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SUMMARY

Blind separation of sources from their linear mixtures is a
well understood problem. However, if the mixtures are nonlinear,
this problem becomes generally very difficult. This is because
both the nonlinear mapping and the underlying sources must
be learned from the data in a blind manner, and the problem
is highly ill-posed without a suitable regularization. In our ap-
proach, multilayer perceptrons are used as nonlinear generative
models for the data, and variational Bayesian (ensemble) learn-
ing is applied for finding the sources. The variational Bayesian
technique automatically provides a reasonable regularization of
the nonlinear blind separation problem. In this paper, we first
consider a static nonlinear mixing model, with a successful ap-
plication to real-world speech data compression. Then we dis-
cuss extraction of sources from nonlinear dynamic processes, and
detection of abrupt changes in the process dynamics. In a dif-
ficult test problem with chaotic data, our approach clearly out-
performs currently available nonlinear prediction and change de-
tection techniques. The proposed methods are computationally
demanding, but they can be applied to blind nonlinear problems
of higher dimensions than other existing approaches.

1. Nonlinear blind source separation

Blind separation of sources (BSS) from their linear mix-
tures is a well-established problem with many suggested
solutions; for a review, see [12]. One of the natural ex-
tensions of linear BSS is nonlinear blind source sepa-
ration, in which a collection of nonlinear combinations
of unknown source signals, possibly with additive noise,
are observed and the problem is to estimate the sources
from them. Such a problem setting has important ap-
plications in many cases where it is unreasonable to
assume that the mixtures are linear, because the under-
lying natural processes are inherently nonlinear. Exam-
ples can be found in speech, biomedical, industrial, or
financial time series processing. Many kinds of nonlin-
earities may turn these into nonlinear mixing problems,
and any linear separation technique such as linear in-
dependent component analysis (ICA) then fails to find
the sources.

As an example, consider a speech signal, which can
be characterized by a source emitted by vocal chords
and a transformation due to the vocal tract. A natural
representation of the speech signal consists of param-
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eters describing the states of the vocal chords on one
hand and the vocal tract on the other hand. To some
extent, these parameters are independent of each other.
In the common preprosessing for speech recognition, a
spectrogram is computed from the observed speech sig-
nal. The observed spectrum depends nonlinearly on the
parameters of vocal chords and the vocal tract, and it
might be possible to find the sources from it using non-
linear BSS.

During the past few years, several authors have
tried to generalize linear ICA and BSS for nonlinear
data models. For details and references on nonlinear
BSS, see Chapter 17 of the book [12]. It turns out
that nonlinear BSS is inherently much more difficult
than the linear case. In particular, the nonlinear ICA
problem is highly non-unique [12], [13], [19]. Contrary
to linear ICA, it is always possible to find statistically
independent factors from any multivariate density, if
the mixing model is allowed to be a nonlinear function.
Thus, suitable regularizing constraints must be used to
make the problem well-posed. Other problems appear-
ing in most of the current nonlinear BSS methods are
that their computational load often grows exponentially
with the dimensionality, limiting their use to small scale
problems, and the mixture model is often restricted to
some special case such as post-nonlinear mixtures [20],
in which only the sensor nonlinearities are taken into
account but the mixture itself is linear.

In the following, we review our approach of un-
supervised variational Bayesian (ensemble) learning in
nonlinear blind source separation of static and dynamic
mixtures. This approach alleviates many of the prob-
lems of nonlinear BSS: the fully Bayesian treatment
guarantees a natural regularization by controlling the
complexity of both the sources and the nonlinear mix-
ing mapping. The computational load does not grow
strongly with the size of the problem, making it possible
to solve larger models.

To phrase the nonlinear BSS problem, let us de-
note by x(t) the vector whose elements are the observed
signals xi(t), i = 1, . . . , n, by s(t) the vector whose ele-
ments are the source signals sj(t), j = 1, . . . , m, and by
n(t) the additive noise vector. The general data model
assumed in nonlinear BSS is then

x(t) = f(s(t)) + n(t) (1)
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where f is a nonlinear mapping from the source signals
to the observed signals. The dimensions of the vectors
s(t) and x(t) are generally different, and often the di-
mensionality of s(t) is smaller. The term “blind” refers
to the fact that both the source signals, the nonlinear
mapping, and the noise are unknown.

The nonlinear function f can in principle be arbi-
trary. A relevant question is the identifiability of the
model (1), that is, under what conditions is it pos-
sible to do the separation, knowing only the outputs
x(t). This question cannot be answered in the gen-
eral case [19]. For post-nonlinear mixtures, which are a
rather mild extension of the linear model, separability
can be analyzed theoretically [20]. In the general case,
we have to resort to approximations. Instead of solving
the ”true” nonlinearity, our variational Bayesian learn-
ing principle attempts at finding a compact nonlinear
representation for the observations. The function f is
then modelled as an MLP network.

The nonlinear BSS problem cannot be solved un-
less some assumptions are made on the sources s(t).
In this paper, we shall consider mainly two cases. In
the static case, the source signals si(t) are assumed to
be Gaussian, and the noise vector n(t) corrupting the
observations or representing the modeling errors is as-
sumed to be zero mean Gaussian. The model (1) is
then a nonlinear generalization of standard linear fac-
tor analysis [12]. Therefore, the Bayesian method based
on it is called Nonlinear Factor Analysis (NFA).

The components of the source vectors s(t) found by
the NFA method are generally statistically dependent
because their distributions are taken to be Gaussian. In
fact, the Nonlinear Factor Analysis method provides a
useful nonlinear generalization of linear principal com-
ponent analysis (PCA). For finding roughly statistically
independent source signals, the source vectors s(t) are
rotated using an efficient linear ICA algorithm such as
FastICA [12]. This usually already provides reasonably
good and physically meaningful nonlinear independent
components.

For improving the quality of the nonlinear indepen-
dent components further, the Nonlinear Independent
Factor Analysis (NIFA) method can be used, which em-
ploys the mixture-of-Gaussians model for the sources
[15]. Using NIFA, it is possible to approximate suf-
ficiently well any well-behaving non-Gaussian source
distributions. However, the NIFA method improves in
practice the achieved separation results only a little,
while making the learning process more complicated
[12], [15]. For this reason, we adopt the simpler Gaus-
sian source model in this paper.

Another, more complex source model which we
consider in more detail in this paper is the Nonlinear
Dynamic Factor Analysis (NDFA) model, introduced
by one of the authors in [21]. There the source signals
in (1) are further assumed to follow nonlinear dynamics
according to the state-space model

s(t) = g(s(t− 1)) + m(t) (2)

Here g is another unknown nonlinear function control-
ling the state dynamics. The Gaussian error or noise
vector m(t) has zero mean and it is independent of s(t).
Due to the recursive dynamic model (2), the source sig-
nals sj(t) in NDFA are generally not independent. This
is a reasonable assumption if the sources are the state
space coordinates of some physical multivariate dynam-
ical state.

The nonlinear dynamic state-space model de-
scribed by Eqs. (1)-(2) is a very general and flexible
model for time series data. The price that one has to
pay for this flexibility is that the nonlinear dynamic
BSS problem for this model is severely ill-posed [9].
A wide variety of nonlinear transformations can be ap-
plied to the sources and then embedded in the functions
f and g, keeping the predictions unchanged. However,
variational Bayesian learning used in the NDFA method
provides a useful regularization of the problem by re-
stricting the complexity of separated sources and esti-
mated mappings. General information on this kind of
dynamic models and their estimation methods can be
found in the references [3], [8], [9].

The remainder of this paper is organized as fol-
lows. In the next section, we first briefly introduce
variational Bayesian learning, and then overview the
theory of the NFA method. Experimental results for
nonlinear factor analysis of speech data are given in
Section 3. The extension to dynamic state-space model
is discussed briefly in Section 4, with some experimen-
tal results on predicting chaotic Lorenz processes. In
the last Section 4.4, we explain how the NDFA method
for dynamic nonlinear BSS can be applied to detection
of abrupt changes in process dynamics, comparing it
with existing standard techniques.

Due to the space limitations, we must content our-
selves in this paper with an overall description of the
developed methods. More information on the details
and refinements of the learning procedure, on poten-
tially appearing problems, and experimental results can
be found in [15], [21] for the static case, and in [21], [23]
for the dynamic case. First results on detection of pro-
cess state changes using the NDFA method have been
presented in a recent conference paper [14].

2. Variational Bayesian learning for nonlinear

BSS: the Nonlinear Factor Analysis method

2.1 Variational Bayesian learning

According to the Bayesian estimation and modeling
philosophy, the posterior probability density function
(pdf) of the unknown variables in a given model con-
tains all the relevant information needed for further in-
ference. The available prior information can be easily
incorporated by modeling it using suitable prior dis-
tributions, and one can also select the most probable
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model for the data from the chosen model family. If the
prior information and the model family describe appro-
priately the problem under study, excellent results can
be obtained.

In practical problems, exact treatment of the pos-
terior pdf’s is not possible. Therefore, some suit-
able approximation method must be used. Varia-
tional Bayesian learning [10], [16] is a recently devel-
oped method for parametric approximation of posterior
pdf’s. The basic idea in variational Bayesian learning
is to approximate the true posterior pdf by a simpler
function with restricted form. The method is fairly in-
sensitive to overfitting, because the approximation is
fitted to the probability mass of the true posterior pdf
instead of finding some point estimate such as the peak
of the posterior pdf.

Consider now application of variational Bayesian
learning to the nonlinear BSS model (1). Denote by
X = {x(t)|t} the set of available data (mixture) vec-
tors, by S = {s(t)|t} the respective source vectors, and
by θ all the unknown parameters of the data model.
Furthermore, p(S, θ|X) denotes the exact posterior pdf
of the unknown sources and parameters, and q(S, θ) its
parametric approximation. In the version of variational
Bayesian learning called ensemble learning, the misfit
between the approximation and the true posterior is
given by the Kullback-Leibler divergence

CKL =

∫

S

∫

θ

q(S, θ) ln
q(S, θ)

p(S, θ|X)
dθdS (3)

which measures the difference in the probability mass
between the pdf’s p and q. The minimum value 0 of
the Kullback-Leibler divergence is achieved if and only
if the two densities are the same.

The posterior distribution can be written as
p(S, θ|X) = p(S, θ,X)/p(X). The normalizing term
p(X) cannot usually be evaluated, and therefore the
actual cost function is

C = CKL − ln p(X)

=

∫

S

∫

θ

q(S, θ) ln
q(S, θ)

p(S, θ,X)
dθdS

(4)

The cost function (4) can also be used for model selec-
tion as explained in [16]. In the nonlinear BSS prob-
lem, it provides the necessary regularization. For each
source signal and parameter, its posterior pdf is esti-
mated instead of some point estimate. In many cases,
an appropriate point estimate is given by the mean of
the posterior pdf of the desired quantity, and the re-
spective variance measures the confidence of this esti-
mate.

Several authors have recently applied variational
or closely related Bayesian methods to linear BSS and
ICA models, see for example [1], [4], [6], [11], [17]. Our
work differs from these approaches in that a more gen-
eral nonlinear data model is assumed, and it is further

extended to nonstationary dynamic state-space models.
Bayesian techniques for learning the state-space model
(1)-(2) have recently been introduced in [2], [5].

2.2 MLP network model

We use the well-known multilayer perceptron (MLP)
network [8] for parameterizing the nonlinear mapping
f in (1). MLP suits well to modeling both strong and
mild nonlinearities. The MLP network model for f is

f(s(t)) = Btanh[As(t) + a] + b (5)

where A and B are the weight matrices of the hid-
den and output layers, and a and b the corresponding
bias vectors. The sigmoidal tanh nonlinearity is applied
componentwise to its argument vector.

The parameters of the model, or elements of θ are:
(1) the weight matrices A and B and the bias vectors a

and b; (2) the variances of the observation noise, source
signals and column vectors of the weight matrices; and
(3) the hyperparameters used for defining the distri-
butions of the biases and the parameters in the group
(2).

Since noise terms n(t) and m(t) are assumed to
be Gaussian and white, their values at different time
instants and different components at the same time in-
stant are independent. The likelihood of the observa-
tions x(t) defined by the model (1) can then be written
as

p(X|S, θ) =
∏

i,t

p(xi(t)|s(t), θ)

=
∏

i,t

N(xi(t); fi(s(t)), exp(2vi))
(6)

where N(x; µ, σ2) denotes a Gaussian distribution over
x with mean µ and variance σ2, fi(s(t)) denotes the ith
component of the output of the nonlinearity f , and vi

is a parameter specifying the noise variance. The vari-
ances are parameterized using the exponential function
exp(2v) where v ∼ N(α, β), because this makes it easier
to build hierarchical models for the prior distributions.

All the parameters of the model have hierarchical
Gaussian priors. For example the noise parameters vi

of different components of the data share a common
prior. The pdf’s of the parameters of the model (5) are
all Gaussian, and they have been specified in [15], [23].

2.3 Computation of the cost function

Denote the two parts of the cost function (4) arising
from the denominator and numerator of the logarithm
by

Cq =

∫

S

∫

θ

q(S, θ) ln q(S, θ)dθdS (7)

Cp = −

∫

S

∫

θ

q(S, θ) ln p(S, θ,X)dθdS (8)
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For evaluating the cost function C = Cq + Cp, we need
two things: the exact formulation of the joint proba-
bility density p(S, θ,X), and the functional form of the
approximation q(S, θ).

Usually the joint pdf p(S, θ,X) is a product of sim-
ple terms due to the definition of the model. The joint
pdf can be written

p(S, θ,X) = p(X|S, θ)p(S|θ)p(θ) (9)

The pdf p(X|S, θ) has already been evaluated in (6),
and the pdf’s p(S|θ) and p(θ) are also products of uni-
variate Gaussian distributions. They can be obtained
directly from the model structure [15], [23]. Note that
S is not independent of θ, because θ also contains the
parameters of the source distributions.

The cost function can be minimized efficiently if a
suitably simple factorial form for the approximation is
chosen. We use q(θ,S) = q(θ)q(S), where

q(θ) =
∏

i

q(θi) =
∏

i

N(θi; θi, θ̃i) (10)

is the product of Gaussian posterior pdf approxima-

tions N(θi; θi, θ̃i) of each parameter θi. The distri-
bution q(S) is a similar product of Gaussian terms
N(si(t); s̄i(t), s̃i(t)). The total cost C is then a function

of all these means and variances θi, θ̃i, s̄i(t), s̃i(t).
The part Cq of the cost function in (7) is now a

sum of negative entropies of Gaussians, and it has the
exact form [15], [23]

Cq =
∑

i

−
1

2
[1 + ln(2πθ̃i)] +

∑

t,i

−
1

2
[1 + ln(2πs̃i(t))]

(11)
Evaluation of the cost Cp arising from the data

is somewhat more complicated. However, the cost Cp

also splits into a sum of simple terms, and most of them
can be evaluated analytically. Only the terms involving
the outputs f(s(t)) of the MLP network (5) cannot be
computed exactly. These terms can be approximated
by using a truncated Taylor series for f(s(t)). This is
explained in detail in [15], [23].

2.4 Updating the parameters and sources

The parameters of the approximating distribution are
optimized with gradient based iterative algorithms.
During one epoch or sweep of the algorithm all the pa-
rameters are updated once, using all the available data.
One sweep consists of two different phases. The order
of the computations in these two phases is the same
as in one epoch of the standard back-propagation algo-
rithm for MLP networks [8], but otherwise the learn-
ing procedure is quite different. The most important
differences are that in the NFA method learning is un-
supervised, the cost function is different, and unknown
variables are characterized by distributions instead of

point estimates.
In the forward phase, the distributions of the out-

puts of the MLP networks are computed from the cur-
rent values of the inputs. The value of the cost function
is also evaluated as explained in the previous subsec-
tion. In the backward phase, the partial derivatives
of the cost function with respect to all the parameters
are fed back through the MLP and the parameters are
updated using this information.

An update rule for the posterior variances θ̃i is ob-

tained by differentiating (4) with respect to θ̃i, yielding
[15], [23]

∂C

∂θ̃i

=
∂Cp

∂θ̃i

+
∂Cq

∂θ̃i

=
∂Cp

∂θ̃i

−
1

2θ̃i

(12)

Equating this to zero yields a fixed-point iteration:

θ̃i =

[
2
∂Cp

∂θ̃i

]−1

(13)

The posterior means θi can be estimated from the ap-
proximate Newton iteration [15], [23]

θi ← θi −
∂Cp

∂θi

[
∂2C

∂θ
2

i

]−1

≈ θi −
∂Cp

∂θi

θ̃i (14)

After each sweep through the data, the posterior pdf
approximation q(θ) is updated. The pdf q(S) is up-
dated in a similar fashion.

2.5 Overall learning procedure

The learning procedure is somewhat different in the
beginning of training. The hyperparameters governing
the distributions of other parameters are not updated,
to avoid pruning away parts of the model that do not
seem useful at the moment. The posterior means of
most of the parameters are initialized to random val-
ues. The posterior variances are initialized to small
constant values. The posterior means of the sources
s(t) are initialized using a suitable number of principal
components of the entire data set X. They are kept
fixed to these values for the first 50 sweeps when only
the MLP network f is updated. Updates of the hyper-
parameters begin after the first 100 sweeps.

The learning is continued until convergence. In
variational Bayesian learning, there is no danger of
over-learning, so in principle the ”optimal” number of
learning steps is infinite. In some cases, like the exam-
ple in Section 4.2, the actual number of learning sweeps
can be quite large.

It is not possible to give all the details of the NFA
algorithm here. A more detailed description is given in
[23], and a software implementation for the method is
available at [22].
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Fig. 1 The remaining (residual) energy of the speech data as
a function of the number of extracted components using linear
and nonlinear factor analysis.

3. Experimental results for speech data com-

pression

Both nonlinear and linear factor analysis can be seen
as data compression methods, as they find a more com-
pact representation for data in the form of the hidden
factors. A relevant question is whether NFA is better
than linear FA for compression: given an equal number
of factors in both models, how do the residual errors
compare?

To test this on natural data, we used a speech data
set consisting of spectrograms of 24 individual words of
Finnish speech, spoken by 20 different speakers. The
spectra were modified to mimic the reception abilities
of the human ear. This is a standard preprocessing pro-
cedure for speech recognition. The preprocessed data
consisted of 2547 30-dimensional spectrogram vectors.

For studying the dimensionality of the data, linear
factor analysis as well as NFA were applied to the data.
7500 sweeps were used to find a NFA representation for
the sources. The final results were then obtained by
applying linear ICA to the found sources s(t). The non-
linearity in NFA was an MLP network with 30 hidden
neurons. For a given number of found factors, the resid-
ual error was computed for both nonlinear and linear
FA. The results are shown in Fig. 1. Nonlinear fac-
tor analysis is able to explain the observations equally
well with fewer components than linear factor analysis,
showing that the data clearly follow a nonlinear mix-
ing model. The difference is especially clear when the
number of components is small.

A small segment of the original data and its recon-
structions with eight nonlinear and linear components
are shown in Fig. 2. The reconstructed spectrograms
are somewhat smoother than the original ones. Still,

Fig. 2 A short fragment of the data used in the speech mod-
eling experiment. The subfigures show the original data (top),
and the reconstructions from 8 nonlinear components (middle)
and from 8 linear components (bottom).

all the discriminative features of the original spectrum
are well preserved in the nonlinear reconstruction. The
linear reconstruction is not as good, especially in the
beginning. The sources found by the algorithm could
be used as features for a speech recognition system.
Since the essential contents of the data can be repre-
sented with fewer components than using linear meth-
ods, nonlinear BSS should provide better performance
for feature extraction. The method could be further
improved by also taking into account the temporal in-
formation in the data.

In [12], [15], we have applied the NFA method to
30-dimensional industrial pulp process data and to ar-
tificially generated data with good results. In these
experiments, we improved the quality of estimated
sources somewhat further by using the NIFA method.

4. Extension to a dynamic nonlinear model:

the NDFA method

4.1 The model and method

In nonlinear dynamical factor analysis (NDFA), the
same generative model (1) and MLP network structure
(5) as before are still employed for the data vectors
x(t). The nonlinear mapping g in the additional state-
space model (2) for the dynamics of the sources s(t) is
modeled using another MLP network as follows:

g(s(t− 1)) = s(t− 1)+Dtanh[Cs(t− 1)+ c] +d (15)

The matrices C and D contain the weights of the hid-
den and output layers, respectively, and the vectors c

and d their biases. Because the sources s(t) do usually
not change much from their previous values s(t−1) dur-
ing a single time step, we have used the MLP network
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Fig. 3 The original sampled Lorenz process and the corre-
sponding 3 components of the estimated process.

to model only their change in (15).
The NDFA method can now be developed in a

similar manner as the NFA method before. This is
described in detail in [21], [23]. A special problem in
NDFA is that the components of subsequent source
vectors s(t) and s(t − 1) are strongly dependent due
to the model (2). This dependency is handled by using
a linear model for their corresponding components si(t)
and si(t−1) in the posterior approximation q(S), while
different components are still assumed to be indepen-
dent. This does not increase the computational load
too much. The NDFA method is initialized using PCA
of concatenated 2d + 1 subsequent data vectors zT (t)
= [xT (t + d), . . . ,xT (t− d)]. Such embedding methods
are standard tools in the analysis of nonlinear dynamic
systems.

4.2 Estimation of states for artificial data

The dynamic process used to test the NDFA method
was a combination of three independent dynamic pro-
cesses. The first one was a harmonic oscillator hav-
ing a two-dimensional state representation with linear
dynamics. The two other processes were Lorenz pro-
cesses with three-dimensional chaotic nonlinear dynam-
ics. Figure 3 shows one of the sampled Lorenz pro-
cesses. To make the BSS and state prediction tasks
more challenging, one dimension of each of the three
processes was hidden. This left five states from which
the 10-dimensional data vectors were generated non-
linearly using a randomly chosen MLP network with
sinh−1 nonlinearity. The number of data vectors x(t)
was 1000. The standard deviations of the observation
noise and the signal were normalized to 0.1 and 1.

Figure 3 also shows the NDFA estimate of the orig-
inal Lorenz process after 600,000 iterations. The qual-

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
10

−2

10
−1

10
0

NAR          
7,500 iter.  
30,000 iter. 
150,000 iter.
600,000 iter.

Fig. 4 The average cumulative squared prediction error for the
nonlinear autoregressive (NAR) model (solid with dots) and for
our dynamic algorithm with different iteration numbers.

ity of the estimated process is good, taking into account
the very difficult problem and the indeterminacies in
this type of nonlinear dynamic estimation.

According to our experiments, the NDFA method
is able to separate blindly at least 15 source processes.
This is clearly more than many other methods can in
practice handle. The price that one has to pay for that
is that learning requires a lot of computer time, taking
easily days or even more.

4.3 Predicting the Lorenz data

We tested the quality of the NDFA model also by study-
ing its short-term prediction ability for new samples.
It should be noted that since the Lorenz processes are
chaotic, exact numerical long-term prediction is impos-
sible. However, the NDFA method is able to capture
the general long-term behavior as shown in [23].

We compared NDFA in short-time prediction of
future observations with the nonlinear autoregressive
(NAR) model

x(t) = h(x(t− 1), . . . ,x(t− d)) + n(t) (16)

The nonlinear mapping h(·) was again modeled by an
MLP network, but now standard back-propagation was
applied in learning. Before that, the dimension of the
data vectors x(t) was compressed from 100 to 20 using
standard PCA. The best performance was given by an
MLP network with 20 inputs and one hidden layer of
30 neurons, and the number of delays was d = 10. Fig-
ure 4 shows the results, averaged over 100 realizations
of the data set. Our NDFA method is already after 7500
sweeps clearly better than the NAR-based method in
predicting the process x(t). Its performance improves
further greatly when learning is continued. The final
predictions given by NDFA after 600,000 sweeps are ex-
cellent up to the time t = 1010 and good up to t = 1022,
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Fig. 5 The simulated changes in the process states and the
corresponding observed mixture.

while the NAR method is quite inaccurate already after
t ≥ 1003. Here the prediction started at time t = 1000.

We also tried a recurrent network for this test prob-
lem, and it performed somewhat better than the NAR
model. The results for the recurrent net are roughly
equivalent to those given by NDFA after 7500 sweeps,
and clearly inferior to the fully converged NDFA model.

4.4 Detecting process state changes

We also examined the ability of the NDFA algorithm
to detect changes in the process properties. The train-
ing sequence from Section 4.2 was continued with 1000
new samples and the changes in the process model
were achieved by changing the parameters of one of
the Lorenz processes at time instant tc = 1500. Fig. 5
(left panel) clearly shows the simulated changes in the
process states. However, the complex nonlinear mix-
ing model and the additive noise have hidden the state
changes which are now hardly discernible from the ob-
served signals (see Fig. 5, right panel).

The NDFA change detection procedure was based
on the sequential estimation of states s(t) correspond-
ing to new obtained measurements x(t). At each time
instant t the new state values were found by taking the
initial guess s(t) = g(s(t − 1)) and then updating the
posterior means and variances of s(t) with a few itera-
tions of the NDFA algorithm. Mappings f and g were
fixed and not adjusted to the new observations.

The cost function C(t) produced by NDFA for each
new observation x(t) carries valuable information which
can be used to detect changes in the data model. Re-
call that according to (4), the cost function implicitly
includes the term − ln p(Xt), where Xt is the set of
data vectors x(τ) for 1 ≤ τ ≤ t. Therefore the differ-
ence of two consecutive values of C(t) can be used to
estimate the probability of the new observation given
the preceding ones:

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
−2000

−1000

0

1000

2000

(a) 7,500 sweeps

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
−5000

−4000

−3000

−2000

−1000

(b) 600,000 sweeps

Fig. 6 The cost function calculated for the new observations.

C(t) − C(t− 1) ≈ − ln p(Xt) + ln p(Xt−1) ⇒

p(x(t)|Xt−1) =
p(Xt)

p(Xt−1)
≈ e−[C(t)−C(t−1)]

The last approximation follows from the fact that e−C

is roughly proportional to p(X).
Fig. 6 shows the estimated cost function C(t) for

the observed vectors of Fig. 5. It is evident that the
NDFA method is able to detect the changes in the dy-
namic model after 600,000 sweeps while 7500 sweeps is
not enough.

Moreover, the NDFA method can find out in which
states the changes took place. Fig. 7 presents the states
estimated for new measurements together with their
contributions to the cost function (see [14] for details).
The plot shows that the estimated time series repro-
duce well the character of the original underlying pro-
cesses. Only nine out of ten estimated states are ac-
tually used: Two states model the harmonic oscillator
dynamics, four states describe the Lorenz process with
constant parameters, and the other three states corre-
spond to the Lorenz process with changing parameters.
Notice the increasing cost contributions for the states
with changing dynamics: analyzing the structure of the
cost function helps in localizing the detected changes.

Following standard change detection techniques,
the NDFA method raises alarms about detected
changes according to the decision rule

decision at time t =

{
change, g(t) ≥ h

no change, g(t) < h
(17)

where g(t) is a test statistic calculated by the method
at each time instant and h is a chosen threshold. The
NDFA test statistic proposed in [14] was

g(t) = C(t)−min
k≤t

C(k)

Similarly to [14], the performance of the NDFA
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Fig. 7 The estimated states and their contribution to the cost
function.

change detection method was assessed and compared
with some classical methods employing different types
of the test statistic g(t) in (17). The two performance
measures used in the comparison were the probability
of false alarms Pf formally defined as

Pf = P (ta < tc) (18)

and the average time to detection

D = E(ta − tc|ta ≥ tc, tc) (19)

where tc is the time of the change and ta the time
of the alarm about the detected change. In practice,
measures (18), (19) were estimated by multiple simula-
tion of changes at different time instants over 100 trials
and taking the relative frequency of false alarms as Pf

and the average time ta − tc as the D-measure. Both
measures of course depend on the decision threshold
h which was varied in the simulations over a suitable
range.

The following methods alternative to NDFA were
considered in the experiments:

1. The CUSUM approach monitoring the current
mean µ and covariance matrix R of the observed
process x(t) by calculating squared normalized
residuals

s(t) = (x(t) − µ)T R−1(x(t) − µ)− nx

and using the two-sided CUSUM test [7]

g1(t) = [g1(t− 1) + s(t)− ν]+

g2(t) = [g2(t− 1)− s(t)− ν]+

g(t) = max(g1(t), g2(t))

where nx is the number of the observed signals, ν
the drift parameter and [x]+ = max(0, x). Vec-
tors µ and R were estimated from the training
sequence.
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Fig. 8 Performance comparison of various change detection
methods.

2. The Shewhart charts generalization which detects
changes in the mean µ of a multivariate process
x(t) by calculating the T 2-statistic [18]:

g(t) = L(xL(t)− µ)TR−1(xL(t)− µ)

where xL(t) is the sample mean computed from
last L observations.

3. The NAR-based approach using the model from
Section 4.3. The mean of the NAR-prediction is
monitored using the generalized Shewhart charts.

Fig. 8 shows the simulation results. The D-
measure of Eq. (19) is plotted against the false alarm
probability Pf of Eq. (18). Each point on the curves
corresponds to one (Pf , D) pair for a given value of
the decision threshold h in the rule (17). Each curve
shows the results given by the respective method at dif-
ferent values of h. The closer a curve is to the origin,
the faster the respective method can detect the change
with low false detection rate. The NDFA method out-
performs the compared classical methods clearly. They
are not able to detect the change properly because of
the complexity and nonlinearity of the process, while
the NDFA method is highly accurate in this problem,
giving a D value close to zero with very low false alarm
rates.

5. Conclusions

The variational Bayesian learning principle was applied
to the problem of nonlinear blind source separation
(BSS). The problem is an important and natural ex-
tension of linear BSS and ICA. It is of great practical
importance in cases where linear mixing cannot be as-
sumed. However, the problem is essentially much more
difficult than linear BSS because of the many ambigui-
ties. In theory, it is not possible to retrieve the original
sources except in some highly restricted cases. More or
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less heuristic algorithms have been earlier suggested for
the problem, but due to the non-uniqueness, there is no
guarantee that any meaningful solutions are found.

Instead of trying to invert the unknown nonlinear-
ity, what one can do instead is to get an approximation
that gives a compact nonlinear representation for the
observations. We call such an approximation Nonlinear
Factor Analysis (NFA), in analogy with the standard
factor analysis which solves a similar linear model. A
further extension of NFA to the case of dynamical sys-
tems is given by the Nonlinear Dynamical Factor Anal-
ysis (NDFA). Then also the dynamics of the sources
are modelled. The NDFA model is superficially similar
to a nonlinear Kalman filter, but the solution method
must be totally different because neither the dynamics
nor the mapping from the states to the observations are
known.

The NFA and NDFA algorithms are based on the
Bayesian philosophy. The solution is not only a set of
point estimates for the parametric nonlinear mappings
and the sources themselves, as would be the case for
example in the maximum likelihood solution. Instead,
the pdf is found which best approximates the true pos-
terior in the family of approximating densities, in this
case product of independent gaussians. The Bayesian
treatment allows all prior knowledge about the nonlin-
earities or sources to be included in the model in a very
natural way. Also the complexity of the model is au-
tomatically regularized. The variances of the posterior
densities around the mean directly indicate the confi-
dences of the estimates. All these advantages make the
variational Bayesian approach very promising, as com-
pared to some less disciplined attempts to solve the
nonlinear BSS problem. The experimental results in
this paper confirm that very useful results can be ob-
tained in difficult nonlinear problems.

The major disadvantage of the NFA and NDFA
algorithms, as well as Bayesian learning in general, is
the large computational demand. A high number of
learning steps or sweeps through the training data set
are needed for convergence. Then it is essential to op-
timize each sweep. In ongoing work, the computational
complexity of the algorithms has been studied and de-
creased, to allow larger models to be analyzed.
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