
APPLICATION OF SELF-ORGANIZING MAPS AND AUTOMATIC
IMAGE SEGMENTATION TO 101 OBJECT CATEGORIES DATABASE

Jorma Laaksonen, Ville Viitaniemi and Markus Koskela

Helsinki University of Technology
Neural Networks Research Centre

P.O.BOX 5400, FI-02015 TKK, Espoo, Finland
{jorma.laaksonen,ville.viitaniemi,markus.koskela}@tkk.fi

ABSTRACT

In this paper, we study how well our PicSOM CBIR system
is able to find prototypical image segments based on image-
level keywords and automatic image segmentation. We also
study different methods for focusing a given keyword on a
particular image segment. Both these processes are based
on the Self-Organizing Map’s ability to map image seg-
ments which are mutually similar according to a specific
image feature in nearby map units. In addition, the PicSOM
system can automatically use and weight multiple different
features in parallel. In the automatic image segmentation
applied to the images of the 101 Object Categories database,
a fixed number of segments have been extracted from each
image. This leads in many cases to oversegmentation, but
our experiments show that the system’s ability to find pro-
totypical segments is not severely impaired. On the other
hand, it is clear that the process of keyword focusing would
benefit from more precise segmentations.

1. INTRODUCTION

The conventional employment of content-based image re-
trieval (CBIR) systems has been targeted at interactive use
where the task of the system is to return to the user inter-
esting or relevant images from an unannotated database. In
this paper, however, we are concerned with methods that can
automatically solve the keyword versus image segment cor-
respondence problem in a keyword-annotated database of
salient objects. This way, we can obtain more focused repre-
sentations of the object categories specified for the database,
when in each image the location of the object is solved.

The technique we use is based on the PicSOM CBIR
system [10], whererelevance feedbackis used as a method
for query refinement. In this work, we have replaced the
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relevance feedback with keyword-type annotations given to
the images in the 101 Object Categories database [5]. Af-
ter automatic stages of segmentation, feature weighting and
keyword focusing, the system is able to present a set of typ-
ical image segments that can be regarded as visual counter-
parts of the semantic concepts provided to the system in the
form of keywords.

Due to the general difficulty of robust image segmenta-
tion, the images are often purposely oversegmented rather
than undersegmented. It will be interesting to examine how
well the semantic information presented on the image level
really can be focused on specific image segments even in
such circumstances. This will be illustrated by experiments
with one selected object category.

The paper is organized as follows. In Section 2 we will
first discuss some aspects of CBIR systems on a general
level and then in Section 3 our PicSOM system in more
detail. Section 4 addresses the problem of automatic im-
age segmentation and Section 5 presents our view on how
segmentation can be used in extracting semantic contents
of images. The data of our experiments will be described
in Section 6 and the actual experiments and their results in
Section 7. Conclusion will be drawn and future directions
discussed in Section 8.

2. CONTENT-BASED IMAGE RETRIEVAL

One popular method to improve the retrieval performance
in CBIR systems is to employ relevance feedback from the
user in intra-query learning. The relevance feedback from
the user can also be recorded online and later analyzed of-
fline to reveal semantic relations between visual objects. In
our earlier works [8, 9], we have shown that this user in-
teraction information can be used as a statistical feature to
improve online retrieval even without any semantic postpro-
cessing.

Another important and rising technique in CBIR is the
utilization of automatic and model-less or assumption-free



segmentation methods for the images. In this scheme one is
addressed with the question on how the relevance feedback
and potentially existing annotations or keywords given to
whole images can be focused on particular image segments.
If both the segmentation and focusing problems could be
solved simultaneously and successfully, many of the per-
sisting contemporary challenges in computer vision could
be settled.

Two conceptually opposite alternatives for the use of
keywords or other textual information in CBIR systems
exist. The first one is the technique commonly used in
general-purpose WWW search engines, such as Google Im-
age Search, where images are located on the basis of their
surrounding texts on web pages. In this way, texts and key-
words act merely as pointers to images in online textual
queries. The second alternative is more challenging and will
be studied in this paper as an extension to our earlier experi-
ments addressing online CBIR. More precisely, keyword or
image category information is here used offline to extract
prototypical segments from the images sharing a common
keyword. This will be feasible if the automatic segmenta-
tion will be successful enough and we are provided with
enough images in the category.

3. PICSOM SYSTEM

The PicSOM [10] image retrieval system is a framework
for research on content-based image retrieval. As the name
implies, PicSOM uses the Self-Organizing Map (SOM) [7]
as its basic image indexing method, although other cluster-
ing methods are also supported. The SOM is a powerful
tool for exploring huge amounts of high-dimensional data.
It defines an elastic, topology-preserving grid of points that
is fitted to the input space. It is often used for clustering
or visualization, usually on a two-dimensional regular grid.
The distribution of the data vectors over the map forms a
two-dimensional discrete probability density. Even from the
same data, qualitatively different distributions can be ob-
tained by using different feature extraction techniques.

3.1. Multiple Self-Organizing Maps

The PicSOM system is fundamentally based on using sev-
eral parallel SOMs trained with different feature data si-
multaneously in image retrieval. The features are usually
comprised of statistical visual data such as the MPEG-7
content descriptors [6]. Any additional vectorial data can,
however, be used to train corresponding SOMs and thus be
used in image retrieval. Furthermore, SOM indices can be
constructed either from whole images or certain subobjects,
such as image segments. On image segment SOMs, the
items to be organized on the SOM are not the images them-
selves but the segments. However, since relevant images,
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Fig. 1. An example of using two parallel SOM indices for
segmented images. The color and texture SOMs are trained
with image segments and each segment is connected to its
BMU on each SOM.

not the segments, are in many applications the actual target
of retrieval, the link between the image and its segments is
preserved. In that way the combined response for the par-
ent images can still be determined from those of their child
segments.

After training the SOMs, the map units are connected
with the database images or their appropriate segments.
This is done by locating the BMU for each image or seg-
ment on each SOM. As a result, the different SOMs impose
different similarity relations on the images and the system
thus inherently uses multiple features for image retrieval.
An illustration with two parallel SOMs trained for image
segments is presented in Figure 1.

3.2. Relevance feedback with image segment features

During an online retrieval session with PicSOM, the sys-
tem presents to the user a set of images of which she marks
the ones she considers relevant, and the remaining ones are
implicitly regarded as non-relevant. These relevance assess-
ments are then propagated to all segments of the respective
images. As the next step, the SOM units are awarded a pos-
itive score or response value for every relevant image seg-
ment mapped in them resulting in an attached positive im-
pulse. Likewise, associated non-relevant segments result in
negative scores and impulses. If the total numbers of rele-
vant and non-relevant marked segments areN+(n, m) and
N−(n, m) at nth query round onmth SOM, the positive
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Fig. 2. An example of how a SOM surface is convolved with
a tapered window function. On the left, segments of images
selected and rejected by the user are shown with white and
black marks, respectively. On the right, the convolution re-
sult, where relevance information is spread around the cen-
ters.

and negative scores are simply the inverses:

x+(n) =
1

N+(n, m)
and x−(n) = − 1

N−(n, m)
. (1)

For each SOM, these values are mapped from the segments
of the shown images (and thus rated either as positive or
negative) to the corresponding BMUs where the response
values are then summed. This way, we obtain a zero-sum
sparse value field on every SOM in use.

Due to the topology preservation of the SOM, segments
which are similar according to a specific visual feature are
located near each other on the corresponding SOM sur-
face. Therefore, we are motivated to spread the relevance
information (both positive and negative) provided by the
user also to the neighboring map units of those BMUs on
the SOMs. This can be done by convolving the sparse
value fields with tapered (eg. triangular or Gaussian) win-
dow functions. Figure 2 illustrates how the positive and neg-
ative responses, displayed with white and black map units,
respectively, are first mapped on a 16×16-sized SOM and
how these responses are expanded in the convolution.

As the response values of the parallel indices are mutu-
ally comparable, we can determine a global ordering for de-
termining the overall best candidate segments and images.
By locating the corresponding segments in all indices, we
get their scores with respect to different feature extraction
methods. The total qualification values for the candidate
segments are then obtained simply by summing the corre-
sponding responses. For images, their segment-wise values
are further summed to form the image-level qualification
values. Content descriptors that fail to coincide with the
user’s conceptions mix positive and negative user responses
in the same or nearby map units. Therefore, they produce
lower qualification values than those descriptors that match
the user’s expectations and impression of image similarity
and thus produce areas or clusters of high positive response.
As a consequence, the parallel content descriptors and in-
dices do not need any explicit weighting.

4. AUTOMATIC IMAGE SEGMENTATION

Image segmentation partitions the image area into seg-
ments. The aim is to do the partitioning so that it would be
helpful in further image analysis. In an ideal case the seg-
ments would directly correspond to the real-world objects
present in the image. In practice it is virtually impossible
to achieve such acomplete segmentationin an unsupervised
manner as the processes of segmentation and complete un-
derstanding of image contents are intrinsically intertwined.
In practice one has to settle forpartial segmentations, where
the images are partitioned into regions that are homoge-
neous in terms of some visual property, such as color or
texture.

Recognizing the fact that one is not going to be able
to solve the automatic image segmentation problem in full,
it is still hoped that we can produce partial segmentations
that are good enough to be helpful for CBIR purposes [11].
In our earlier experiments, eg. with the wide-domain Corel
image database, most of the images have been “natural” in
the sense that there might not be any particular salient ob-
ject in the image or its background is heterogeneous. Our
image segmentation methods have consequently been tuned
towards the processing of this kinds of images. Now in the
101 Object Categories database’s narrower-domain images
there is always a clearly distinguishable object in the mid-
dle of the image whose background is often quite homoge-
neous. The nature of these kinds of images is therefore a bit
“artificial”.

Figure 3 displays one example from the database. The
background is nontrivial, but the automatic segmentation
has been quite successful. The segment marked “1” cor-
responds accurately to the lobster and the other seven seg-
ments cover the rest of the image. On the other hand, Fig-
ure 4 displays another lobster image which is clearly over-
segmented. This is a natural consequence of the fixed num-
ber of extracted segments and the simplicity of the image,
as there does not exist anything other than the lobster in
the image. As a result, the lobster is segmented in parts
denoted “1”, “3”, “4” and “7”, background in “0”and “6”,
whereas segment “2” spans both the object and the back-
ground and segment “5” is part of the animal’s shadow. The
details of the used segmentation method will be discussed
in Section 6.2.

5. IMAGE SEGMENTATION AND SEMANTICS

The relation between image segmentation and semantic
concepts has become a subject of recent intensive study in
the field of CBIR. The goal has been named as “image-
to-word transformation” [13], “matching words and pic-
tures” [1], “image auto-annotation” [12], “automatic image
captioning” [14], or “automatic image annotation” [4], de-



Fig. 3. An image of a lobster and the result of its automatic
segmentation in segments marked as ’0’–’7’. A reference
point for the lobster’s neck has been manually marked in
the original image and can be seen to reside in segment ’1’.

pending on the selected viewpoint and the specific tasks
the authors have been addressing. Various different tech-
nical methods and their combinations have been applied,
including co-occurrence statistics [13], Expectation Maxi-
mization (EM) [1], Support Vector Machines (SVM) [4],
Latent Semantic Analysis (LSA) [12], and Markov random
fields (MRF) [2].

According to our knowledge, Self-Organizing Maps
have not earlier been used for studying the interplay of
image segments and semantic concepts. The usability of
SOMs in general CBIR has, however, been demonstrated by
our earlier studies and comparisons, eg. in [10, 15]. What
then would make the SOM an efficient tool for the seman-
tic analysis of image segments? We believe that the Pic-
SOM system’s ability to use different feature extractions
simultaneously and to weight them automatically is a fea-
ture not shared by many other techniques. In that process,
segments which depict the background or otherwise mean-
ingless or arbitrary parts of the image can be regarded as
additive noise, whose weight will be reduced in comparison
to that of the meaningful segments. This favorable behavior
is a direct consequence from the PicSOM system’s process-
ing principle, where mutually similar and densely mapped
relevant images and image segments strengthen each other
and thus in the end dominate over mutually dissimilar ones
mapped sparsely on the SOM surfaces.

In this paper, we want to study whether our assump-
tion about the usability of the PicSOM system for extract-
ing semantic information from keyword-annotated images

Fig. 4. Another lobster image and the result of its auto-
matic segmentation in segments marked as ’0’–’7’. Over-
segmentation is visible both in the object and the disjoint
background.

is valid. The experiments to be presented in Section 7 will
contain four steps. First, we will study how the segments of
images belonging to a certain semantic category are mapped
on SOM surfaces. Second, we will examine two different
ways of focusing keyword annotations from the image level
to the segment level. In the first method, all segments of
all images sharing the keyword are first marked relevant on
all SOM maps. In this situation we will have manyfalse
positive segments marked as relevant but nofalse nega-
tivessince none of the semantically relevant segments will
be missed. After the convolutions, each segment obtains a
qualification value which indicates how prototypical repre-
sentative it is for that keyword. For each image, its segments
can then be ordered in the order of descending qualification
value. When the least prototypical segments are progres-
sively being discarded, we obtain an operation curve where
the number of false positive segments is decreasing while
false negative segments increase in their number. The sec-
ond method is otherwise similar, but the convolutions are
repeatedly performed every time after the least representa-
tive positive segment has been discarded from each image.
In this way, the process is more gradual or really focusing,
where the least trustworthy and least probable segments are
being iteratively neglected.

Third, we will try to find prototypical image segments
for a semantic concept expressed with a pair of keywords.
Also in this case the keywords have been given on the image
level, so an indication of the system’s ability to focus the
keywords can be seen in the results.



6. EXPERIMENTAL DATA

6.1. Database

In the following experiments, we use the101 Object Cate-
goriesdatabase [5] of the PASCALVisual Object Classes
Challenge1. The database contains 9197 images divided
into 101 semantic categories, each containing between 31
and 800 images, and a background class of 520 miscella-
neous images. The database has been gathered mostly for
object recognition purposes and therefore does not contain
detailed image-wise annotations.

6.2. Image segmentation

The images in the database were segmented in two steps.
In the first step isodata variant ofK-means algorithm [16]
with a K value 15 was used to compute an oversegmen-
tation based on the RGB values of the pixels. This step
typically resulted in a few thousand separate segments.

In the second step the segments were merged. The
region distance in the CIE L*a*b* color space [3]dLAB

was used as the basis for the merging criterion. In addi-
tion, the multi-scale edge strengthe between the regions
was also taken into account. The final merging criterion
C was weighted with a function of the sizes|ri| of the to-
be-merged regionsri:

C(r1, r2) = s (r1, r2)
(
dLAB (r1, r2) + λe (r1, r2)

)
, (2)

where
s(r1, r2) = min(|r1|, |r2|, a) + b (3)

is the size-weighting function andλ, a andb are parame-
ters of the method. The merging was continued until eight
regions were left.

Prior to the segmentation, the images were scaled to
width of 150 pixels and the original image sizes were re-
stored after it. As the result of the segmentation we thus had
a database 82773 visual entities, of which 9197 were images
and 73576 image segments. We then determined a subset of
43256 image segments with the additional requirement that
the segments in that subset were not allowed to touch the
outer borders of the image. The use of this subset is moti-
vated by the nature of the 101 Object Categories collection
where the objects are mostly salient, located in the middle
of the image and not extending to the borders.

6.3. Features

Seven different features were used to describe the visual
content of the segments. Simple color and texture features
were included in the feature set, partly due to the reason

1http://www.pascal-network.org/challenges/VOC/

that the mapping between feature spaces and visually per-
ceptible object properties was thus kept understandable and
the experimental results were easier to interpret. The CIE
L*a*b* color coordinates themselves and also their first
three central moments [17] were used as color features. Tex-
ture was described using a feature that compares the YIQ
color space Y-values of pixels to their 8-neighbors.

Five MPEG-7 content descriptors [6], Edge Histogram,
Region Shape, Color Layout, Dominant Color and Scalable
Color, were used as somewhat more sophisticated features.
A separate TS-SOM was trained for each feature with levels
containing 4×4, 16×16, 64×64 and 256×256 map units.

Features from all the extracted 82773 image segments
were used in training the SOMs. Unlike our previous exper-
iment setting, we now did not use whole image features and
SOMs at all.

7. EXPERIMENTS AND RESULTS

For performing the experiments we needed ground truth
data for the locations of the objects of some semantic cate-
gory or class in the images. We selected the “lobster” cat-
egory, examples of which were already displayed in Fig-
ures 3 and 4. In those figures, manually specified references
points for the object can be seen. This ground truth infor-
mation was used solely in measuring the PicSOM system’s
performance and was not available to the system itself when
performing the automatic segmentation and focusing tasks.

In general it can be seen that the lobster images are
much more often over- than undersegmented, ie. the ani-
mal appears in more than one segment. This results from
the fact that we have always extracted the fixed number of
eight segments while the backgrounds of the images are in
many cases very homogeneous and there really are no other
visible entities but the lobster itself.

7.1. Class distributions

In the first experiment we studied how the image segments
of the “lobster” category are distributed on the SOM sur-
face in the case of the low-level CIE L*a*b* central color
moment feature. In the study, we applied the four combi-
nations of two additional options. First, we used either all
image segments or only those that do not touch the image
borders. This information is naturally available as a byprod-
uct of the automatic image segmentation. The restriction to
use only the non-border segments can be motivated by not-
ing that additive noise from background segments can be
suppressed by this way. The second option was to use only
those lobster segments which contain the mark positioned
in the neck of the crustacean when we annotated that partic-
ular image category. This kind of auxiliary information is
normally not available for the system and can therefore be



used only to study what could be gained if it were.
Figure 5 shows the surface distributions of the classes on

the 256×256-sized bottom level SOMs after a convolution
with a triangular-shaped window of radius 12 units. Darker
shades represent denser distributions in the respective parts
of the map. It can be seen that the data distribution in the
color moment feature space is roughly three-modal when all
segments are used. When the border segments are filtered
out, the fraction of the distribution located in the top left
corner of the SOM is suppressed. It can easily be verified
that these segments depict the white background existing in
many of the lobster images. We can further notice that the
distribution becomes even sharper when only the explicitly
marked segments are used. The difference is, however, not
crucial, and the true distribution can sufficiently be approx-
imated with that of all non-border segments.

The result of this experiment is thus that the distribu-
tions of the segments from different semantic classes can be
seen concentrated on specific locations on different SOM
surfaces. Some of them will certainly not be as clear as in
this case where the characteristic color of the lobster was
a key factor. The concentration seems to take place even
though the segment data for a class contains seven times
more false positive samples than true positives. However,
the distribution of the false positives is less concentrated
than that of the true positives, as expected, and can be fur-
ther suppressed by using only the non-border segments. The
effect of the false positives might therefore be regarded at
least to some extent as negligible noise.
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Fig. 5. Distributions of lobster image segments on the color
moment SOM. The four distributions differ in the way how
the mapped segments have been selected. Top left: all 328
segments; Top right: 193 segments not touching image bor-
ders; Bottom left: only the pointed segment from each of 41
images; Bottom right: 33 pointed non-border segments.
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Fig. 6. Curves of false positive versus false negative key-
word focusings on segments of lobster images.

7.2. Keyword focusing

In the second experiment we studied how well a keyword
given on the image level can be focused on one of the au-
tomatically extracted image segments. As the starting point
we again had the “lobster” category. We ran the experiment
a total of four times. In the first two experiments we used all
41 lobster images and their 328 image segments, whereas in
the latter two we used only the 193 segments which did not
touch the borders of the images. In that case the effective
size of the lobster category was reduced to 33, because in
eight lobster images the segment containing the manually-
marked reference point was a border segment.

For the focusing process we used two methods. In both
methods the “lobster” keyword was originally assigned to
all eight or fewer image segments of the images known to
portray a lobster. Then the number of segments assigned the
“lobster” attribute was sequentially reduced towards one.
For each lobster image its segments were sorted in the de-
creasing order or qualification value produced by the Pic-
SOM system by using the sum value from all the seven fea-
ture types.

The two focusing methods differed in the way how the
segments with the smallest qualification values, ie. the least
prototypical ones, were gradually rejected in the focusing
process. In the method “1”, the original convolution values
were used in all steps whereas in the method “2” the con-
volutions were calculated again every time when the least
representative segment of each image had been removed.
The latter method thus results in a more iterative and grad-
ual type of process.

Figure 6 shows how the number of false positive seg-
ments decreased when the least prototypical segments were
discarded in the focusing process. It can be seen that the
number of false negatives was meanwhile steadily increas-
ing. It can be seen that both the methods “1” and “2” are



Fig. 7. Some lobster image segments which the keyword fo-
cusing process has interpreted to depict a lobster. In the top
row the results are successful, in the middle row partially
successful and in the bottom row failures. The segment area
is bordered and shown in color, the surroundings are in grey.

to some extent able to focus the “lobster” keyword on one
particular image segment more accurately than by random
association shown as a reference method. In the final stage
when the keyword is given to one segment only, the meth-
ods produce 31 false negative segments, ie. 76% of the total
of 41 images, when all segments are used. When only non-
border segments are counted, the final false negative count
is 20, ie. 61 % of the total of 33. The false positive rates are
all about half of that of random selection.

The result of this experiment does not reveal significant
difference between the performances of the keyword focus-
ing methods “1” and “2”. One might still argue that with a
larger category the iterative method “2” could be expected
to show better performance. It is anyway clear that the result
motivates to use only non-border segments for databases
like this one, where the semantic content of an image is
always a specific object located in the middle of a homo-
geneous background.

Figure 7 shows six image segments where the keyword
focusing process has positioned the lobster keyword in its
last round. The two top images are clearly successful and
the detected segment covers the animal quite perfectly. In
the middle row the success is partial, mostly due to overseg-
mentation resulting from a too homogeneous background.
In the bottom row the process has found clearly wrong seg-
ments outside the animal.

Fig. 8. The best image segments matching the keyword
“lobster”. The first four displayed segments had the largest
score value and belonged to the “lobster” class. The last
two segments were those with the largest score and not be-
longing to that class. The prototypical segment is shown
bordered in color, others in grey.

7.3. Prototypical image segments

In the third experiment we wanted to find out how well the
PicSOM system can extract the most representative image
segments for the semantic category of “lobster”. This was
performed so that the lobster segments not touching image
borders were marked as relevant on all seven bottom-level
TS-SOMs. Then the convolutions with a triangle-shaped
window of radius four map units was performed. After that
the scores for each non-border segment on all maps were
summed and the segments were ordered in the order of de-
scending score.

Figure 8 shows first the four most prototypical image
segments found. It can be seen that none of them are full
lobster images due to the oversegmentation. Otherwise it
is visible that the segments depict some characteristic part
of a lobster, eg. its body, legs or claw. The last two seg-
ments were not placed among the most representative ones,
but were the best ones not belonging to the lobster category.
One can note that the color of the first one matches the char-
acteristic color of a lobster, whereas the shape of the second
segment might resemble that of lobster’s claw or leg.

The result of this experiment reveals that the typical seg-
ments extracted from the lobster images really depict the
lobster and not its surroundings. It is also clear that overseg-
mented images are more typical than correctly or underseg-



mented ones. The last part of the experiment shows that the
segments which are typical for a lobster are not necessarily
red in their color. This indicates that also other feature types
than color are involved in the segment selection process.

8. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have demonstrated how the Self-Orga-
nizing Maps of the PicSOM CBIR system can be used to
extract prototypical segments from image classes. Such im-
age classes can be constructed from keyword annotations or
from records of online user interaction with the CBIR sys-
tem. It is worth to note that such semantic classes are in both
cases defined on the image level and the system is still able
to automatically focus the semantic information on specific
image segments.

The experiments described in this work were performed
with real-world data and truly automatic image segmenta-
tions, but were still merely preliminary “proof-of-concept”
studies. More detailed analyses will be needed to compare
the results of our approach with ones presented in the open
literature. In such comparisons, both the recall–precision
performance of the normal CBIR usage and the accuracy of
the automatic segmentation subsystem should be studied.

The results of our experiment can be summarized by
stating that prototypical segments for an image category
could be extracted despite oversegmentation. On the other
hand, the keyword focusing process was suffering from the
inaccurate image segments. We have plans to ease this sit-
uation by extracting features from the image segments hi-
erarchically. This will allow the most reliable segmentation
to be determined during the process and thus the effective
number of segments will adapt itself to the task.
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