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Abstract

In this paper we consider the problem of automatically anno-
tating images with keywords. We first discuss performance
measures for the problem in some length. We propose a new
information-theory based measure — de-symmetrised mutual
information (DTMI). We then describe a straightforward solu-
tion to the annotation problem. We first train a set of classifiers
to detect the presence of each individual keyword in the set of
training images. For this we use the PicSOM image analysis
framework. We then describe a method of converting the clas-
sifier outputs back into keyword annotations for the test set. We
compare the performance of the proposed method experimen-
tally to that of other methods presented in the literature. For the
experiments we use data from the Corel database. The result of
the comparison is favourable to the proposed method.

1 Introduction

In recent times the problem of matching words and images has
attracted considerable research interest [1, 2, 3, 6, 7]. This
problem provides another point of view to the difficult prob-
lem of general image content understanding. Our own research
originates from the direction of interactive content-based im-
age retrieval (CBIR), for which we have been developing the
PicSOM software system (e.g. [5]). In CBIR one of the main
problems is bridging of the large semantic gap between low
level image descriptors and the user’s desire to query the sys-
tems using high level semantic concepts. Natural language,
i.e. words, readily offers a symbolic representation of semantic
concepts. Using textual annotations as proxy might offer some
help in overcoming the semantic gap.

A wealth of automatic image captioning methods has been pro-

posed in the literature. But how good are the methods? It
is somewhat difficult to say since there is also a wide variety
of performance measures in use. In this paper we intend to
shed light into this issue by using the PicSOM methodology
for image similarity assessment and derive an automatic cap-
tioning method in a most straightforward imaginable way from
the assessments. We compare the performance of our proposed
method against some published methods using a commonly
used performance measure and data sets from the commonly
used commercial Corel image database. In this way we get
an idea of the level of the state of the art performance in the
field since we then can directly relate it to the performance of
the PicSOM system. On the other hand, this conceptually el-
ementary image annotation method will provide an easily un-
derstandable baseline for future improvements.

In this paper, we will first discuss some performance measures
in Section 2. Even though there is more than adequate number
of various measures in use currently, we still feel that they are
somehow unprincipled. Therefore, we introduce one more per-
formance measure, inspired by information theoretic reason-
ing. In Section 3, we briefly describe the method for deriving
classifiers for keywords. Then in Section 4 we describe how
to use the classifier outputs for annotating images. In Section 5
we experimentally test our method with widely used Corel data
sets. In Section 6 we draw final conclusions from the results.

2 Performance evaluation

The keyword annotation problem can be reworded as “max-
imising the goodness of the predicted annotations”. The so-
lution is thus inherently determined by the used “goodness”
measure.

We will use notation where N and W denote the number of
images and keywords in the test set, respectively. We describe
the predicted and ground truth annotations with binary matrices
Arred A9t € {0, 1}V*W where the columns corresponds to
keywords and rows to the different images. We choose our per-



formance measure to be a function of the two matrices AP"¢¢
and A9 only. Thus, intuitively speaking, we want to define
some sort of similarity measure of those two matrices.

2.1 Normalised score

A widely used performance measure in the literature is the av-
erage normalised score [1, 3, 6]
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where E; denotes the average over the test set images I, w([)
is the actual annotation length, i.e. the number of keywords
annotating an image, ¢(/) is the number of correctly predicted
keywords and n(I) the number of incorrect predictions. Thus
the NS measure can be written also in the form
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The measure has some intuitively appealing characteristics.
First of all, it attains its maximum value iff the matrices are
exactly the same. Similarly, the minimum value is attained iff
the matrices are complements of each other. Furthermore, for
a given number of correctly (incorrectly) predicted keywords
the score decreases (increases) with the increasing number of
incorrectly (correctly) predicted keywords.

The balance between sensitivity and specificity is somewhat ar-
bitrary, though. In practice, given the current prediction accu-
racy and the value W — w for the balance constant, maximising
the NS performance leads to the prediction of large number of
keywords for each image. This is because false positives are
punished relatively mildly. Other ways of balancing specificity
and sensibility (such as [2]) do exist, but in general, they do
not appear any less arbitrary. If the annotation problem is re-
stricted to predicting a fixed number of keywords (e.g. [7]), the
balancing problem disappears, though.

The normalised score has its merits, however, and as we want
to compare the performance of our method with other meth-
ods, we use also this often used performance measure in the
experiments.

2.2 Mutual information measures

The normalised score does not capture the intuitive notion of
some words being easier to predict than others. If almost ev-
ery image is annotated with the word “sky”, correctly predict-
ing the word is not that difficult and should not be given much
weight in the performance measure. The information-theoretic
notion of information captures this distinction.

A natural candidate for a performance measure would be the
mutual information. But to calculate this, we would need ran-
dom variables and their distributions, as opposed to the two

fixed matrices AP"¢® and A9%. In order to arrive at random
variables, we consider each row of AP"? to be a realisation of
random variable a?"*?, and for A9 similarly. Now we could,
in principle, estimate the distributions p(a“') and p(ad|aP"ed)
and use their mutual information

I(agt;apred) _ H(agt) _ H(agt|apred) (3)

as a performance measure.

As a practical matter, this is not feasible as each of the ran-
dom variables has 2% possible values, and there would not be
enough test data available to estimate the distributions. There-
fore, we (somewhat incorrectly) factorise the distributions:

p@@”) ~ []pr() 4
i
p(agt|ap7'€d) ~ Hp(algt|a§)7'ed). (5)
i
Here we have used the notation
a’ = [af'... afy], a?" = [aﬁmd e a%ed} . (6)

With this assumption of keyword independence, we can use the
modified mutual information
I/(agt; apred) — H/(agt) _ H/(agt|apred)

> H(al") =Y H(al'lal"™) (7)

as a performance measure.

This performance measure still has a shortcoming. Let the bi-
nary random variable X denote the presence of a keyword in
the ground truth and Y the presence of the corresponding key-
word in the prediction. The mutual information between X and
Y is symmetric around the completely random behaviour, i.e. it
only measures the deviation of the X, Y dependence from ran-
domness, not the direction. Maximum mutual information is
obtained even if the variables are of the opposite polarity, i.e.
Y = 0 implies X = 1 and vice versa. To overcome this short-
coming, we modify the expression for the conditional entropy.

The mutual information I(X;Y") measures the decrease in the
optimal code length of variable X when the coder is given
knowledge about the prediction Y. We want to augment the
mutual information with the requirement that Y should be of
the same polarity as X. We present two alternative methods of
modifying the measure to this end. In the first alternative we
modify the coding setup slightly and use the code length reduc-
tion in this setup as the performance measure. In this setting the
coder just refuses to take the predicted keyword into account if
the polarity of the prediction is wrong. Instead, the word will
be coded using the unconditional empirical distribution. The
reduction in code length is denoted rectified de-symmetrised
termwise mutual information (DTMI):

DTMIy(a¥, a”™!) = Y~ H(ad") = Y Hy(al'[al""), (8)
i i



where

) H(X|Y) ifp(X=1]Y=1) >
Hy(X|Y) = p(X=1Y=0) . (9
H(X) otherwise

This measure does not distinguish how seriously the predic-
tions are of wrong polarity, i.e. are the dependencies of the
0 — 1 type only weak or nearly deterministic. As a sec-
ond alternative we heuristically modify the mutual informa-
tion to take this seriousness into account. The de-symmetrised
termwise mutual information (DTMI) measure is based on the
intuitive idea

DTMI(A9, AP™e?) = _DTMI(A, 1y — AP, (10)
i.e. the DTMI will possess an odd symmetry in the polarity
change of the predictions. For correct polarity predictions the
DTMI will coincide with the mutual information:

ZH 9= H(@al™), (1)

DTMI(a?!, aP™*d) =

where
X H(X|Y) ifp(X=1Y=1) >
H(X|Y)= p(X=1|Y=0)
2H(X) — H(X|Y) otherwise
(12)

The DTMI, and DTMI measures (simply the DTMI measures
from here on) have a sound information-theoretical backing.
Furthermore, codelength interpretation gives them a practical
meaning — it makes sense to measure how many bits the key-
word predictions are able to shorten the optimal code for the
annotations of the test set. It is also intuitive to require predic-
tion of the keyword to make it more probable. The code length
interpretation gives the measures a natural absolute scale. To
obtain a relative measure, we can divide the DTMI values by
the unconditional test set entropy >, H (a?").

The DTMI measure exhibits all the intuitively pleasing proper-
ties mentioned in the connection with the normalised score. In
addition to these properties, mutual information has the sym-
metry property that the measure remains the same when both
APred and A9' are complemented. The same applies to the
DTMI measures. The normalised score does not possess this

property.

2.3 Relation of DTMI to KL divergence

n [1] a Kullback-Leibler (KL) divergence based measure

Exi(model) = Ey [Dxy(p(w|1), g(w|I)] (13)
is used to measure the fit between the obtained probabilistic
model g(w|I) = q(w|B) and the actual conditional word dis-
tribution p(w|I). Here w is a word in the vocabulary, I is

an image and B its feature representation. This starting point

seems suspicious as the distributions measure the probability
of observing keyword w if one keyword is picked from the an-
notations of image /. Better alternative would be to measure
the absolute probability of the image being annotated with the
keyword w (conditional to I). FEy thus effectively assumes
each image to be annotated with a fixed number of keywords.
For example, this is not the case for the Corel data used in the
experiments.

There is a fundamental difference between E;, and the DTMI
measures as Ekj is not a function of A9 and AP alone,
but a functional of the probabilistic models instead. Conse-
quently, Fxi is not directly applicable to annotation methods
whose results are not formulated as probabilistic models. On
the other hand, the DTMI measures could be adapted to prob-
abilistic models by replacing the values in the binary matrix
Arred by the probabilities p(Af] ¢4 — 1|model, training set).
Then a model would have to be estimated for p(a’|a?”*%).
This should not present a great difficulty.

Another unfortunate property of Fxp is of a more practical na-
ture. The measure requires knowledge about the conditional
distribution p(w|I), but only the matrix A9* is available. The
distribution can be estimated only very poorly as there is only
one observation available — the corresponding row of the ma-
trix. In [1] the distribution is taken to be the ML estimate
1/K for the words appearing on the row and zero otherwise.
This leads to a measure that does not discriminate well between
common and uncommon words.

For these reasons and because of the incorrect fixed annota-
tion length assumption, we believe Ex not to be well suited
for measuring annotation quality, although it clearly gives an
indication whether an annotation method is sensible at all.

3 PicSOM system for image classifica-
tion

The PicSOM system is a framework for research on content-
based image retrieval. A more detailed description of the
framework can be found in e.g. [5]. As the name implies,
PicSOM uses the Self-Organising Map (SOM) [4] as its ba-
sic image indexing method, although other clustering methods
are also supported. The SOM is a powerful tool for explor-
ing huge amounts of high-dimensional data. It defines an elas-
tic, topology-preserving grid of points that is fitted to the input
space. The distribution of the data vectors over the SOM forms
a two-dimensional discrete probability density. From the same
image data several qualitatively different distributions can be
obtained by using different feature extraction techniques.

3.1 Multiple Self-Organizing Maps

The PicSOM system is fundamentally based on the simultane-
ous use of several parallel SOMs, trained with different feature
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Figure 1. An example of using two parallel SOM indices for
segmented images. The color and texture SOMs are trained
with image segments and each segment is connected to its
BMU on each SOM.

data, in image analysis. The features usually comprise of sta-
tistical visual descriptors such as the MPEG-7 content descrip-
tors. The SOM feature indices can be constructed either for
whole images or certain subobjects, such as image segments.

After the unsupervised training of the SOMs, the map units
form data-driven representations of the feature spaces. Images
and their segments are connected to SOM units that thus be-
come their representantations on the SOMs. The connecting
is done by locating the best-matching unit for each image or
segment on each SOM. As a result, the different SOMs impose
different similarity relations on the images and the system thus
inherently uses multiple features for image analysis. An illus-
tration with two parallel SOMs trained for image segments is
presented in Figure 1.

3.2 Image similarity assessment

In the image classification task the system is provided with
a number of training example images. The images are parti-
tioned into two classes: they either do or do not possess some
property. In this case, the class determining property is the ex-
istence of a certain keyword (e.g. “sky”) in the annotation of an
image. In the following we denote the images belonging to the
class relevant, the other images are called non-relevant. In the
first phase the relevance classifications are propagated to the
segments of the respective images. As the next step, the SOM
units are awarded a positive score for every relevant image seg-
ment mapped in them resulting in an attached positive impulse.
Likewise, the non-relevant segments result in negative scores.
By normalising separately the positive and negative scores to
sum to unity, we obtain a zero-sum sparse value field on every
SOM in use.

Due to the topology preservation of the SOM, segments that
are similar according to a specific visual feature are located
near each other on the corresponding SOM surface. Therefore,
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Figure 2. An example of a SOM surface being kernel
smoothed. On the left, relevant and non-relevant segments of
images are shown with white and black marks, respectively. On
the right, the convolution result, where relevance information is
spread around the centers.

we are motivated to perform spatial kernel smoothing on the
relevance information. Figure 2 illustrates how the positive and
negative responses are first mapped on a SOM surface and then
expanded in the convolution.

Because of the normalisation the response values of the par-
allel SOMs are mutually comparable. The total qualification
value for each image segment can then be obtained by sim-
ply summing the corresponding responses. For images, their
segment-wise values are further summed to form the image-
level qualification values. On SOMs that correspond well to the
keyword annotations concentrated positive scores amplify each
other. On worse SOMs, nearby positive and negative scores
interfere destructively. The parallel content descriptors and in-
dices do not therefore need explicit weighting.

4 Converting classifier outputs to anno-
tations

Using the training set, the PicSOM system is trained to act as a
classifier and to output a discrimination value that reflects the
likelihood of a given image to be associated with an individual
keyword. A separate classifier is trained to discriminate each
keyword in the vocabulary. We apply each classifier to the test
set images and call the resulting list of discrimination values
the classifier outputs.

We require from the classifier outputs that among the values
output by a single classifier, increasing values are associated
with larger likelihoods of the corresponding keyword. We do
not require the values from different classifiers to be compara-
ble. We assume the classifier outputs to be similar in the test
and training sets, i.e. similar classifier output values for a train-
ing set and a test set image correspond to approximately equal
likelihood of the keyword.

The annotation procedure processes each keyword separately.
For each keyword, the classifier outputs for the test set are
sorted and a number of top-scoring images are annotated with
the keyword. The score threshold is selected so that a perfor-
mance measure is maximised in the training set. In the follow-
ing we will consider the selection of the optimal threshold for
the NS and DTMI measures. In both cases the threshold can be
selected to be the score of one of the images that are annotated
with the keyword in the training set (positive example image).
For the performance measures under consideration the thresh-



olds for different keywords do not interact. We can thus select
a threshold separately for each keyword classifier.

4.1 Normalised score

We compute the expected training set performance syg for each
of the candidate thresholds, the expectation being over the em-
pirical distribution of the annotation length w in the training
set images. If the threshold was the score of the i:th positive
image, the expected normalised score would be
) i rank(i) — 4
SNs(Z) —Ew |:w W —w :| , (14)

where rank(¢) is the position of i:th positive image in the sorted
classifier output. The threshold is set to the score of the positive
image maximising this performance measure.

The approximation introduced by taking the expectation over
the annotation lengths w could be avoided since we know the
exact number of annotations for each training set image. By do-
ing the approximation we lose the information of different key-
words having different distributions of number of words in the
annotations they appear in. On the positive side, we now have
enough data to robustly estimate the global annotation length
distribution, as opposed to small number of samples to esti-
mate the distributions for the individual keywords. The tests
we performed indicated that the effect of the approximation to
SNs 1S minor.

4.2 Termwise mutual information measures

The threshold selection procedure is similar to the normalised
score case. The same threshold values can be used for op-
timising both the DTMI measures as for the correct-polarity
predictions the measures coincide. For the training set the
performance maximising threshold always results in a correct-
polarity prediction. For this reason, we can calculate simply
the mutual information.

In this case we evaluate a keyword’s contribution to the train
set performance exactly. We ignore the unconditional entropy
of the training set since it is constant for all thresholds. The
DTMI score for the threshold being at ¢:th example image is
then

SDTMI(i) = - Zpemp(y :y|l) Zpemp(X :x‘Y =Y, Z)
Y T

X 108y Pemp (X =2|Y =y, 1). (15)

Here X and Y denote the presence of a keyword in the annota-

tion in the training set ground truth and prediction, respectively.

Pemp S are the empirical probabilities in the training set:

. rank(z
pemp(Y = 1‘2) = N( ) (16)
. )
Pemp(X =1Y =114 = rank (i) 17
Nyos — @
m(X =1y =0,i) = —2 1

S Experiments

5.1 Data sets

For testing we use subsets of the Corel image database, which
has often been used in the experiments in the literature, e.g.
[1, 2, 3, 6, 7]. Unfortunately, many of these experiments use
performance measures different from ours. Anyway, we will
reproduce the settings of some of the experiments. In the Corel
database the images are equipped with keyword annotations.
For the sake of comparison we use the preprocessing of the
database supplied by [1] where the annotations are filtered to
contain only keywords that appear frequently enough.

For visual description of the images we use segmentations and
features given in [1]. The segmentations are produced with the
normalised cuts algorithm [8]. At most ten largest segments
are kept for each image. The visual content of the segments is
described by a set of 40 features, some of which are highly re-
dundant. The features include position, area, three elementary
shape descriptors, averages and standard deviations in RGB,
CIE L*a*b* and RSG colour spaces, and 16 measures of tex-
ture.

The first of the used image subsets is exactly the same as in [3]
and contains 9883 images. This image set is divided, similarly,
in the training set of 6961 and the test set of 2922 images. We
denote this data set the Glotin data. The keyword vocabulary is
slightly preprocessed, mostly to remove inconsistencies in the
keywords. The resulting vocabulary size is 267 words.

In [1] and others, somewhat smaller subsets of the Corel image
database are used. We run the experiments for two of these sub-
sets (subsets 006 and 008 in [1]). The training set sizes for the
subsets are 5192 and 5266 images, the test set sizes 1737 and
1724 images. The vocabulary is limited to contain only key-
words that occur frequently enough in the training data. The
vocabulary sizes are 162 and 168 words. We denote these data
sets the Barnard data. There are two reasons for the use of
these data sets. First of all, we can directly compare the perfor-
mance of our system against the published figures of the other
methods on this data set. Secondly, we can evaluate the effect
of slightly different image sets on performance and thus get a
better understanding of the comparability of various published
results.
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Figure 3. ROC curves of some classifiers in the test image set.
The performance of the classifiers is evaluated using the area-
under-curve (AUC) criterion. Keywords appearing less than 20
times in the test set were excluded from this comparison. The
typical classifier was selected by binning the AUC values and
selecting a classifier from the most typical bin.

5.2 Classifier training

For classifier training the features were divided into ten partly
overlapping sets. The feature values were normalised so that
the standard deviations of the features in a set were roughly
equal. For each set of features a SOM presentation was trained
in an unsupervised manner. Both test and training sets were
used to train the SOM’s. We consider this to be justifiable, as
we are not using the labels of the test set, only the statistics
of the test inputs. This is not even likely to affect the results
in this case, as the statistics of the test and the training set are
very similar.

We then use the standard PicSOM machinery to train classi-
fiers for each keyword. We use all the training images anno-
tated with the relevant keyword as set of positive example im-
ages, and all the other training images as the set of negative
examples. We did not do extensive search to select the best
combination among the available features to train the classi-
fiers. We chose the features that performed best in the experi-
ments [3] as a starting point and did some local search in that
neighbourhood. In addition to starting feature set of shape and
CIE L*a*b* features, the final feature sets also included posi-
tion and some of the texture features. It is not likely that we
have found the optimally performing set of features, neither
are the other classifier parametres likely to be optimal. How-
ever, the performance of the resulting classifiers seems reason-
ably good. Figure 3 shows the receiver operating characteristic
(ROC) curves of the best, the worst and a typical classifiers for
not too infrequent keywords for a certain set of classifier train-
ing parametres.

5.3 Results

Even though we have above questioned the justification for us-
ing the NS score in the evaluation of annotation performance,
we use it for the comparison of various existing methods for
the reason that it simply is readily available for many methods.

Figure 4 shows the NS score resulting from always predicting
a fixed number of keywords with highest a priori probabilities,
regardless of the actual pictorial content. This can be regarded
as the baseline method to beat for a method to be useful at all.
We see that the different data sets have different levels of a
priori performance. However, the higher values are probably
mainly explained by the fact that in the larger databases the
additional keywords mostly appear in the infrequent keyword
end of the vocabulary. Due to their low probability, the main
effect of these keywords is the increase in the vocabulary size.
This directly increases the NS scores by reducing penalty from
false positives. On the other hand, the thresholds for predicting
keywords in the optimal annotation are also lowered and the
number of correctly predicted keywords increases. In the fig-
ure we can also see the magnitude of the effect of vocabulary
preprocessing in the Glotin data.

The DTMI measures express the information gain from the an-
notation if the statistics of the keywords are already known.
Any uniform annotation thus has the DTMI score zero. The
relative “difficulty” of the data sets can be compared by the
unconditional average entropies of the annotations, which are
shown in the Tables 1 and 2. For comparison, the average
termwise entropy for the Glotin data without vocabulary pre-
processing is 15.55 bits. However, neither these numbers nor
the NS scores of the prior distributions are able to give any
hint on how much of the remaining uncertainty can realisti-
cally be predicted away by exploiting the image-word correla-
tions. They merely indicate what kind of performance can be
achieved by looking at the word statistics alone and ignoring
the pictorial content. One can think of example cases with the
same unconditional entropies (or a priori NS scores) where the
image features would be either fully correlated with the key-
words (e.g. the keywords graphically written in the image) or
fully uncorrelated with the keywords (e.g. noise images).

It appears that the performance comparisons of annotation
methods working on different data sets are going to be unre-
liable in any case. We thus try to avoid such comparisons here
by employing several data sets. In [3] it is proposed that the
effect of different data sets could be partly equalised by mea-
suring the percentual NS improvement over fixed a priori an-
notations. This would also be used to equalise the performance
measure of methods predicting a different number of keywords
for the images. This equalisation method seems flawed. Im-
plicit to the idea is the notion that it would be easier to improve
over a good a priori performance than bad. Intuition tells oth-
erwise. E.g. the improvement of 0.1 over a priori performance
0.4 is percentually larger than 0.1 improvement over 0.9, even
though the predictor is doing a perfect job in the latter case.
Also our annotation results for somewhat different but still rea-
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Figure 4. Normalised scores of fixed length annotations ac-
cording to maximum training set a priori probability for vari-
ous data sets.

sonably similar data sets point into this direction. The improve-
ments ANS tend to get smaller as the a priori performance gets
better. Also the equalisation of annotation lengths by this way
appears unfair as there is no reason to assume the proportion
remains (even approximately) the same for the same predic-
tion method with a different number of predicted keywords. In
fact, operating curves of the predictors in [1, 6] would hint the
contrary.

Tables 1 and 2 show the prediction results for the Glotin and
Barnard data, respectively. For our annotation methods, the
subscripts NS and DTMI refer to predictors that are optimised
for the respective measures. From [1, 3, 6], the best performing
methods have been presented in the tables.

The inclusion of the DIMATEX method for the Glotin data is
not fully fair, as the method considers the problem of finding a
fixed number of best keywords for each image. The number of
keywords, ten, is clearly too low to give the highest possible NS
score for this data. On the other hand, not even the Corel data
itself has a fixed number of keywords for each image. Limiting
the number of keywords in the annotations is a sensible goal
by itself. However, if such a goal is desired, we think that
the goal should be incorporated in the performance measure

Method ANS | NSpior | DTMI | >, H(a?")
PicSOMns 0.182 | 0533 | 2.23 14.97
PicSOMprwvi | -0.016 | 0.533 | 3.20 14.97
DIMATEX [3] | 0.092% | 0348 | 0.71 14.97

Table 1. Results of annotating the Glotin data set. For the Pic-
SOM methods, NS;;;; denotes the maximum of the NS score
of fixed annotations over the number of predicted words. ANS
denotes the NS increase over this number. The DIMATEX re-
sult (*) is for ten word prediction length and FLAB features.
Thus, for sake of comparison, on the DIMATEX line NS0, (*)
is calculated for a fixed ten word annotation.

Method ANS [ NSpior | DTMI | >, H(a?")
PicSOMNs 006 0.262 | 0.406 2.95 14.66
PicSOMprmri006 0.115 | 0.406 3.78 14.66
PicSOMNns 008 0.213 | 0.448 2.56 14.27
PicSOMprmr,008 0.070 | 0.448 3.26 14.27
Monay et al. [6] 0.153 | 0.383 - -
Barnard et al. [1] | 0.179 | 0.425 - -

Table 2. Results of annotating the Barnard-like data sets.
NS,sior denotes the maximum of the NS score of fixed anno-
tations over the number of predicted words. ANS denotes the
NS increase over this number. The two sets of PicSOM results
are for the two data sets 006 and 008. For [1, 6] the results
are averages of ten and nine data sets, respectively. The re-
sult of Monay et al.is for their method LSA 2. The method of
Barnard et al. has identifier binary-D-2-region-cluster in [1].

in order to be able to compare predictions with varying number
of keywords.

For our methods the DTMI and DTMI|, figures are the same up
to two decimal places. Thus, the effect of predictions of wrong
polarity is negligible. In this case, using the normal defini-
tion of mutual information would not introduce large errors in
performance measurement. However, for the sake of complete-
ness and as a safeguard against prediction polarity, we consider
DTMI to be the safer choice for this application.

For optimising the DTMI and NS performance measures it is
worthwhile to predict more keywords than appear in the true
annotations. The optimal number of excess keywords depends
on the quality of predictions. The current quality of classi-
fiers results in the optimal number to be around 40, whereas
the number of keywords in the correct annotations is approx-
imately 3.5. In general, optimising the NS measure requires
somewhat more keywords to be predicted in our case than
DTMI, 42 vs. 32 on average for the Glotin data set. The be-
haviour on individual keywords is dramatically different for the
two methods. The NS measure encourages the prediction of the
most common keywords much more often than DTMI. For rare
keywords the opposite is the case.

In our approach the classifiers that result in good performance
in sense of DTMI seem to have good performance also in the
NS sense. Relative order of slightly differently performing
classifiers may vary in the DTMI and NS senses. The simi-
larity is quite natural since the classifier output determines the
ordering of images in terms of likelihood of those images being
associated with a keyword. Optimising the annotation in either
NS or DTMI sense affects only the choice for threshold, i.e. the
number of top images in the ordering that will be tagged with
the keyword.

6 Discussion and conclusions

The image auto-annotation problem can always be seen as an
optimisation problem. The choice of the criterion to be op-



timised will guide the development of the annotation meth-
ods into a certain direction. We argue that the information-
theoretically inspired DTMI measure is a good and well-
grounded candidate for such a criterion.

The quality of the annotations in the Corel database is not very
good. The keywords that annotate an image are usually correct,
but the main problem appears to be the missing annotations.
For some of the keywords (e.g. “sky”,”’snow”,’wall”), the deci-
sion to include the keyword in the annotations seems rather ar-
bitrary, even though the corresponding objects appear in promi-
nent positions in the images. It is questionable, whether the
goodness of an automatic annotation system should be mea-
sured in terms of predicting such peculiarities of the manual
annotation process.

It would appear that the shortcomings of the database annota-
tion start to seriously affect the performance evaluation only
after the performance reaches a certain level. Based on the ex-
perimental evidence, the image-word correlations are by far the
dominating effect also in the Corel database and the peculiari-
ties of the annotations are only a second order effect. As long
as the performance gain potential left in the “real” target of
image-word correspondence dominates the secondary effects,
it makes sense to use the database as a performance indica-
tor. The problem is that it is very difficult to know how good
is the limiting performance level in this database. We know
assumption-free learning to be impossible [9]. On the other
hand, with strong enough assumptions the learning problem be-
comes trivial. The question then is, how good performance can
be achieved in the Corel database when exploiting reasonably
general assumptions. We predict that the current results are
still far below the maximum level. The performance can thus
be usefully measured on this database as long as some caution
is taken.

The achieved annotation results demonstrate that a relatively
well performing auto-annotation system can be constructed
in a straightforward manner given classifiers for the individ-
ual keywords. This provides a potential application for the
kind of image similarity assessments the PicSOM system pro-
duces. Improvements in the classification performance will be
directly converted to an increased performance in image auto-
annotation. We have a number of ideas to this end. For exam-
ple, in this paper we used the segmentations and features pro-
vided by [1]. Preliminary experiments indicate that some other
feature extraction techniques could lead to better performance.
On the other hand, there is a lot of room for improvement in
the classifier building techniques themselves.

Another source for performance improvement is the procedure
by which the classifiers are selected and their outputs converted
into annotations. In this study we have assumed the different
keywords to be independent. The assumption is not exactly
correct. The annotation performance can probably be improved
by taking the keyword interdependency into account. However,
it appears likely that many of such dependencies would be quite
strongly due to the specific annotation practices of the used
database. In any case, the matter seems worth investigating.

In choosing the prediction thresholds we have employed the
naive assumption that the training set perfectly reflects the
statistics of the test set. Thus we have ignored all small sam-
ple effects, and probably compromised some performance. It
remains unknown how much performance could be gained by
taking these effects into account. The effects are most pro-
nounced for infrequent keywords and therefore the effect for a
single keyword may be small. However, the number of such
rare keywords is large.

Acknowledgements

We want to specially thank Sabrina Tollari and Hervé Glotin
for providing access to their data and results in electronic form.
Thanks also to Kobus Barnard et al. for setting their data pub-
licly available. This work was supported by the Academy of
Finland in the projects Neural methods in information retrieval
based on automatic content analysis and relevance feedback
and New information processing principles, the latter being
part of the Finnish Centre of Excellence Programme 2000—
2005.

References

[1] K. Barnard, P. Duygulu, N. Freitas, D. Forsyth, D. Blei, and M. 1.
Jordan. Matching words and pictures. Journal of Machine Learn-
ing Research, Special Issue on Machine Learning Methods for
Text and Images, 3:1107-1135, February 2003.

[2] J. Fan, Y. Gao, H. Luo, and G. Xu. Automatic image annotation
by using concept-sensitive salient objects for image content rep-
resentation. In Proceedings of the 27th annual international con-
ference on Research and development in information retrieval,
pages 361-368, Sheffield, England, July 2004.

[3] H. Glotin and S. Tollari. Fast image auto-annotation with visual
vector approximation clusters. In Proc. of IEEE EURASIP Fourth
International Workshop on Content-Based Multimedia Indexing
(CBMI2005), June 2005.

[4] T.Kohonen. Self-Organizing Maps, volume 30 of Springer Series
in Information Sciences. Springer-Verlag, third edition, 2001.

[5] J. Laaksonen, M. Koskela, and E. Oja. PicSOM—Self-organizing
image retrieval with MPEG-7 content descriptions. /IEEE Trans-
actions on Neural Networks, Special Issue on Intelligent Multi-
media Processing, 13(4):841-853, July 2002.

[6] F. Monay and D. Gatica-Perez. On image auto-annotation with
latent space models. In Proceedings of the eleventh ACM interna-
tional conference on Multimedia, pages 275-278, Berkeley, CA,
2003.

[7] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. GCap:
Graph-based automatic image captioning. In Proceedings MDDE
'04, 4th International Workshop on Multimedia Data and Docu-
ment Engineering, Washington, DC, USA, July 2004.

[8] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):888-905, August 2000.

[9] D. H. Wolpert. The supervised learning no-free-lunch theorems.
In Proc. 6th Online World Conference on Soft Computing in In-
dustrial Applications, 2001.



