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Abstract. In this paper we describe and discuss our existing PicSOM
software framework from the point of view of context-adaptive analy-
sis of image contents, especially its method for using automatic image
segmentation. We describe and experimentally validate a modification
to the segment-using procedure that both essentially reduces the com-
putational cost and slightly improves classification accuracy. Finally, we
apply the segment-using methodology in qualitatively investigating the
roles of primary objects and their context in classifying the images of the
Pascal VOC Challenge 2006 database.

1 Introduction

People are nowadays faced with constant and overwhelming stream of digital
image and video content. Furthermore, the amounts of data being generated
seems to be constantly increasing. Therefore, automatic methods are highly de-
sirable to analyse and index the large data masses. Especially useful would be
methods that could automatically interpret the semantic contents of images and
videos as it is just the content that determines the usefulness of them for most
purposes.

Our PicSOM software framework [8,11] is aimed at automatically organising
and ordering large unannotated databases of audio-visual objects according to
the similarity of their contents. The databases may include images, videos, texts
and multi-part objects, such as mobile multimedia messages, emails and web
pages. The objects in the database may be hierarchically related to each other,
such as different parts of a multimedia message. In this paper, we focus on
the case of image databases where the hierarchy consists of images and their
segments. The underlying principle of the framework is to extract a large number
of visual features from the database images. Then the aim is to find statistical
dependencies between the visual features and the current goals of image analysis.
The dependencies are not required to be deterministic rules, such as blue always
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corresponding to sky. On the contrary, even weak probabilistic correlations are
sought after.

A natural approach to describing an image would be to list what different
parts the image contains, and then possibly describe the major parts in more
detail. In this light, partitioning the image to disparate parts and describing
the image in terms of the content and relationship of these parts appears to
be a promising approach. Indeed, image segmentation often is crucial in image
understanding. The PicSOM method of using image segments is in line with
the statistical approach to image analysis: a set of alternative segmentations is
formed and the system is adaptively allowed to find the segmentations most
beneficial to the image analysis task at hand.

On different occasions, the similarity of image content arises from different
visual features, such as colour or shapes. Only a subset of all the imaginable
features is relevant in a given image analysis task. It is the context of image
analysis that determines the set of relevant visual features. For purposes of the
PicSOM framework, we divide the context into two levels of specificity. The dis-
tinction is made to allow two different mechanisms of adaptation of the frame-
work to the context. We call the broader level of context database context. With
database we understand the collection of the images the content analysis is tar-
geted at, whether or not they are actually collected in a database. We consider
the database part of the context to be fixed, so the system may be adapted to
the database level context beforehand, without needing to take the suitability of
this specific system to other databases. A schematic example of database level
adaptation to context is given by an imaginary database consisting solely of red
and green apples. In the context of this database, it is not wise to allocate re-
sources to a colour feature telling whether an object is blue. Task level context
is the part of the context that changes so frequently that completely re-building
the image analysis system would be impractical. For example, we may think of
a database of vehicles of different colour. Different visual features are relevant,
depending on whether we want to identify motorbikes, red automobiles, or any
yellow vehicle in the database.

In this paper we consider the use of the adaptive PicSOM image analysis
framework in the context of image classification task detailed in Section 2. Sec-
tion 3 outlines the working principles of the framework in general, whereas in
Section 4 we discuss the use of image segments more in detail and experimen-
tally investigate of the usefulness in the image classification task. In Section 5
we describe how the method for using segments may be moved from the on-line
part of the system to the off-line preprocessing and made computationally more
lightweight.

Having performed the image classification task with help of image segments,
we may reverse the direction of the analysis. In Section 6 we compare the the
contribution of different image segments to the classification in the context of
this image database. In Section 7 we present conclusions and discussion.
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2 Image Analysis Task

To evaluate and motivate the techniques we discuss later in this paper, we con-
sider a concrete image analysis task. The task consists of classifying images of
the portion of the Pascal Visual Object Classes Challenge 20061 image set whose
ground truth classifications have been made public at the time of this writing.
This set of 2618 images contains realistic images of ten classes. The classes are
defined by the absence or presence of an object, e.g. cat, in the images. The
classes are partially overlapping, i.e. several different objects may appear in the
same image.

The classification task is considered in a supervised setting: approximately
one half of the images is used as training set and the rest as the test set. Table 1
shows the class statistics of the image sets. The classification performance is
evaluated in terms of Area Under Curve (AUC) property of the classifier Receiver
Operating Characteristic (ROC) curves.

Table 1. Statistics of image sets. Columns correspond to different object classes.

bicycle bus car cat cow dog horse motorbike person sheep total

training set 127 93 271 192 102 189 129 118 319 119 1277

test set 143 81 282 194 104 176 118 117 347 132 1341

3 PicSOM Image Analysis Framework

3.1 Outline

In the PicSOM framework the database objects are divided into two groups:
example and target objects. In a supervised learning context these correspond
to training and test sets, respectively. In an interactive image retrieval setting
the set of example and target objects is adapted dynamically during a retrieval
session as a result of the user giving relevance feedback on the target objects the
system retrieves. The framework is used to rank the target objects according
to their similarity to a given set of positive example objects, simultaneously
combined with the dissimilarity to a set of negative example objects.

The similarity of the objects is evaluated in terms of a large set of visual
features of statistical nature. For this purpose the example and target images are
pre-processed in the same manner: the images are first automatically segmented
and a large collection of statistical features is extracted from both the segments
and whole images. Several different segmentations of the same images can be
used in parallel. Procedures for feature extraction and image segmentation are
discussed in detail in Sections 3.2 and 4, respectively. In the current experiments,
we consider the use of 290 segmentation–feature combinations.

1 http://www.pascal-network.org/challenges/VOC/
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The features extracted from images and image segments can be interpreted
as feature vectors in multi-dimensional feature spaces. Each of the resulting fea-
ture spaces is quantised with a tree-structured variant of the Self-Organising
Map (SOM) [6], a TS-SOM [7]. SOM is an unsupervised neural algorithm that
adaptively forms a mapping from a high-dimensional input space onto a two di-
mensional grid. The database level adaptation to context in the PicSOM frame-
work relies just on the adaptiveness of the SOM: the quantisation of the feature
spaces concentrates attention on feature values that are actually common in the
database.

The quantisation forms representations of the feature spaces where points
on the two-dimensional TS-SOM surfaces correspond to images and image seg-
ments. For the current experiments, 64x64 TS-SOMs are used. The organisation
of the image database produced by one of the feature TS-SOMs is shown in
Figures 1 and 2.

Due to the topology preserving property of the TS-SOM mapping, assessment
of image similarity in terms of each of the individual feature spaces can be
performed by evaluating the distance of the representation of an object on the
TS-SOM grid to the representations of positive and negative example objects.
Technically this is done by placing triangular convolution kernels to the locations
of example objects and evaluating their value at the locations of the target
objects. The kernels placed at positive examples are normalised to sum to unity,
as are the kernels placed at negative examples.

Fig. 1. A TS-SOM organised by colour moments of image patches. For sake of clarity, a
16x16 intermediate level of the TS-SOM structure is shown. For actual image analysis,
only the 64x64 bottom level is used.
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Fig. 2. A close-up of the bottom left corner of the colour moment TS-SOM that rep-
resents image patches with red colour together with light-coloured structures

A task-level adaptation mechanism of the PicSOM framework is provided by
the way the similarities in different feature spaces are combined. Due to the
performed normalisations, such feature spaces are effectively emphasised that
perform best in discriminating the positive and negative example objects when
the similarities are summed together. This is because on poorly performing fea-
ture TS-SOMs, the positive and negative kernels intermingle on the same map
areas and effectively neutralise each other. On the other hand, on well discrimi-
nating TS-SOMs, the positive and negative kernels concentrate on separate areas
where they amplify each other. This results in large amplitudes of similarity and
dissimilarity peaks. Because the convolution kernels have a limited and fixed sup-
port, the similarity assessment procedure only takes into account local distances.
This is also desired as the TS-SOM mapping only preserves local topology.

Often the goal of the system is to rank images, not just image segments
according to their similarity. Segment-level similarity must thus be combined into
image-level similarity. The solution used in PicSOM is straightforward: image-
level similarity is obtained by summing the contributions of the segments of the
image. This technique is further discussed, evaluated and extended in Sections 4
and 5.

3.2 Visual Features

A number of statistical visual features is extracted and made available for the
similarity assessment algorithm. The features include MPEG-7 standard descrip-
tors [4] as well as some non-standard descriptors. The features are extracted from
image segments as well as from whole images when appropriate. Table 2 lists the
used visual features.

The MPEG-7 features are extracted using the MPEG-7 Experimentation
Model. For some image segments, we have replaced the MPEG-7 Color Lay-
out and Scalable Color descriptors with our own approximate implementation
of the standard for computational reasons.

In addition to the tabulated features, we have found that composite features
formed from pairs of visual features are highly beneficial in our system. Currently
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Table 2. Visual features extracted from image segments

MPEG-7 descriptors non-standard descriptors

Color Layout average colour in CIE L*a*b* colour space
Dominant Color central moments of colour distribution
Region Shape Fourier descriptors of segment contours
Scalable Color histogram of Sobel edge directions

co-occurence matrix of Sobel edge directions
Fourier transform of local edges
8-neighbourhood binarised intensity texture
Zernike moments of binarised segment shape

the composite features are formed by simply concatenating the corresponding
feature vectors and equalising the variance of the vector elements. We have
confined us to pairs of features as the number of larger feature combinations
grows very rapidly. For the same reason, we have not formed all the possible
pairs but picked some most promising combinations.

4 Image Segmentation

Currently there appears to be no definitive knowledge concerning what sorts of
image segmentation is beneficial or adequate for content-based image analysis.
Generic, complete and to-the-pixel accurate unsupervised segmentation is gen-
erally regarded to be virtually impossible. Even if it was possible, one still has to
address the issue of diversity of segmentations: one image can typically be seg-
mented in numerous different perfectly valid ways. Choosing one segmentation
over another would require interpreting the image already in an early stage of
the image processing chain. A subset of the diverse segmentations of an image is
formed by hierarchically related segmentations: the objects in the images often
naturally decompose into sub-objects, thus defining object-part hierarchy trees.

4.1 Segmentation in PicSOM Framework

The approach PicSOM uses for image analysis is statistical in nature. In the same
spirit, PicSOM also uses image segmentation in statistical manner. A number of
uncertain segmentations is generated by simple means. Every single segmenta-
tion may not be correct or visually viable, but on the statistical level we hope to
observe correlations between the visual properties of the segments and the sets
of example images.

Besides perfect segmentations being impossible to obtain in practice, it still
remains to be demonstrated how much the performance of image content anal-
ysis is compromised if less complete segmentations are used. Of course, several
factors affect this question. One of them is the sophistication level of the image
analysis approach. It is reasonable to suppose that if segmentations are used
in a statistical manner, fairly inaccurate image segmentation may be enough.
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Also the different visual features set different needs for image segmentation. For
example, colour and texture features are quite tolerant to inaccuracies in seg-
mentation, whereas some shape features may critically depend on the quality of
segmentations.

It seems natural to think that more deterministic image content analysis could
lead to better results. Then there would also be need for more accurate image
segmentations. However, the more accurate associations would likely be specific
to specific classes of example images, such as cars. On the other hand, we want to
keep our framework generic, independent of specific types of images. The frame-
work thus has to autonomously learn the associations between image classes
and their visual properties. At the current state of machine learning, learning of
much more sophisticated rules seems difficult. Certainly we aim at pushing the
border into that direction, but currently much more sophisticated associations
would probably have to be manually specified to the system.

Ideally, the division between image segmentation and feature extraction sys-
tem stages would be clear-cut. In practice, however, this is not always the case.
Many visual features codify also spatial information: example of this is the
MPEG-7 standard Edge Histogram feature that implicitly divides the image
into 16 fixed tiles.

4.2 Implemented Segmentation Methods

The actual segmentation methods that are used to generate the alternative seg-
mentations of the images are rather rudimentary. One of the methods geomet-
rically divides the images to overlapping squares. Side length of the square is
determined by dividing the larger of the image dimensions by ten. The overlap
is achieved by first non-overlappingly tiling the image and then placing another
set of tiles at the crossings of the tiling. This results in no more than 181 (for
square images) square segments, on the average about 140.

As another segmentation method we employ an area-based region merging
algorithm based on homogeneity in terms of colour and texture. The merging is
continued until a fixed number of image segments are left. Two sets of segmen-
tations is obtained with two different sets of region merging parameters. The
first parameter values give rise to 8 segments whereas the lattar result in 25
segments. The parameters for the merging algorithm have been selected to give
visually feasible results for photographs and other images in earlier applications.
The diversity of segmentations is increased by recording, in addition to basic
segments, the hierarchical segmentation that results from continuing the region-
merging algorithm until only three regions remain. Altogether we thus have five
segmentations of each database image.

4.3 Combining Segment Similarity as Image Similarity

As briefly mentioned in Section 3, in PicSOM framework the segment-level simi-
larities are just summed together to form the image level similarities. Re-ordering
summations, the similarity comparison procedure in a single feature space i can
be recast as
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(a) (b)

Fig. 3. Smoothed histograms of positive example segments in the quantised colour
moment feature space: (a) image class “bus”, (b) image class “cow”. Dark shades
correspond to large values.

1. Accumulating the normalised two-dimensional histograms E+
i , E−

i and T of
positive example segments, negative example segments and target segments,
respectively, using the i:th TS-SOM to define the histogram bins.

2. Kernel smoothing the subtracted histogram of example segments:
Hi = K ∗ (E+

i − E−
i ), where K is a two-dimensional triangular kernel.

3. Interpreting the histograms as vectors and calculating the similarity as inner
product: Si =< Ti, Hi >.

Figure 3 shows two smoothed histograms of positive example segments in the
colour moment feature space quantised with the TS-SOM of Figure 1. Among
the background noise and spurious responses, we can identify several plausible
concentrations from the histograms. In the left subfigure, the distribution of
image class “bus” concentrates especially in the lower left corner and upper
border of the SOM surface. These areas correspond to image patches with red
structures. This is explained by the fact that majority of the buses are British red
buses. The segments of image class “cow” concentrate on the rightmost part of
the SOM that represents green image patches and image patches with structures
on a green background.

Histograms summarise the probability distributions strongly: they introduce
large number of invariances. Additional sources of invariances, i.e. information
loss, in the present use of image segments are the complete ignorance on the
spatial distribution of feature values and failure to connect the same segment in
different feature spaces. Example of former would be to consider blue patches of
sky in the upper part of an image to be equivalent to the blue patch of water
in the lower part. Example of the latter would be to consider images with blue
ball and red triangle equivalent with an image of a blue triangle with a red ball.

In some approaches [14,2,5] example and target image segments are explicitly
matched with each other. With the numerous alternative segmentations and fea-
ture spaces PicSOM uses, the combinatorics of such approach soon become pro-
hibitive. The introduced invariances, however, make the learning problem much
less complex and thus more manageable. Learning with less invariances requires
more learning material, i.e. example images. The resulting computational costs
could easily rise to currently unrealisable level.
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5 Off-Line Procedure for Using Image Segments

In the previous section, we described a method of using image segments that
has been found to be useful in many image tasks. The use of image segments
introduces an increased computational cost, however. For some on-line purposes
such as interactive image retrieval, large time complexity may not be acceptable.
Therefore, we have devised a method for precomputing a representation of the
segment contents off-line as part of adaptation to the database level context and
just comparing the representations on-line. For an image and a given feature
space, the representations are obtained as follows:

1. A two-dimensional histogram of the feature values of the image segments are
accumulated.

2. The histogram is kernel smoothed with a triangular kernel K.
3. The histogram with is downsampled with a factor of four.
4. The histograms are regarded as vectors and their dimensionality is reduced

to a fixed number with principal component analysis (PCA).
5. normalise the vector components to unit variance.

For combining multiple feature spaces, we concatenate the histograms as the
vectors after downsampling in step 2 and perform PCA and normalising just as
for single feature spaces. Compared to only PCA, additional normalising of the
components was observed to enhance image classification performance. Further
processing by estimating the linear ICA model [3] from the vectors did not
bring improvements in connection with the classification procedure used in the
experiments.

There are two main parameters of the method: the width w of the smoothing
kernel K and the number of components lPCA left after the PCA. A series of
experiments were performed to determine optimal values for the parameters.
Unfortunately, the best values seem to be feature and image class specific. In
determining a suitable compromise we decided to put more emphasis on features
and image classes where the descriptor performed well in the classification task.
The rationale for this is that probably the poorly performing features will not
be used, after all, for that specific image class as there is a wide variety of other
features available. In our experiments, we have ended up in parameter values
w = 24 for the convolution kernel width and lPCA = 64 for the dimensionality
of the PCA.

For the initial verification of the usefulness of the obtained region represen-
tations, the image classification performance resulting from their use was evalu-
ated using a support vector machine implementation as a black-box classifier. As
SVM, we use the C-SVM implementation with RBF kernels implemented in the
libsvm software package [1]. With this implementation, the probability estimates
needed for ROC curve formation are obtained by the pairwise coupling method
described in [15].
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5.1 Qualitative Validation

We have compared the image classification performance of the introduced method
for obtaining the obtained off-line image representations against the traditional
PicSOM on-line algorithm. For this initial experiments, we use a segmentation–
feature combinations that were conveniently available. As image segmentation
method we employ the square-tile-segmentation described in Section 4.2. We con-
sider the image classification performance of the image representation derived
from both 1) a single feature: color layout, and 2) a combination of three features:
color layout, Fourier transform of edge distribution and color histogram/texture
descriptor, the last feature being a concatenation of two features. It turns out
that the choice of the specific features is somewhat unfortunate, as their per-
formance in classifying these image classes is not very good and combining the
features does not help the on-line PicSOM algorithm. However, the relative dif-
ferences between the on-line and off-line variants can still be observed. Figures 4
and 5 visualise the feature space corresponding to the combined off-line repre-
sentation by means of a SOM. We see that in general, some of the images cluster
nicely on the SOM, for example the cluster of cars near the bottom right corner,
whereas there are also some areas where images of various objects mix.

5.2 Quantitative Validation

Figure 6 compares the image classification performances of the described off-line
and on-line methods for combining image segments. With the single feature, the
relative order of the methods varies, the off-line variant perhaps being slightly

Fig. 4. An intermediate 16x16 level of a TS-SOM visualisation of the feature space
defined by the offline image representation derived from the combination of three image
segment features
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Fig. 5. A close-up of area near the bottom right corner corner of the TS-SOM visual-
isation of Figure 4

better overall. With the combined feature, the off-line method is consistently
better than the on-line method with the exception of the accuracy being ap-
proximately equal for one image class. It is notable that the off-line method
always manages to benefit from the incorporation of additional features, which
is not always the case with the on-line method.

Besides the classification accuracy, an important factor in choosing between
the algorithmic variant is speed. After precalculating the off-line representations,
the actual comparison of the introduced region representations is observed to be
more than 1300 times faster than executing the on-line algorithm. On the other
hand, the on-line algorithm is more flexible. It allows the set of positive exam-
ple segments to be specified freely on run-time, whereas the offline representation
summarises all the segments in an image. The flexibility might be needed, for ex-
ample if the framework is used for image analysis on the level of image segments.
This is the case in [13] where the framework is discriminatively used to locate an
object in the images an basis of examples, in [12] where image-level keywords are
focused on specific image segments, and in the next section of this paper.

(a) (b)

Fig. 6. AUC performance of image classification of both on-line (white bars) and off-
line (black bars) methods for combining image segments for the ten VOC object classes.
The two subfigures shows the accuracy resulting from use of (a) a single colour layout
feature, and (b) the combination of three features.
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original bus cow motorbike

Fig. 7. Images of the image collection shown together with the collection-wide top
segments that contribute most to the classification of the images as “bus”, “cow” and
“motorbike”. The original images are shown in the leftmost column.

6 Context-Based Identification of Regions of Interest

In this section we qualitatively perform context-based identification of regions
of interest, made possible by the described framework for using image segmen-
tation. By methods of Section 4.3, the considered collection of images can be
classified into ten classes by the statistics of the visual properties of the image
segments. We now go backwards in the inference chain and ask which of the
image segments contribute to the classification. For example: which parts of an
image containing a cow are essential for classification of the image as such?

To perform this qualitative experiment, we restrict ourselves to a subset of the
considered image database that contains approximately one tenth of the images in
the full database. The class composition remains approximately equal. For the ex-
periments we use the geometrical square tile segmentationdescribed in Section 4.2.

Figure 7 has been generated by marking to the images the segments that con-
tribute most to the classification of images. The threshold has been set globally
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to include one tenth of segments of the image database. In the figure each row
corresponds to a separate image. The original image is shown in the leftmost
column and the remaining columns display such segments of the image that
contribute to the image’s classification as “bus”, “cow” and “motorbike”, re-
spectively. In Figure 8 we show a more comprehensive set of similar illustrations
of image segments that contribute to classification as “bus”.

Fig. 8. The locations of image-collection-wide top bus segments in some images actually
depicting buses

In an ideal case, in the figures all the image segments containing the class
defining object would be highlighted, whereas all the segments outside these
objects would remain unhighlighted. Then we would have directly obtained a
context-based method for segmenting images contained in an image database.
The method would be adaptive to the image database in two senses. Firstly, the
context of the database would determine the visual elements that are discrim-
inative in that certain database. Secondly, the segmentation method would be
class-specific, producing segmentations that are discriminative in the sense of
the specific object class the segmentation method was derived from.

From the images we see, however, that the situation is far from the above
described ideal case. Still, from Figure 7 we see that there is strong tendency of
the algorithm to identify apparently reasonable parts of the images as responsible
for the classification. The algorithm is also class specific: for instance only few
segments of the bus images would be likely to appear in the cow images and vice
versa. This property is not deterministic, however, but probabilistic in nature.

In many cases, the context of the objects is found to be equally important
as the visual properties of the object themselves. This can be seen for example
in Figure 8 where the surrounding traffic or road scene often is included in the
most contributing parts of the bus images. Another observation is that inside
an object only some of its parts may be specific to that object class. This is
exemplified, for example, by the motorbike image in Figure 7. The cow images
also exemplify well these two phenomena. Both can also be explained by the
limited scope of the underlying image database. The context of this type of
green grass seems to be specific for the cow images in this database, although
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the database contains other animals such as sheep and horses. Apparently the
grass in those images is somehow different. On the other hand, the brown fur
part of the lower cow image does not contribute much to classification as cow.
This can be explained by the database containing also other animals such as
horses and dogs. In contrast, the contours of lower part of the cow, especially
legs seem to be characteristic for cows.

In this section we have seen that using the above described image representa-
tion in terms of regions, we can back-track in the image classification algorithm
and identify plausible regions of interest. However, the connection between the
identified regions and genuine object segmentation is not straightforward. Still,
integrated with other image segmentation, the regions of interest might provide
a helpful cue in segmentation.

7 Discussion and Conclusions

In this paper, we have discussed the method of using image segments in the Pic-
SOM statistical image analysis framework. A procedure was devised for moving
the computational demands of this segment-using method from on-line computa-
tion to the off-line phase, thus reducing the on-line complexity to a small fraction.
Still, the image classification accuracy remained uncompromised in the experi-
ments performed. The obtained time savings are important for keeping the compu-
tational demands of the task-level context adaptation manageable. The performed
experiments were initial and must be complemented with further testing with a
more comprehensive set of visual features and larger image databases.

We saw that the current method of using segments introduces many invari-
ances. Although lifting the invariances could easily lead to need for huge amounts
of example data, we are still planning to consider lifting some of the invariances,
for example by considering spatial relationships of the segments [9]. The ben-
eficiality of geometric constraints to the accuracy of image analysis has been
demonstrated e.g. in [10].

We can interpret the method of generating the off-line representations of the
segment distributions as a novel method of generating image features adapted
to the current image analysis context, given the segment level visual features
and the image segmentations. The method adapts to the database level context
through the adaptive feature representations formed using SOMs. Also the seg-
mentations may be adaptive, either on the database level or on the task level,
as outlined—although not implemented—in Section 6. Comparing the merits of
these adaptive features to customary, non-adaptive image features such as the
MPEG-7 features remains to be performed in the future.

We qualitatively investigated the contribution of different types of segments to
image classification in Section 6. It was observed that in the context of the current
VOC image database, contextual information was often as important for the
classification as the target object itself. This result is naturally dependent on the
database at hand. If the database is sufficiently comprehensive, the significance
of context in the images may become lesser, and the actual target object in the
image becomes the most important contributor in image classification, as in [12].
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