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Abstract. The content-based image retrieval (CBIR) system PicSOM
uses a variety of low-level visual features as an indexing mechanism for
an image database. In this paper we describe the implementation of
segmentation into the PicSOM framework. That is, we have modified the
system to use image segments as a supplement to entire images in order
to improve the retrieval accuracy. In a series of experiments, we compare
this new method to the baseline PicSOM system. The results confirm
that using both segments and entire images together always increases
the precision of retrieval.

1 Introduction

The importance of visual information has increased in recent years. Computer
systems can today store huge amounts of image data, which has made automated
image retrieval increasingly important. In many areas textual descriptions of im-
ages are not available or not sufficient to retrieve desired images from a database.
Often the only solution is to consider the visual content of the images themselves:
content-based image retrieval (CBIR) systems index the images by low-level vi-
sual properties either with or without prior image segmentation.

The general problem of image understanding is intrinsically linked to the
problem of image segmentation. That is, if one understands an image, one can
also tell what the distinct parts of it are. Segmentation thus seems to be a natural
part of image understanding, but for an automatic system it is never trivial and
the results seldom correspond to the real objects in the picture. But even so
segmentation may be useful in CBIR, because different, visually homogeneous
regions somehow characterise the objects and scenes in the image.

CBIR systems that have employed segmentation techniques include e.g. Net-
Ra [1], VisualSEEk [2], BlobWorld [3], SIMPLIcity [4]. Additionally, such meth-
ods as Unified Feature Matching (UFM) [5] and the use of point configurations
in the feature space [6] have been presented. The approaches differ mainly in
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the fashion the segment-wise similarities are combined to form image-wise sim-
ilarities used in the retrieval. In this work, we present a novel scheme for using
segmentation in our PicSOM CBIR system and demonstrate that it indeed in-
creases the accuracy of image retrieval.

2 PicSOM

The PicSOM CBIR system [7] uses the Self-Organizing Map (SOM) [10] algo-
rithm to index and determine the similarity of images. PicSOM uses several
SOMs in parallel to retrieve images relevant to a query. These parallel SOMs
have been trained with separate data sets obtained using different feature ex-
traction algorithms on the same images. So each SOM arranges the same images
differently, according to the particular visual features.

For training the SOMs, PicSOM uses the Tree-structured Self-Organizing
Map (TS-SOM) [11] algorithm. A TS-SOM has several layers of normal SOMs
with increasing size. Each unit, except those in the lowest layer, has an area of
child units in the larger SOM below. When the best-matching map unit (BMU)
has been found in one layer, it is only necessary to search through its child units
and their closest neighbours to find the BMU in the layer below. This scheme
resembles the normal tree-search algorithm and reduces the complexity of the
BMU search from O(n) to O(log n).

The main principle used in PicSOM is query by pictorial example (QBPE) [8].
This means that the system shows the user a set of example images, which he
then indicates as relevant or nonrelevant to the current query, i.e. close to or far
from what he is searching for. Based on this relevance feedback information [9]
PicSOM changes its configuration so that it will display better image examples in
the next round. Relevance feedback is thus an iterative process used for refining
the query and a form of supervised learning. PicSOM adapts to different query
situations by weighting the influence of the parallel SOMs differently. By the
use of relevance feedback after each iteration, PicSOM automatically adapts the
weights to increase the influence of those SOMs that give the most valuable
relevance and similarity information.

A detailed description of PicSOM can be found in [7]. The PicSOM home
page, with a list of publications on PicSOM and a working demonstration is
located at http://www.cis.hut.fi/picsom/.

3 Implementing Segmentation in PicSOM

3.1 Baseline Algorithm

In the QBPE process of PicSOM the user evaluates each shown image by marking
it either as relevant or nonrelevant. This information is translated to the SOMs
by locating the BMUs of the images. There can be several situations in any
spatial neighbourhood on any particular SOM: a) many relevant images, b) only
nonrelevant images, c) relevant and nonrelevant images mixed or d) no rated
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images. The first two cases, a) and b), indicate that the feature used in creating
this map is good at separating relevant images from nonrelevant. Case c) on the
other hand means that the feature is not very useful in this query.

After a query round, all relevant images get a positive weight inversely pro-
portional to the total number of relevant images. The nonrelevant images get a
negative weight inversely proportional to their total number. So the grand total
of all weights is always zero. In each TS-SOM layer, these values are summed
into the BMUs of the images resulting in a sparse value field on the maps. The
value field is then low-pass filtered or “blurred” to spread the relevance informa-
tion between neighbouring map units. This is because neighbouring map units
have similar properties and it is probable that neighbours of relevant images are
relevant too.

In this way all the units in the maps, and thus also the images mapped to
the units, get a qualification value depending on the local density of relevant
images. Maps with very mixed distributions of relevant and nonrelevant images
get low qualification values as a result of the low-pass filtering and therefore they
automatically get less influence in the image selection process.

In our implementation we first retrieve a fixed number of yet unseen images
with the highest qualification values from each SOM. Then we remove duplicate
images by summing their qualification values from all SOMs. The 20 images with
the highest total qualification values are used as the new example images in the
next query round.

3.2 Using Image Segments

The implementation of segmentation in PicSOM was done by generalising the
original algorithm so that not only the entire images but also image segments
are treated as objects in their own right. At the same time, the segments are
also considered to be sub-objects of the images they are a part of.

The image segments were obtained from an automatic segmentation algo-
rithm. Therefore we did not assume perfect correspondence between real-word
entities and the segments. We extracted feature vectors from all the image seg-
ments by using the same algorithms that we had already used for the entire
images. Separate TS-SOMs were trained from these vectors.

The relevance feedback process described in the previous section was modified
so that when an image is marked as relevant all its sub-objects (i.e. segments) are
likewise marked as relevant. Qualification values are then calculated for all the
objects on all the TS-SOMs. The qualification values of all the sub-objects are
added to the qualification values of their parent objects. Duplicate images from
SOMs of different feature types are resolved by summing up the qualification
values. Finally, 20 yet unseen images with the highest qualification values are as
before chosen as the example images for the next query round.

In the new image selection process described above, the relevance values given
to entire images are thus first given also to their contained image segments. In
the last stage, the segment-wise qualification values are then summed again to
produce image-wise qualification values used in the actual selection.
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4 Experiments

To assess whether the introduction of segmentation into PicSOM gave any ad-
vantage we ran a series of experiments with hand-picked classes of images. We
wanted to see how well the system could find members of a certain image class
from a large database.

4.1 Performance Evaluation

Evaluating the performance of a CBIR system is never trivial. Even between
humans the interpretation of the contents of an image might differ. In our ex-
periments we have used a set of ground truth image classes that have been hand
picked according to certain verbal criteria.

To evaluate the performance of the CBIR system we plot the initial portion
of the curves showing relative precision against recall. Recall R expresses how
large a portion of the relevant image class C has been shown after a total of t
images:

R(t) =
∑t

i=1 hi

NC
∈ [0, 1], t = 1, 2, . . . , NT , (1)

where NC is the number of images belonging to class C and NT is an upper limit
for the number of images the user is supposed to be willing to retrieve. hi gets
the value one if the image retrieved with index i belongs to the desired image
class and zero otherwise. Precision P indicates the accuracy of retrieval, i.e. how
exclusively only relevant images have been retrieved:

P(t) =
∑t

i=1 hi

t
∈ [0, 1], t = 1, 2, . . . , NT . (2)

Relative precision is obtained from the precision by dividing P with the a priori
probability ρC of the class.

The recall–relative precision plot first shows with small values of t the initial
accuracy of the CBIR system. After that the evolution of the curve indicates how
well the relevance feedback mechanism works. With good use of relevance feed-
back, P(t) should initially rise and then turn to a slow decline when a sufficiently
large portion of the relevant images has been shown.

4.2 Feature Extraction and Segmentation Methods Used

Two simple low-level visual features have been used. The 3-dimensional aver-
age RGB colour is calculated as the average of the red, green and blue colour
components of the image pixels.

Texture neighbourhood is an 8-dimensional textural feature examining the Y-
values (luminance) of the YIQ colour representation of the 8-neighbourhood of
each pixel. The values of the feature vector are then the estimated probabilities
P̄i that the neighbour pixel in position i is brighter (higher Y-value) than the
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central pixel. When the Y-value of pixel k is yk and its neighbour in position i
has the Y-value yk,i, the probability estimate P̄i can be calculated as

P̄i =
1
n

n−1∑
k=0

s(yk,i, yk), where s(a, b) =

{
1 if a > b

0 otherwise
, (3)

where n is the number of image pixels. The feature vector for one image or image
segment is then [P̄0 P̄1 . . . P̄7]T .

For segmentation we used the isodata variant of the k-means algorithm com-
bined with region merging. The initial k-means segmentation was based on the
first three central moments of the colour distribution [12] in the HSV colour
space. The moments were calculated separately for each of the colour space
components and collected into a nine-component vector c. For the estimation of
the moments the image was divided into 3×3 tiles. In order to save computation
time only a small fraction of image pixels was used in clustering.

Similar colour moment features were used for region merging. The criterion
for merging neighbouring regions was the Euclidean distance of colour moments,
weighted with the size of the regions involved:

d(i, j) = (ci − cj)T (ci − cj)[
√

min(si, sj) + b] , (4)

where si = |Ri|/
∑

j |Rj | is the relative size of region i and b is a constant.

4.3 Experiment Setting

We used a database of 59 995 colour photographs from the Corel Gallery 1 000
000 product converted to JPEG format using a Corel tool. The image sizes are
384 × 256 or 256 × 384 pixels. From this set we hand picked six sets of ground
truth images:

– faces, 1115 images (a priori probability 1.85%), where the main target of
the image has to be a human head which has both eyes visible and the head
has to fill at least 1/9 of the image area.

– cars, 864 images (1.44%), where the main target of the image has to be a
car, and at least one side of the car has to be completely shown in the image
and its body to fill at least 1/9 of the image area.

– sunsets, 663 images (1.11%), where the image has to contain a sunset with
the sun clearly visible in the image.

– houses, 526 images (0.88%), where the main target of the image has to be
a single house, not severely obstructed, and it has to fill at least 1/16 of the
image area.

– horses, 486 images (0.81%), where the main target of the image has to be
one or more horses, shown completely in the image.

– planes, 292 images (0.49%), where all airplane images have been accepted.
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We trained a total of four TS-SOMs. Two were created by using features
calculated from the entire images and two by using features from the image
segments. In each pair, one TS-SOM was trained with the average RGB colour
features and the other with the texture neighbourhood features. The sizes of the
TS-SOM layers were 4 × 4, 16 × 16, 64 × 64 and 256 × 256 units. Every object
(entire image or image segment) was used 100 times to train each SOM layer.

The experiments were run on each of the ground truth classes in three differ-
ent ways: 1) using images only, 2) using segments only, and 3) using both images
and segments in parallel. Each image query was started by giving to the system
an initial image that was automatically selected from the correct class. After
that we run 50 query rounds with 20 images retrieved at each iteration. The
ground truth classes were used during the iteration to determine the relevancy
of the images returned by the system. This information was given to the system
as relevance feedback. The experiment was repeated so that each image in the
ground truth classes was used once as the initialiser. After this the precision
and recall results were averaged to produce one recall–relative precision curve
for each class.

5 Results

In Fig. 1 we have plotted the recall–relative precision graphs for the six ground
truth classes. The plots have been arranged according to their qualitative sim-
ilarities. The plots in the first column show similar behaviour: for the faces,
houses and horses classes the precisions increase continuously and using only
entire images results in better precision than using only image segments. In the
second column, entire images are superior to image segments only in the planes
class. In the sunsets and cars classes using only image segments produces better
results than using only entire images.

The planes and sunsets classes differ substantially from the rest in that the
relative precision of these classes starts to decrease during the query. At the same
time, the values of the relative precision and recall for these classes are clearly
higher than those for the other four classes. Therefore a substantial fraction of
the relative images are found in the query process.

The most important observation is that in all the six cases combining features
calculated from both image segments and entire images results in a precision
clearly superior to that of either one feature type used separately. This finding
can be regarded as an indication of the usefulness of automatic segmentation in
a CBIR system.

6 Conclusions

In this paper we have studied the use of automatically generated image seg-
mentations in the PicSOM CBIR system. The results of the performed series
of experiments show that introducing segmentation into PicSOM increases the
image retrieval accuracy. However, this was in general true only when the image
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Fig. 1. Recall–relative precision graphs for all six ground truth classes. The plots have
been arranged according to their qualitative similarities. It can be seen that using the
combination of features from both the segments and entire images always results in
the best precision.



8

segments were used together with the original images, not when they were used
as the only form of visual data in the system.

The results are perhaps not generalisable to other CBIR systems, but at
least they serve as a guideline to continue research on the use of automatic
segmentation methods in CBIR. Even though the used segments do not always
correspond to real objects in the image, features calculated from homogeneous
image regions may characterise the image’s content better than average feature
values obtained from the entire heterogeneous image area.

Our experiments reported here were only initial tests and should be expanded
by investigating other segmentation and feature extraction methods, such as
MPEG-7 descriptors, and other types of images. Also, as there are alternative
ways of incorporating segmentation into PicSOM, these should be tried out as
well and compared with the performance of other existing CBIR systems.
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