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ABSTRACT
Content-based image retrieval (CBIR) is a new but widely-
adopted method for finding images from vast and unanno-
tated image databases. In CBIR images are indexed on the
basis of low-level features, such as color, texture, and shape,
that can automatically be derived from the visual content of
the images. The operation of a CBIR system can be seen as
a series of more or less independent processing stages. As
there exists multiple choices for each of these stages, a mul-
titude of CBIR systems can be implemented by combining
a set of common building blocks. In this paper, we present
a comparison of different techniques for three consecutive
stages of a CBIR system. These include: (1) the initial per
feature selection of considered images, (2) the combination
of the lists of selected images, and (3) the final selection of
images based on all available features simultaneously. The
results of the performed experiments show that CBIR sys-
tems can be implemented using consecutive stages where, at
each stage, a number of parallel techniques can be provided.

1. INTRODUCTION

Content-based retrieval from unannotated image databases
is a wide and versatile field of research interests. Depend-
ing on the domain of interest, the database in question, and
the amount of a priori information available on the images,
the CBIR problem exhibits a varying degree of difficulty.
A rather simple CBIR problem occurs when the database
in question consists of images of a strongly restricted do-
main. One widely-studied application of this complexity
is retrieval of trademark images, mainly based on different
shape features as the lack of background enables automatic
segmentation of such images. In the other extreme lies the
problem of retrieving relevant images from large and dy-
namic collections of miscellaneous images. One massive
example of such a challenging domain is indexing the im-
ages contained in the World Wide Web.

The basic problem in CBIR is the gap between the high-
level semantic concepts used by humans to understand im-
age content and the low-level visual features extracted from
images and used by a computer to index the images in a
database. Two most important research topics in CBIR are

thus (1) the selection of the used features and the measure of
similarity between them, and (2) the techniques for index-
ing the images, ie., how to select the images the system will
display to the user next. In this paper, we will concentrate
on the latter issue.

The operation of a CBIR system can be seen as a series
of more or less independent processing stages. As there ex-
ists multiple choices for each of these stages, a multitude of
CBIR systems can be implemented by combining a set of
common building blocks. We have implemented a frame-
work of a CBIR system in three consecutive stages includ-
ing: (1) the initial per-feature selection of considered im-
ages, (2) the combination of the lists of images selected in
the first stage, and (3) the final selection of images based
on all the available features simultaneously. With four dif-
ferent techniques for the first selection stage, two choices
for the combination stage, and three for the final selection
stage, we have obtained a total of fourteen combinations the
results for which will be presented.

2. CONTENT-BASED IMAGE RETRIEVAL

Query by pictorial example (QBPE) is a common retrieval
paradigm in content-based image retrieval applications [2].
With QBPE, the image queries are based on example im-
ages shown either from the database itself or some external
location. The user classifies these example images as rel-
evant or non-relevant to the current retrieval task and the
system uses this information to select such images the user
is most likely to be interested in. In CBIR the user is thus an
inseparable part of the query process. CBIR is in this sense
different from most other applications in computer vision
which are usually automatic and self-contained.

As the retrieval of unannotated images cannot be based
on matching the user’s query with the images in the database
on abstract conceptual level, lower-level pictorial features
need to be used. This changes the role of the human using
the system from a requester to a mere selector who indicates
the appropriateness of the offered images. As a retrieval
system is usually not capable of giving the wanted images in
its first response, the image query becomes an iterative and
interactive process towards the desired image or images.



2.1. Principles of Relevance Feedback

The iterative and automatic refinement of a query is known
as relevance feedback in information retrieval literature [9].
In text-based retrieval, relevance feedback can be imple-
mented eg. by adjusting the weights of different textual terms
when matching the query text with the documents of the
database in a vectorial form. Other typical implementations
of relevance feedback include adding new terms or remov-
ing irrelevant ones in the query phrase or modifying the user
profile. Relevance feedback can be seen as a form of su-
pervised learning to adjust the subsequent queries using the
information gathered from the user’s feedback. This helps
the system in the following rounds of the retrieval process
to better approximate the present need of the user.

An image retrieval system implementing relevance feed-
back tries to learn the optimal correspondence between the
high-level concepts people use and the low-level features
obtainable from the images. The user thus does not need to
explicitly specify weights for different computational fea-
tures because the weights are formed implicitly by the sys-
tem. This is desirable, as it is generally a difficult task
to give low-level features such weights which would coin-
cide with human perception of images at a more conceptual
level [8]. The correspondence between concepts and fea-
tures is in addition temporal and case specific. This means
that, in general, every image query is different from the oth-
ers due to the hidden conceptions on the relevance of images
and their mutual similarity.

In implementing relevance feedback in a CBIR system,
three minimum requirements need to be fulfilled. First, the
system must show the user a series of images, remember
what images have already been shown, and not to display
them again. Thus, the system will not end up in a loop and
all images will eventually be displayed. Second, the user
must somehow indicate which images are to some extent
relevant to the present query and which are not. We call
them here positive and negative seen images, respectively.
It is thus not sufficient that the user picks just one of the
shown images. Instead, a set of images must be indicated
as positive ones while the remaining ones can implicitly be
regarded as negative. As the third requirement, the system
must change its behavior depending on which images are
included in the positive and negative image sets. During the
retrieval process more and more images are accumulated in
these two image sets and the system has increasing amount
of data to use in retrieving the succeeding image sets. The
art of relevance feedback is finding the ways which use this
information most efficiently.

2.2. A General CBIR System Structure

When a CBIR system is implemented with prototype-based
statistical methods, each image in the database is transformed
with a set of different feature extraction methods to a set of
lower-dimensional prototypes in respective feature spaces.

When the system tries to find images which are similar to
the positive-marked seen images, it searches for those im-
ages whose distance to the positive images in some sense is
minimal in any or all of the feature spaces. The distances
between prototypes in the feature spaces can be defined in
a multitude of ways, the Euclidean distance being the one
used most. How the distances in various feature spaces are
weighted and combined in order to form a scalar suitable for
minimization, leaves a lot of room for different techniques.
It can be stated that in general there does not and will not
ever exist one single “correct” answer to this central ques-
tion of CBIR. The stage of combining the distances calcu-
lated in different feature spaces is also a good candidate for
a point where relevance feedback can be implemented.

The CBIR process can to some extent be formalized by
denoting the set of images in the database as � and its non-
intersecting subsets of positive and negative seen images as��� and ��� , respectively. The unseen images can then be
marked as ��� , which leads to� � 	 ��
��� ��� � ����� (1)� � 	 ��� � � ��� � � ��� (2)

where the
�

s denote the cardinalities of the respective sets.
Let us denote the images as ��� , � 	 � �"!#�%$&$%$'� � . If we have(

different feature representations for each image, they can
be written as )+*��,�-� � 	 )%*� , . 	/� �0!#�%$&$&$1� ( . The 2 im-
ages the system will display to the user next can be denoted
with �43 	65 �738 � �93: �%$&$&$%� �73;=<?> ��� . Finding the images
most similar to the positive seen images can then be for-
mally written, for example, in a straightforward manner:
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where R * s are the weights for individual features and I * �UW � W �
is the distance function suitable for being used with feature
type )X* . Though (3) is quite general in nature, it is still only
one possibility among others. One might, for example, want
to devise a discriminant function which includes also terms
that depend on the negative-marked seen images.

An image database may contain millions of images. It
is not possible to calculate accurately all distances between
all the positive seen images and all the unseen images in
the database. For this reason, some computational short-
cuts need to be taken in order to circumvent this restric-
tion. First, as much of the calculations as possible should
be performed in advance in off-line mode and stored for be-
ing utilized when the CBIR system is used. As this stored
information needs to be accessed fast, it may not be fea-
sible to save it in a mass storage such as the computer’s
hard disk. If for efficiency reasons the data needs to be kept
in the computer’s random-access memory, the size of the
available memory may become another bottleneck. Unfor-
tunately, the dynamic nature of relevance feedback in CBIR
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Fig. 1. The stages of image selection in CBIR.

to some extent fights against the aspiration to make use of
advance calculations.

The second computational shortcut is to divide and con-
quer the image selection process by making it in two stages.
Figure 1 illustrates this idea. Each feature representation
can be used separately for finding a set of image candidates.
This is especially advantageous if the distances calculated
in the different feature spaces are weighted dynamically as
in such a case it is not possible to order the images by their
mutual distances in advance. The number of images in each
subset may and should exceed the count of images to be
finally shown to the user. These per-feature subsets with as-
sociated qualification values for each image included should
then be combined in a larger set of images which will be
processed in a more exhaustive manner. Depending on the
sizes of the subsets and the combination algorithm, either
all images in them or, for example, only those which are
included in more than one of them, can be taken in the com-
bined set. Nevertheless, in the final selection process there
will be involved a substantially smaller number of images
than the whole database. This enables to use computation-
ally more demanding techniques for selecting among them.

2.3. CBIR System of the Experiments

We have extended our PicSOM CBIR system [5, 6] to ac-
commodate alternative methods in some processing stages.
For the current experiments, we have implemented for the
first selection stage three new techniques that compete with
the original method based on convolving the user’s response
on the Tree Structured Self-Organizing Maps (TS-SOMs).
For the combination of the image subsets, we have added
a new alternative treatment, namely the use of the maxi-
mum of the per-feature qualification values for each image
instead of their sum. The original algorithm used in Pic-
SOM does not contain any processing after the combination
of qualification values from different features. Now we have
implemented two choices for that purpose.

Figure 2 displays all the alternative functions for each of
the stages. The following three sections will address every
stage and the functions available for it in detail.
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Fig. 2. The processing stages in the experiments.

3. SELECTION OF FIRST STAGE IMAGES

According to the structure illustrated in Figure 1, the first
stage of selection is performed for each feature in paral-
lel. The result of the first stage will thus be a group of per-
feature image subsets containing potentially relevant images
according to the feature representation in question. In this
study, three alternative approaches to this per-feature selec-
tion were applied. These three approaches are based on the
TS-SOMs, vector quantization, and scalar quantization, re-
spectively, and are described in this section.

3.1. Tree Structured SOMs

The first image indexing method used in the comparison is
based on the Self-Organizing Map (SOM) [3]. The SOM
defines an elastic net of points that are fitted to the input
space. It can thus be used to visualize multidimensional
data, usually on a two-dimensional grid. The SOM consists
of a regular grid of neurons where a model vector is asso-
ciated with each map unit. The map attempts to represent
all the available observations with optimal accuracy using a
restricted set of models. At the same time, the models be-
come ordered on the grid so that similar models are close
and dissimilar models far from each other.

In order to achieve a hierarchical representation of the
image database and to alleviate the computational complex-
ity of training large SOMs, we use a special form of the
SOM, namely the Tree Structured Self-Organizing Map (TS-
SOM) [4]. The TS-SOM is used to represent the database
in several hierarchical two-dimensional lattices of neurons.
Each feature is used separately to train a corresponding TS-
SOM structure. As the SOM algorithm organizes similar
feature vectors in nearby neurons, the resulting map con-
tains a representation of the database with similar images,
according to the given feature, located near each other. The
tree structure of the TS-SOM, on the other hand, provides
several map levels forming a set of SOMs with different res-
olutions.

With the TS-SOM algorithm, the system marks the im-



ages selected by the user with a positive value and the other
images with a negative value in its internal data structure.
These values are then summed up in their best-matching
SOM units in each of the TS-SOM maps. Each SOM level is
then treated as a two-dimensional matrix formed of values
describing the user’s responses to the contents of the map
unit. Finally, the map matrices are low-pass filtered with
Gaussian convolution masks in order to spread the user’s
responses to the neighboring units which, by presumption,
contain images that are to some extent similar to the present
ones. Starting from the SOM unit having the largest re-
sponse after the convolution, the algorithm retrieves the im-
age whose feature vector is nearest to the weight vector in
that unit. If that image has not been shown to the user, it is
marked to be shown on the next round. This process is con-
tinued with the second largest value and so on until a preset
number of new images have been selected. To assure that
the whole database will be displayed, all images mapped to
the particular SOM unit on the lowest levels are given equal
precedence in being included in the returned image subset.
Each image in the subset is given the convolved response
value as its qualification value in the query.

3.2. Vector Quantization

The use of SOMs in indexing images according to their mu-
tual similarity can be regarded as a special case of vector
quantization. In the general case of vector quantization the
topological ordering provided by the map lattice is lost and
the similarity of two images is characterized only by they
being or not being mapped to same vector quantization bin.
The same sets of model vectors that were obtained when the
TS-SOMs were trained can also be used as vector quantiza-
tion codebooks. The number of model vectors in the lowest-
level SOM is presumably too large for being used in vector
quantization, but the second-lowest level will be suitable.

As the vector quantization produced by the TS-SOM
is by no means optimal for representing the original data
distribution, alternative quantization techniques can also be
used. These include the well-known Y -means or Linde-
Buzo-Gray vector quantization [7].

With either choice, the SOM-based or Y -means-based
quantization, the feature vectors are divided in subsets in
which the vectors resemble each other and the membership
of each image in these quantization bins can be calculated
in advance and stored in sort of inverse files. Those unseen
images which have fallen into the same quantization bins as
the positive-marked shown images are then good candidates
for the next images to be displayed to the user.

The first stage image selection algorithm might select
one or few quantization bins which according to some per-
formance criterion seem to represent the positive images
best. The image subset of that feature type will then be
formed from the unseen images in that or those bins only.
This leads to a sort of depth first search in the database. On
the other hand, if the algorithm picks a few representative

images from all those quantization bins which according to
the criterion function are performing well, the system will
implement a sort of breadth first search.

In the middle of an ongoing query, the quantization bins
can be divided into the following four categories, in decreas-
ing order of importance. First, bins containing both positive
seen images and yet unseen images. These bins form a nat-
ural subset to concentrate on when searching for new im-
ages and they can be scored by the fraction of positive im-
ages in all seen images in them. In our implementation, the
best-scoring bins of this category are processed using depth
first search. The second category consists of bins containing
only unseen images. All these bins are equally probable to
contain relevant images so a natural way is to apply breadth
first search. The third category is formed of bins whose all
seen images have been negative. These bins are sorted by
the ratio of unseen images to all images in them and breadth
first search is used. The last category consists of bins hav-
ing no unseen images. These are of no interest and can be
discarded. Consequently, the quantization bins are scored
and sorted according to the qualification value

Z�[ 	
\]]]]^ ]]]]_
� � O P`O P` � Oba` , if

� �[dc?egf � �[ c?e� , if
� �[ 	 egf � �[ 	 egf � �[ c?eOih`O ` , if
� �[ 	 egf � �[jckegf � �[ c?ee , otherwise

(4)
where

� �[ ,
� �[ , and

� �[ are the numbers of positive and
negative seen images and unseen images, respectively, map-
ped to vector quantization bin l . � [ is the total number of
images in the bin.

From each vector quantization, an image subset of Y
images is selected in the order of descending

Zm[
. As men-

tioned above, images from bins containing positive images,
ie. the first category in (4), are picked until the limit of Y
images is reached. If there are not enough images in that
bin the picking is continued in the bin with the next largestZ-[

and so on. If the count Y could not be filled from bins
with

Z [
larger than one, the remaining images are picked

from the following categories using breadth first search, ie.
picking only one image from each bin. This mode of opera-
tion is, however, only necessary in the end of an exhaustive
query when all images from quantization bins containing
positive-marked images have already been used. Each im-
age that is included in the resulting image subset is assigned
its quantization bin’s qualification value

Zm[
.

3.3. Scalar Quantization

In the case of scalar quantization the resemblance between
images is in the first place found with respect to one compo-
nent of a feature vector. Scalar quantization can be obtained
by ordering the values in certain feature vector component.
Ordered values can then be divided in a preset number of
quantization bins each containing a few images. All images



in the bin are then indexed with an inverse file. When the
ordering and creation of the inverse is repeated for all com-
ponents of the particular feature vector, one obtains different
scalar quantization for each single feature component.

The similarity of two images can be expressed by the
count of feature components for which they are quantized to
same bin. With � � , the set of positive seen images, one can
then rank all images which are mapped to the same scalar
quantization bin as one or more images of � � , by counting
the overall sum of bins shared by the image in question and
the images of � � .

The complexity of such scalar quantization indexing is
heavily dependent on the average count of images in the
bins. The larger the average count is, the longer the inverse
index lists will be and the greater fraction of all the images
in the database will be considered on each iteration round.
If, on the other hand, there exists an excessive number of
scalar quantization bins, the average image count per bin
will approach one. This results in lighter computational re-
quirements but endangers the finding of all images when the
iteration is continued.

In order to prevent longer feature vectors from dominat-
ing the creation of the combined image set in the following
processing stage, we have divided the number of positive
quantization bins shared by the image in question with the
dimensionality of the feature vector to obtain the qualifica-
tion value for the image.

4. COMBINATION OF IMAGE SUBSETS

The next step in the system of Figure 1 is combining the per-
feature subsets of images provided by the first stage of pro-
cessing. Mainly, this consists of simply taking an union of
the image sets, but there are two issues requiring some con-
sideration, namely dealing with duplicate images and limit-
ing the size of the combined set. If the combined image set
is to be processed in a computationally expensive manner,
it may be practical to limit its size also at this stage. The
size of the combined set naturally depends on the sizes of
the image subsets but the number of duplicate images varies
between queries and the size limit can be used to assure that
the total number of images remains limited.

4.1. Additive Value Combination

If the image values provided by the first stage are additive,
ie. they provide, in addition to ordinal scale, also informa-
tion in the differences in size between values, a natural way
to combine the image sets is to use value addition for du-
plicate images. This rewards images considered promising
by multiple features, which, by assumption, is a desirable
property. The convolved responses of TS-SOMs fulfill this
requirement and therefore additive combination can be used
to remove duplicates of the TS-SOM algorithm. Also, qual-
ification values produced by scalar quantization are additive
by nature.

4.2. Maximal Value Combination

Another combination approach, suitable for all image sets,
is to use maximal values for duplicate images. This re-
moves the effect of possible strong positive responses from
multiple features. Maximal value combination can there-
fore be considered as a secondary option, needed for image
sets with only ordinal values. The scoring function of vec-
tor quantization (4) can be regarded to provide only ordinal
values and therefore maximal combination needs to be used
with that algorithm.

5. FINAL SELECTION OF IMAGES

The last stage of processing, see Figure 1, is intended for a
set of potentially relevant images. Here, the selection algo-
rithm may be totally different from the one used in the first
stage. In order to enable more demanding processing tech-
niques, the set of remaining images should at this stage be
substantially smaller than the whole database.

5.1. Selection by First Stage Information Only

The simplest processing at this stage is to do nothing. If
the first selection stage and the set combination step already
provide a justifiable set of images, it can be shown to the
user as the system’s response.

5.2. Selection by Distances to Positive Images

One possible method for selecting the final set of images
is to rank the remaining images based on their cumulative
distance to all already found positive-marked, ie., relevant
images in the original feature space. With this method, the
final selection is thus performed according to (3) with R * 	� for all features andI * �n) * �T� 3L �'� ) * �T� �� �o� 	�S) * �,� 3L � � ) * �T� �� �o�qp �S) * �,� 3L � � ) * �T� �� �U�i� (5)

ie. the squared Euclidean distance.
As calculating distance in a possibly very high-dimen-

sional space is a computationally heavy operation, it may
not be feasible to perform it for all images in a large data-
base. Therefore, the first stage can be seen to act as a prepro-
cessor which prunes the database as much as it is necessary
before the actual image similarity assessment is carried out
by using (5).

5.3. Selection by Weighted Distances

In the previous method, the weights R * in (3) were all set
to one. These feature weights, however, provide an oppor-
tunity for adaptation, as features which seem to work well
in a given query could be given greater influence in deter-
mining the shown images. One approach to implementing
this adaptation is to weight features based on the pairwise



distances of the found positive images in the feature space.
If the average distance of two positive images is relatively
small, the feature can be considered as well-suited for the
current image query. The absolute distances in different
feature spaces vary and therefore the distances have to be
normalized with the average pairwise distance of all images
in the database. For a feature . , the weight R * is thus
given by

R * 	 � � �r� � �� � � � � � � �bs
OiP[ M 8 s

OQPt M [ I * �n)%*B�T� [ �1� )%*B�,� t �U�
s
O u M 8 s

OL M u I * �S) * �,� u �1� ) * �T�
L �U� $

(6)

6. EXPERIMENT SETTINGS

In order to evaluate the applicability of the presented meth-
ods and their different combinations for CBIR, a series of
experiments was performed. In this section, the experiment
settings, including the used system framework, the image
database, visual features, the generation of ground-truth in-
formation, and the performance measure, are described.

6.1. PicSOM

The PicSOM image retrieval system is a framework for re-
search on algorithms and methods for content-based image
retrieval. A more detailed description of the system and re-
sults of earlier experiments performed using the system can
be found in [5, 6]. The PicSOM home page including a
working demonstration of the system for public access is
located at http://www.cis.hut.fi/picsom.

In PicSOM, the queries are performed through a WWW-
based user interface and the queries are iteratively refined
as the system exposes more images to the user. PicSOM
supports multiple parallel features and the responses from
the used features are combined automatically by using the
map surface convolutions and additive combination of the
qualification values, as described above. The goal is to au-
tonomously adapt to the user’s preferences regarding the
similarity of images in the database.

A typical retrieval session with PicSOM consists of a
number of subsequent queries during which the retrieval is
focused more accurately on images resembling the positive
example images.In the beginning of a new query, the system
presents the user the first set of reference images which, in
this study, are randomly selected from the database. Ran-
dom images are displayed until one or more positive im-
ages are found. After that, the positive images are used as
the starting point for the retrieval method in question.

6.2. The Image Database and Ground-Truth Classes

We evaluated the CBIR techniques with a set of experiments
using an image collection from the Corel Gallery � eJeJeFeJeJe
product. The collection contains vxwywzwzv photographs and
artificial images with a very wide variety of subjects. All the

images are either of size ! vJ{Q|~}J�J� or }z�x�g| ! vJ{ pixels. The
majority of the images are in color, but there are also a small
number of grayscale images. The images were converted
from the original WIF (wavelet-compressed image) format
to JPEG.

For the experiments, three separate image classes were
picked manually from the database. The selected classes
were cars, faces and planes, of which the database consists
of 864, 1115 and 292 images, respectively. The correspond-
ing a priori probabilities are 1.4%, 1.9%, and 0.5%. In the
retrieval experiments these classes were thus not competing
against each other but mainly against the “background” ofvz�F� ! � , ie., 96.2% of other images.

The criterion for an image to belong to the faces class
was that the main target of the image had to be a human
head with both eyes visible and the head had to fill at least
1/9 of the image area. In the cars class, the main target of
the image had to be a car, and at least one side of the car
had to be completely shown in the image. Furthermore, the
body of a car had to fill at least 1/9 of the image area. In
planes class there were no restrictions, all images of aircraft
or helicopters were accepted.

6.3. Features

The features used in the experiments included two different
color and shape features and a simple texture feature. All
except the FFT-based shape feature were calculated in five
separate zones of the image. The zones were formed by first
determining in the center of the image a circular area whose
size is one fifth of the area of the whole image. Then the re-
maining area was divided into four zones with two diagonal
lines. The used features are briefly described below.

Average Color is obtained by calculating the average R-,
G- and B-values in the five separate zones of the image. The
resulting 15-dimensional feature vector thus describes the
average color of the image and gives rough information on
the spatial color composition.

Color Moments were introduced in [10]. The color mo-
ment features are computed by treating the color values in
different color channels in each zone as separate probability
distributions and then calculating the first three moments
(mean, variance, and skewness) from each color channel.
This results in a }�|�}~|�v 	 ��v dimensional feature vector.
Due to the varying dynamic ranges, the feature values are
normalized to zero mean and unit variance.

Texture Neighborhood feature in PicSOM is also calcu-
lated in the same five zones. The Y-values (luminance) of
the YIQ color representation of every pixel’s 8-neighbor-
hood are examined and the estimated probabilities for each
neighbor being brighter than the center pixel are used as fea-
tures. When combined, this results in one 40-dimensional
feature vector.

Shape Histogram feature is based on the histogram of
the eight quantized directions of edges in image. When the
histogram is separately formed in the same five zones as



before, a 40-dimensional feature vector is obtained. It de-
scribes the distribution of edge directions in various parts of
the image and thus reveals the shape in a low-level statistical
manner [1].

Shape FFT feature is based on the Fourier Transform
of the binarized edge image. The image is normalized to
512 | 512 pixels before the FFT. Then the magnitude image
of the Fourier spectrum is low-pass filtered and decimated
by the factor of 32, resulting in a 128-dimensional feature
vector [1].

In our previous experiments with the PicSOM system,
it was found out that using a larger set of features generally
yields better results and that the used approach provides a
robust method for using a set of different features in par-
allel so that the result exceeds the performances of all the
single features [6]. Therefore, all five features were used in
parallel in all experiments.

6.4. Parameters of the Methods

The TS-SOMs for all the five features were sized ��|�� ,� {Q| � { , {J�g|~{x� , and ! vJ{Q| ! vJ{ , from top to bottom. On the
bottommost TS-SOM levels there were thus approximately
the same number of SOM units ( {zvFvx}J{ ) and database im-
ages ( vJwywJw�v ) During the SOM training, each vector was
used 100 times in the adaptation.

In vector quantization, one possibility is to use the same
TS-SOMs but only for vector quantization purposes. Of the
four TS-SOM levels we chose to use the second from bot-
tom, ie. the one sized {x��|�{x� . On the average there were
thus approximately 14 images mapped in each quantization
bin. With the Y -means vector quantization, the same num-
ber of quantization bins was used, which again results to
the average of 14 images per bin. In the scalar quantization
case, were used � v eJeze bins which gives rise to approxi-
mately 4 images in each bin.

All the image subsets of Figure 1 contained 100 images
before duplicate removal. The resulting combined image
list was not shortened but all the images were involved in
the final selection. After it, 20 best-scoring images were
used as the system’s response.

6.5. Performance Measure

Quantitative measures for the retrieval performance of im-
age retrieval systems are problematic due to the subjectivity
of human perception. As each user of a retrieval system
has individual expectations, there does not exist a definite
right answer to an image query. In this section, one such
figure, denoted as the � measure, is presented. The measure
can be applied to systems utilizing the relevance feedback
approach in some form.

With the � measure, it is assumed that the user is facing
a target search task from � for an image � belonging to class� > � . Before the correct image is found, the user guides
the search by marking all shown images which belong to

�

as relevant. This process is then repeated for each image in�
. Now, the � measure equals the average number of images

the system retrieves before the correct one is found.
The � measure can be obtained by implementing an “ide-

al screener”, a computer program which simulates the hu-
man user by examining the output of the retrieval system
and marking the images returned by the system either as
relevant (positive) or non-relevant (negative) according to
whether the images belong to

�
. This process is continued

until all images in
�

have been found. The queries can thus
be simulated and performance data collected without any
human intervention.

For each of the images in the class
�

, we then record the
total number of images presented by the system until that
particular image is shown. From this data, we form a his-
togram and calculate the average number of shown images
needed before a hit occurs. In the optimal case, the system
first presents all images in

�
. The optimal value for the av-

erage number of images presented before a particular image
in
�

is thus
O��: , where

���
is the number of images in

�
.

The � measure for class
�

is then obtained by divid-
ing the average number of shown images by the size of the
database,

�
. The � measure yields a value

�����n� �! � � � � �!�� (7)

where � � 	 O �O is the a priori probability of the class
�

.
For values ��� e $ v , the performance of the system is thus
better than random picking of images and, in general, the
smaller the � value the better the performance.

7. RESULTS

The results of the experiments are listed in Table 1. The
rows of the table contain the first stage alternatives, Tree
Structured SOMs, vector quantization using TS-SOM andY -means-based quantization, and scalar quantization. Sim-
ilarly, the columns contain the methods for final stage pro-
cessing. The first two columns differ only by the method for
combining first stage image sets, addition (first column) and
maximal value (second column). Results for using addition-
based combining with vector quantization were not com-
puted. In the last two columns, the used image set combina-
tion method is the standard one for each first stage method,
ie. addition for TS-SOMs and scalar quantization, maxi-
mum value for vector quantization. Each entry in the table
lists first the average value obtained from using the three im-
age classes. The results for individual classes are shown in
parentheses, in the following order: cars, faces, and planes.

First, considering the two first columns of Table 1, cor-
responding to the first stage, it can be seen that the TS-SOM
algorithm yields best values for the � measure. However,
the overall best � values are obtained using vector quantiza-
tion with Y -means clustering and second stage processing.
The result when using TS-SOMs for quantization is worse



Table 1. Results of the retrieval experiments using the � measure. Each entry in the table lists first the average value of using
the three image classes and then results for the used classes (cars, faces, planes) in parentheses.

no final stage, add comb. no final stage, max comb. distance to positives weighted distance
SOM 0.174 (0.177 0.209 0.137) 0.175 (0.177 0.210 0.137) 0.190 (0.193 0.229 0.147) 0.179 (0.195 0.209 0.130)
VQ (SOM) 0.217 (0.212 0.235 0.203) 0.184 (0.187 0.181 0.185) 0.178 (0.191 0.164 0.178)
VQ (K-m) 0.185 (0.173 0.214 0.169) 0.155 (0.148 0.167 0.149) 0.154 (0.154 0.162 0.146)
SQ 0.251 (0.363 0.242 0.147) 0.302 (0.392 0.342 0.172) 0.300 (0.388 0.351 0.162) 0.267 (0.356 0.290 0.156)

as can be anticipated since the topological information of
SOMs is discarded with vector quantization. Furthermore,
the vector quantization algorithm can be seen to clearly re-
quire the final stage of processing. Of the two final stage
techniques, the weighted distance seems to yield better re-
sults on the average.

The second-best results are obtained with the TS-SOM-
based technique. The best results are located at the first
column, corresponding to the standard version in which the
final stage is not used. Also, it can be seen that adding this
extra processing does not improve the results. More strik-
ingly, using maximum value combination yields very simi-
lar results. Also, of the two algoritms applying SOMs, the
TS-SOM-based technique performs better.

Of the studied first stage techniques, the performance of
scalar quantization is clearly the worst. Another observation
here is that the additive combination is notably better than
using the maximum value. This may suggest that vector
quantization might also benefit from using value addition
for duplicates. This requires, however, a different scoring
function than the one used in these experiments.

8. CONCLUSIONS

In this paper, a general multi-part structure of content-based
image retrieval systems was presented. A variety of dif-
ferent CBIR techniques can be represented in terms of this
system structure. Also, CBIR systems can be considered as
being constructed of some basic building blocks. The op-
eration of different CBIR systems can then be analyzed by
studying the functionality of these blocks.

In the performed experiments, the Y -means-based vec-
tor quantization used together with weighted distance to the
positive examples was found to give the best results accord-
ing to the used � measure. The TS-SOM-based technique
yielded the second-best results. It should be noted, however,
that the topological ordering of the images on the TS-SOM
map lattice is an additional, unique benefit which cannot be
obtained with traditional vector quantization techniques.
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