000). They can be compared with the
original process and its continuation in a).
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Fig. 3. The average cumulative squared prediction error for
the nonlinear autoregressive (NAR) model (solid line with
dots) and for our dynamic algorithm with different num-
bers of sweeps.

applied to detecting changes in the modeled process in
[18] and to analyzing magnetoencephalographic (MEG)
signals measured from the human brain in [19].
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