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ABSTRACT

Self-Organizing Maps (SOMs) have been successfully
applied to content-based image retrieval (CBIR). In this
study, we investigate the potential of PicSOM, an image
database browsing system, applied to remote sensing im-
ages. Databases of small images were artificially created,
either from a single satellite image for object detection, or
two satellite images when considering change detection.
By visually querying those databases, it was possible to
detect targets like houses, roads or man-made structures,
as well as changes between two QuickBird images. Pre-
liminary results were encouraging, and open a full range
of applications, from structure detection to change detec-
tion, to be embedded in a same operative system.

Key words: content-based information retrieval, self-
organizing maps, high resolution satellite images, man-
made structure detection, change detection.

1. INTRODUCTION

Remote sensing data include large images, often exceed-
ing 10, 000 × 10, 000 pixels (e.g. very high resolution
panchromatic QuickBird images). Processing those large
images can be computationally unpractical, especially for
tasks like objects detection. At the same time, there is an
increasing number of Earth Observation data collected
and to be processed each day. These needs have led to
the emergence of content-based image retrieval systems,
for remote sensing image archive management [1–7], or
satellite image annotation and interpretation [2, 8, 9].

Previous work has been made on databases of relatively
small images acquired from medium-resolution sensors.
Seidel et al. [5] have experimented a visual-oriented
query method on a small test image archive, contain-
ing 484 windows extracted from Landsat TM images.

Schröder et al. [3] described an intuitive method for se-
mantic labelling of image content suited for query by im-
age content, tested on the same image archive. Schröder
[9] and Schröder et al. [4] used a stochastic represen-
tation of image content for interactive learning, within a
database of about a thousand 1024 × 1024 Landsat TM
scenes – but queries were made by marking training ar-
eas. Other work [1, 6, 7] seemed to focus more on man-
aging large databases of full remote sensing scenes. Little
was found in the literature about utilizing content-based
image retrieval (CBIR) techniques for the purpose of a
single scene interpretation, let alone change detection.

We present an original utilization of an existing CBIR
system, PicSOM, for the analysis of remote sensing im-
ages. In the PicSOM image database browsing system
[10], several thousands of images are organized on a Self-
Organizing Map (SOM), through the extraction of image
descriptors including texture and color features. After
the SOM is trained, the user can visually query the data-
base and the system automatically finds images similar to
those selected. This approach has been successfully ap-
plied to databases of conventional images [11, 12]. The
key idea of our study is to artificially create an ”image
database” from a single satellite image, by dividing it into
several thousands of small images, or imagelets. Pic-
SOM can then be trained on that virtual ”image data-
base”, and visually queried for finding objects of interest
like man-made structures, or even changes. First results
of a PicSOM-based retrieval system applied to very high
resolution satellite images are presented in this paper.

2. DATA AND PRE-PROCESSING

2.1. Satellite imagery

Two QuickBird scenes were acquired in the beginning of
September 2002 and in mid June 2005, covering a same
coastal area in Finland. QuickBird images have four



(a) 2002 (b) 2005

Fig. 1. True-color pan-sharpened QuickBird study scenes

spectral channels with a 2.4 m ground resolution – blue
(450−520 nm), green (520−600 nm), red (630−690 nm)
and near-infrared NIR (760 − 900 nm) – and a panchro-
matic channel (450− 900 nm) with ground resolution of
0.6 m. Both images were remarkably cloud-free, while
the sea was quite wavy in the 2005 scene.

2.2. Pre-processing

A study area of size 4 × 4 km was extracted from both
images. The viewing angles were different for the two
acquisitions, therefore systematic registration to a com-
mon coordinate system would be insufficient for pixel-
wise change detection. Scene 2 (June 2005) registration
to scene 1 (September 2002) was thus refined by ground
control points selection and bicubic transform. The lack
of an accurate Digital Elevation Model on the monitored
area made orthorectification impossible, thus slight mis-
registration effects remained.

Because the PicSOM system was originally developed
for conventional images (those found e.g. in common
web image databases), the dynamic range of QuickBird
images had to be reduced from 11 bit to 8 bit. In an at-
tempt to use both spectral and spatial resolution capabili-
ties of the sensor, panchromatic and RGB channels were
merged, using ERMapper SFIM Pan Sharpening Wizard.
This produced two true-color images with 0.6 m resolu-
tion – Fig. 1. Note that the NIR channel was not included
in the images used in PicSOM.

PicSOM image retrieval system typically requires sev-
eral thousands of images in a database, in order to pro-
duce relevant indexing. Each pan-sharpened RGB im-
age was then cut into 4900 non-overlapping small im-
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Fig. 2. Samples of imagelets automatically extracted from
the 2005 study area.



ages (or imagelets), of about 100 × 100 pixels – Fig. 2.
Imagelets were named in such a way that it tells their lo-
cation within the study area and year of acquisition. Data
from 2002 and 2005 were kept separated, in two distinct
sub-databases of a same database loaded into PicSOM.

2.3. Pixel-based labelling

The 2002 study area was labelled into 7 classes –
{agricultural field, arable land, buildings, clearcuts, for-
est, roads, water}. Because automatic classification of
very high spatial resolution images is usually challeng-
ing, image classification was mostly supervised using
Maximum Likelihood algorithm. For small buildings and
narrow roads, it was refined by manually selecting the
corresponding areas in the image.

Water and forest classes were automatically labelled with
the AutoChange software [13], developed at VTT. De-
signed for automatic change detection between two im-
ages, it can be used for classifying a single image, as it
relies on a modified version of k-means clustering [13].
AutoChange was originally developed for forestry appli-
cations, and required to include the NIR band at this stage
to perform automatic classification.

Multiple labels were then assigned to each imagelet. The
lists of imagelets containing pixels of each class were
built and saved as 7 text files, handled by PicSOM. The
classification of the 2002 image was not used to help Pic-
SOM recognize objects, only to ease querying or select-
ing imagelets of interest during the system development
and testing.

3. METHODS

The PicSOM system used in this study has originally
been developed for content-based image retrieval (CBIR)
research [11, 12]. It is based on using the Self-Organizing
Map (SOM) [14] as an efficient indexing structure for the
images. In PicSOM, multiple SOMs are used in parallel,
each created with different low-level visual features. In
this paper, we show how this same technique might also
be applied in the semi-automated, interactive analysis of
satellite images.

3.1. Self-Organizing Maps

The Self-Organizing Map is a neurally-motivated un-
supervised learning technique which has been used in
many data-analysis tasks. A genuine feature of the Self-
Organizing Map is its ability to form a nonlinear map-
ping of a high-dimensional input space to a typically two-
dimensional grid of artificial neural units. During the
training phase of a SOM, the model vectors in its neu-
rons get values which form a topographic or topology-
preserving mapping. Through this mapping, vectors that

reside near each other in the input space are mapped into
nearby map units in the output layer. Patterns that are
mutually similar in respect to the given feature extraction
scheme are thus located near each other on the SOM.

The training of a Self-Organizing Map starts from the sit-
uation where the model vectors mi of each map unit i
are initialized with random values. For each input sam-
ple x(t), the “winner” or best-matching map unit (BMU)
c(x) is identified on the map by the condition

∀i : ‖x(t)−mc(x)(t)‖ ≤ ‖x(t)−mi(t)‖ , (1)

where ‖·‖ is commonly the Euclidean metric. After find-
ing the BMU, a subset of the model vectors constituting a
neighborhood centered around node c(x) are updated as

mi(t + 1) = mi(t) + h(t; c(x), i)(x(t)−mi(t)) . (2)

Here h(t; c(x), i) is the “neighborhood function”, a de-
creasing function of the distance between the i-th and
c(x)-th nodes on the map grid. The training is reiterated
over the available samples, and the value of h(t; c(x), i)
is allowed to decrease in time to guarantee the conver-
gence of the prototype vectors mi. Large values of the
neighborhood function h(t; c(x), i) in the beginning of
the training initialize the network, and the small values
on later iterations are needed in fine-tuning.

When the SOM has been trained, all the input samples x
are once more mapped to it, each in its best matching unit.
Every unit is then assigned as a visual label the imagelet
whose feature vector was the nearest to the unit’s model
vector. Fig. 3 and 4 illustrate the most representative
imagelets (visual labels) on SOMs calculated for two of
the feature types introduced in 3.2.

Fig. 3 displays a SOM created from the feature of average
RGB values calculated from the imagelets of Fig. 1. We
can see how the imagelets whose overall color is dark,
i.e. water regions, are mapped to the top-right corner
of the map. In the opposite lower-left corner there are
imagelets that are the lightest ones, i.e. fields and areas
around buildings. The bottom-right corner displays the
green forested areas.

In Fig. 4 one can see a different organization of the same
imagelet set, this time produced by a texture feature cal-
culated from the imagelets. We can now see that the wa-
ter regions are mapped in two separate areas due to the
different textures of the calm and wavy water surfaces.

3.2. Features

In this study, we used four low-level features automati-
cally extracted from the imagelets. The features were :

xy-coordinates This feature used the spatial loca-
tion of the imagelet in the original scene as a two-
dimensional feature. As the images from the two



Fig. 3. Organization of the imagelets by their average
RGB color on a 16×16 SOM surface.

Fig. 4. Organization of the imagelets by their texture con-
tent on a 16×16 SOM surface.

years were aligned in preprocessing, the value of this
feature was always the same for any imagelet posi-
tion, regardless of the year and the image content.

average rgb This is a 3-dimensional feature calcu-
lated as the average values of the red, green and blue
(RGB) channels of the pixels in an imagelet.

color moments For calculating the color moments
feature, the RGB color coordinates of the pixels
were first transformed to Hue Saturation Value coor-
dinates (HSV). Then the three first moments (mean,
variance and skewness) of the HSV values were cal-
culated and used as a 9-dimensional feature.

texture This feature is formed by studying the 8-
neighbors of each imagelet pixel. For every 8-
neighbor position, a counter is incremented when
the illumination on that neighbor pixel is larger than
on the center pixel. The final counts are divided by
the total number of pixels in the imagelet. The re-
sulting 8-dimensional feature vector then describes
local illumination differences, and thus the small-
scale texture of the imagelet.

The map sizes were set to 64×64 units for the three vi-
sual features SOMs, and 70×70 for the coordinate SOM.
Therefore, there were on the average 4900/4096 ≈ 1.19
imagelets mapped in each map unit of the visual SOMs,
and exactly one image location on the coordinate map.

3.3. Detection of man-made objects with CBIR

The PicSOM system implements two essential CBIR
techniques, query by pictorial examples (QBPE) and rel-
evance feedback. These methods can be used for itera-
tive retrieval of any type of visual content. In iterative
QBPE, the system presents some images to the user who
then marks a subset of them as relevant to the present
query. This relevance information is fed back to the sys-
tem, which then tries to find more similar images and re-
turns them in the next query round.

In our current study, we have used the PicSOM CBIR sys-
tem to find imagelets containing man-made objects such
as buildings or roads. The system first displays a ran-
dom selection of imagelets in a web browser. The user
then selects all imagelets containing man-made objects –
or anything else but water and forest – and sends this in-
formation back to the system by pressing the ‘Continue
query’ button. In the forthcoming query rounds, the user
can then focus the query more precisely to more specific
semantic targets, such as buildings, roads or clearcuts.

Fig. 5 shows the user interface of the system in the mid-
dle of an interactive query session. The user has se-
lected some man-made objects shown in the middle of the
browser window. In the top part, the distribution of those
imagelets are shown with red colors on the four different
SOMs. In the bottom of the interface, some of the new
imagelets returned by the system are shown to the user.



Fig. 5. The web user interface of the PicSOM system in
an interactive query for man-made objects.

3.4. Detection of changes

For this study, we devised a method for finding pairs of
imagelets, one from the year 2002 and the other from
2005, which differed the most in the sense of some of the
extracted features. This means that we did not calculate
absolute pixel-wise differences between the imagelets,
but defined the change relative to a particular feature ex-
traction scheme. This makes change detection less de-
pendent on small variations in the absolute image coordi-
nates due to inaccurate registration.

Furthermore, we used the SOMs also in the change de-
tection scheme. Some variations in the imagelets are due
to various forms of noise and do not correspond to true
changes in the land cover. We may assume that the differ-
ences caused by noise lead to situations where the best-
matching unit for the calculated feature vector remains
the same, or is moved to some of the neighboring SOM
units. Only the true changes in the imagelet’s content
would then give rise to such a striking change in the fea-
ture vector’s value that its projection on the SOM surface
is moved to a substantially different location. The sub-
stantiality of the change can therefore be measured as the
distance between the best matching units (BMUs) of the
different years’ feature vectors on a same SOM.

Our change detection technique was then as follows. For
each of the 4900 imagelet pairs from the years 2002

and 2005, excluding the water areas, we solved the two
BMUs on one particular feature’s SOM. The Euclid-
ean distance between the BMUs was then calculated and
the imagelet pairs were ordered by descending pair-wise
BMU distance. A fixed number of imagelet pairs, set to
70 in this study, were then regarded as the locations where
the most substantial changes had taken place. This same
procedure was repeated for all the three visual features.

4. RESULTS AND DISCUSSION

This research being still in very early stage, quantitative
results are not available yet.

4.1. PicSOM for segmentation of satellite images

When using PicSOM CBIR system with QuickBird im-
ages, the initial random selection of imagelets presented
in the user interface didn’t include any building. This
is probably because there were only small houses in the
studied scene, and only a few of them – 137 imagelets out
of 4900 – contained buildings in the 2002 study scene.

Already after the first query – made on imagelets contain-
ing little or no forest/water – imagelets depicting build-
ings were retrieved, that could then be selected, refining
the detection. Similar results were achieved when visu-
ally selecting clearcuts or arable land as target. This al-
ready shows a use-case of PicSOM system with remote
sensing data, as a supervised, general-purpose and inter-
active tool for detecting targets within a satellite image,
by visual and intuitive querying. A proposed visual out-
put consists of ”lighting up”, in the studied satellite im-
age, only the imagelets in which objects of interest have
been detected – e.g. buildings in Fig. 7.

4.2. PicSOM for change detection

Even with its general feature descriptors, PicSOM sys-
tem was able to detect zones where changes occurred be-
tween 2002 and 2005. Figure 6(a) shows how the system
has found the areas where the color moment features had
substantial differences. These areas match quite well with
those where forest had been cut between 2002–2005.
Darker red colors indicate that many adjacent imagelets
have changed. On the other hand, Fig. 6(b) displays sim-
ilar analysis, with the texture feature. These areas corre-
spond this time to changes in built-up areas.

Pixel-based change detection in very high resolution im-
agery is a challenging task, limited by the requirement of
pixel or sub-pixel accuracy registration. A clear advan-
tage of the decomposition in imagelets in the context of
change detection, is that it relaxes this constraint – pre-
liminary results suggest that the slight misregistration be-
tween the 2002 and 2005 scenes did not affect much the
performance of PicSOM for change detection.



(a) In color moment feature : red areas match well with forest cuts (b) In texture feature : red areas match well with changes in buildings

Fig. 6. Image areas where changes have been detected between 2002–2005

Fig. 7. Imagelets containing buildings (2002 scene),
mapped back to original image coordinates.

Seasonal changes were an issue, since many changes
were attributed to locations of the study scene contain-
ing in fact the same land cover in 2002 and 2005 (often
forest) – those were mainly vegetation changes between
beginning and end of summer. While this could be inter-
esting for season monitoring applications, it dragged Pic-
SOM away from the goal of detecting appearing or dis-
appearing man-made structures. A clear definition within
the system of what changes are of interest seems to be
needed. How this should be done remains open. This
could be partly circumvented by calibrating the radiome-
try of images before loading them into PicSOM.

A way to refine the change detection would be to provide
two content targets to PicSOM : a content from which
the change occurs (earlier target), and a content to which
the change occurs (later target). This would allow an
intuitive and interactive definition by the user of changes
of interest – e.g. by selecting imagelets containing forest
as earlier target, and buildings as later target, the system
would detect newly constructed buildings in forest areas.

An extension of the approach developed here would
handle more than 2 satellite images for change detec-
tion applications. One could train PicSOM with the
imagelets extracted from all images available up to a
given time, then query the database for imagelets repre-
sentative of objects of interest. The system would then
return imagelets where significant changes have been de-
tected in the later scene, according to the distance on the
SOM between the BMUs of earlier and later imagelets.



4.3. Choosing the size of imagelets

The influence of the imagelet size will have to be studied
more deeply. Smaller than the object of interest, it is ex-
pected that an imagelet would not restitute all spatial or
spectral properties of the target. On the other hand, larger
imagelets would contain a too great proportion of per-
turbating, non-interesting content compared to the spa-
tial extensions of the object of interest – typically in our
study scene, a small isolated building surrounded by for-
est. In that case the imagelets would be clustered in the
SOM according to their dominant content, which would
not necessarily be the content of interest.

Therefore the size of imagelets has to be adjusted, so that
the information contained in the imagelets is represen-
tative of the object of interest. Similarly, depending on
the scale of expected or interesting changes, the size of
imagelets should be smaller or bigger. In an operative
system, the expected dimensions of interesting targets or
scale of changes could be specified by the user or pre-set,
depending on the application, then used to determine an
appropriate imagelet size.

The 100 × 100 pixels imagelets, extracted from Quick-
Bird images used in this study (0.6 m resolution), seemed
to provide a trade-off between the two undesirable situa-
tions. Luckily (and surprisingly), not too many buildings
in the study scene were split into two or more imagelets.
In order to reduce the consequences of ”cutting” an ob-
ject of interest into several non-overlapping imagelets
(namely, generating ”artificial” objects on the borders of
imagelets), overlapping imagelets could be used.

4.4. Roadmap for further adapting PicSOM system
to remote sensing imagery

The first step will be to handle multi-spectral imagery
(typically a number of bands greater than 3) in PicSOM.
Using the full dynamic range of the sensors will also be
considered. It is expected that more accurate results will
be obtained by using all spectral information available
when computing features, rather than just 8 bit true-color
imagery. As a short-term solution, false-color imagery
might also be considered – replacing blue band by NIR,
since blue and green bands are usually highly correlated.

Developing sensor-specific feature extractors may lead to
improvements in retrieval abilities. Existing features in
PicSOM are quite generic image measurements. Widely
used measures for remote sensing images, like NDVI,
should be included somehow as features. For build-
ings and man-made structures detection, additional fea-
tures such as lines or corners may be needed – Rehrauer
[15] forecasted that in addition to spectral features, struc-
tural features would be suited to content based image re-
trieval in high resolution satellite images. Selected fea-
tures should also adapt to various spatial resolutions, de-
pending on the sensor used, and accounting for different

target sizes – the importance of scale for satellite image
description has also been emphasized in [15].

The relevance of using pan-sharpened images in an op-
erative system has to be investigated. It was used in
this preliminary study in order to embed both spatial and
spectral information in a same image, easily loaded into
PicSOM in its current implementation. If used, the ques-
tion of preserving spectral information through the pan-
sharpening process has to be addressed. The various pan-
sharpening techniques do not preserve spectral informa-
tion equally : some generate more artifacts, some pro-
vide suitable results for visual inspection while others are
more suited to quantitative evaluation [16]. An appropri-
ate algorithm should be chosen, depending on the level of
user interactivity by visual communication needed in an
operative system built around PicSOM.

An alternative would be not to fuse panchromatic and
multi-spectral channels before processing, but to use
them separately. With slight modifications to the PicSOM
system, it could be possible to couple spatial features ex-
tracted from the panchromatic channel and spectral infor-
mation from multi-spectral imagery. Preliminary testing
on an imagelet database, built from a single panchromatic
scene only, showed promising results for building detec-
tion, even without any additional spectral information.

The same kind of approach could be applied to radar im-
ages, in which case the importance of adapted feature ex-
tractors would be even more critical. Still, quick testing
of PicSOM on a radar imagelet databases (extracted from
an ASAR scene) has been made with satisfying results,
that will be published after further research.

5. CONCLUSIONS

We have presented how a content-based image retrieval
system, PicSOM, can be used with remote sensing im-
ages for tasks like segmentation of man-made structures
or clearcuts, as well as change detection. The approach
relies on the decomposition of a satellite image into sev-
eral thousands small images or imagelets, to generate an
image database from which the user can query, visually
and intuitively. Preliminary results were very encourag-
ing, considering that image features used in the training
phase were designed for databases of conventional im-
ages. Several improvements of PicSOM are under inves-
tigation, that will make it more adequate to the specifici-
ties of remote sensing data. The versatility of PicSOM
will allow several applications to be embedded in a same
system, only to be differentiated by the type of query.
Further research will aim at a fully operative and inter-
active system built around PicSOM, one of the possible
applications being long term monitoring of strategic sites.
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