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Abstract. The MPEG-7 standard is emerging as both a general frame-
work for content description and a collection of specific, agreed-upon
content descriptors. We have developed a neural, self-organizing tech-
nique for content-based image retrieval. In this paper, we apply the vi-
sual content descriptors provided by MPEG-7 in our PicSOM system
and compare our own image indexing technique with a reference system
based on vector quantization. The results of our experiments show that
the MPEG-7-defined content descriptors can be used as such in the Pic-
SOM system even though Euclidean distance calculation, inherently used
in the PicSOM system, is not optimal for all of them. Also, the results
indicate that the PicSOM technique is a bit slower than the reference
system in starting to find relevant images. However, when the strong rel-
evance feedback mechanism of PicSOM begins to function, its retrieval
precision exceeds that of the reference system.

1 Introduction

Content-based image retrieval (CBIR) differs from many of its neighboring re-
search disciplines in computer vision due to one notable fact: human subjectivity
cannot totally be isolated from the use and evaluation of CBIR systems. This
is manifested by difficulties in setting fair comparisons between CBIR systems
and in interpreting their results. These problems have hindered the researchers
from doing comprehensive evaluations of different CBIR techniques.

We have developed a neural-network-based CBIR system named PicSOM [1,
2]. The name stems from “picture” and the Self-Organizing Map (SOM). The
SOM [3] is used for unsupervised, self-organizing, and topology-preserving map-
ping from the image descriptor space to a two-dimensional lattice, or grid, of
artificial neural units. The PicSOM system is built upon two fundamental prin-
ciples of CBIR, namely query by pictorial example and relevance feedback [4].

Until now, there have not existed widely-accepted standards for description
of the visual contents of images. MPEG-7 [5] is the first thorough attempt in this
direction. The appearance of the standard will affect the research on CBIR tech-
niques in some important aspects. First, when some common building blocks will
become shared by different CBIR systems, comparative studies between them



will become easier to perform. As MPEG-7 Experimentation Model (XM) [6] has
become publicly available, we have been able to test the suitability of MPEG-
7-defined image content descriptors with the PicSOM system. We have thus re-
placed our earlier, non-standard descriptors with those defined in the MPEG-7
standard and available in XM.

2 PicSOM System

The PicSOM image retrieval system [1, 2] is a framework for research on al-
gorithms and methods for content-based image retrieval. The methodological
novelty of PicSOM is to use several Self-Organizing Maps [3] in parallel for re-
trieving relevant images from a database. These parallel SOMs have been trained
with separate data sets obtained from the image data with different feature ex-
traction techniques. The different SOMs and their underlying feature extraction
schemes impose different similarity functions on the images.

Every image query is unique and each user of a CBIR system has her own
transient view of image similarity and relevance. Therefore, a system structure
capable of holding many simultaneous similarity representations can adapt to
different kinds of retrieval tasks. In the PicSOM approach, the system is able
to discover those of the parallel Self-Organizing Maps that provide the most
valuable information for each individual query instance.

A more detailed description of the PicSOM system and results of earlier
experiments performed with it can be found in [1, 2]. The PicSOM home page
including a working demonstration of the system for public access is located at
http://www.cis.hut.fi/picsom.

2.1 Tree Structured Self-Organizing Maps

The main image indexing method used in the PicSOM system is the Self-
Organizing Map (SOM) [3]. The SOM defines an elastic, topology-preserving
grid of points that is fitted to the input space. It can thus be used to visualize
multidimensional data, usually on a two-dimensional grid. The map attempts
to represent all the available observations with an optimal accuracy by using a
restricted set of models.

Instead of the standard SOM version, PicSOM uses a special form of the
algorithm, the Tree Structured Self-Organizing Map (TS-SOM) [7]. The hierar-
chical TS-SOM structure is useful for large SOMs in the training phase. In the
standard SOM, each model vector has to be compared with the input vector
in finding the best-matching unit (BMU). This makes the time complexity of
the search O(n), where n is the number of SOM units. With the TS-SOM one
can, however, follow the hierarchical structure and reduce the complexity of the
search to O(log n). This reduction can be achieved by first training a smaller
SOM and then creating a larger one below it so that the search for the BMU
on the larger map is always restricted to a fixed area below the already-found
BMU and its nearest neighbors on the above map.



Fig. 1. The surface of a 16×16-sized TS-SOM level trained with the MPEG-7 Edge
Histogram descriptor.

In the experiments described in this paper, we have used four-level TS-SOMs
whose layer sizes have been 4×4, 16×16, 64×64, 256×256 units. In the training
of the lower SOM levels, the search for the BMU has been restricted to the
10×10-sized neuron area below the BMU on the above level. Every image has
been used 100 times for training each of the TS-SOM levels.

After training each TS-SOM hierarchical level, that level is fixed and each
neural unit on it is given a visual label from the database image nearest to it.
This is illustrated in Figure 1, where MPEG-7 Edge Histogram descriptor has
been used as the feature. The images are the visual labels on the surface of
the 16×16-sized TS-SOM layer. It can be seen that, e.g., there are many ships
in the top-left corner of the map surface, standing people and dolls beside the
ships, and buildings in the bottom-left corner. Visually – and also semantically
– similar images have thus been mapped near each other on the map.

2.2 Self-Organizing Relevance Feedback

The relevance feedback mechanism of PicSOM, implemented by using several
parallel SOMs, is a crucial element of the retrieval engine. Only a short overview
is presented here, see [2] for a more comprehensive treatment.
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Fig. 2. An example of how a SOM surface, on which the images selected and rejected
by the user are shown with white and black marks, respectively, are convolved with a
low-pass filter.

Each image seen by the user of the system is graded by her as either relevant
or irrelevant. All these images and their associated relevance grades are then
projected on all the SOM surfaces. This process forms on the maps areas where
there are 1) many relevant images mapped in same or nearby SOM units, or
2) relevant and irrelevant images mixed, or 3) only irrelevant images, or 4) no
graded images at all. Of the above cases, 1) and 3) indicate that the correspond-
ing content descriptor agrees well with the user’s conception on the relevance of
the images. Whereas, case 2) is an indication that the content descriptor cannot
distinguish between relevant and irrelevant images.

When we assume that similar images are located near each other on the
SOM surfaces, we are motivated to spread the relevance information placed in
the SOM units also to the neighboring units. This is implemented in PicSOM
by low-pass filtering the map surfaces. All relevant images are first given equal
positive weight inversely proportional to the number of relevant images. Likewise,
irrelevant images receive negative weights that are inversely proportional to the
number of irrelevant images. The overall sum of these relevance values is thus
zero. The values are then summed in the BMUs of the images and the resulting
sparse value fields are low-pass filtered. Figure 2 illustrates how the positive
and negative responses, displayed with white and black map units, respectively,
are first mapped on a SOM surface and how the responses are expanded in the
convolution. Content descriptors that fail to coincide with the user’s conceptions
produce lower qualification values than those descriptors that match the user’s
expectations. As a consequence, the different content descriptors do not need to
be explicitly weighted as the system automatically takes care of weighting their
opinions.

In the actual implementation, we search on each SOM for a fixed number, say
100, map locations with unseen images having the highest qualification values.
After removing duplicate images, the second stage of processing is carried out.
Now, the qualification values of all images in this combined set are summed up
on all used SOMs to obtain the final qualification values for these images. Then,
20 images with the highest qualification values are returned as the result of the
query round.



In the experiments described in this paper, the queries are always started with
an image that belongs to the image class in question. Therefore, we neglected
the TS-SOM hierarchy and considered exclusively the bottommost TS-SOM lev-
els. This mode of operation is motivated by the chosen query type, since it is
justifiable to start the retrieval near the initial reference image. This can be seen
as depth first search.

However, the hierarchical representation of the image database produced
by a TS-SOM is useful in visual browsing. The successive map levels can be
regarded as providing increasing resolution for database inspection. In our earlier
experiments, e.g. [1, 8, 2], there was no initial example image to start the query
with and the queries began with initial breadth first search using the visual labels
and the TS-SOM structure.

2.3 Vector-Quantization-Based Reference Method

There exists a wide range of distinct techniques for indexing images based on
their feature descriptors. One alternative method for the SOM is to first use
quantization to prune the database and then utilize a more exhaustive method
to decide the final images to be returned. For the first part, there exists two
alternate quantization techniques, namely scalar quantization (SQ) and vector
quantization (VQ). With either of these techniques, the feature vectors are di-
vided into subsets in which the vectors resemble each other. In the case of scalar
quantization the resemblance is in respect to one component of the feature vec-
tor, whereas resemblance in vector quantization means that the feature vectors
are similar as whole. In our previous experiments [8], we have found out that
scalar quantization gives bad retrieval results.

The justification for vector quantization in image retrieval is that unseen im-
ages which have fallen into the same quantization bins as the relevant-marked
reference images are good candidates for the next reference images to be dis-
played to the user. Also, the SOM algorithm can be seen as a special case of
vector quantization. When using the model vectors of the SOM units in vector
quantization, one ignores the topological ordering provided by the map lattice
and characterize the similarity of two images only by whether they are mapped
in the same VQ bin. By ignoring the topology, however, we dismiss the most
significant portion of the data organization provided by the SOM.

A well-known VQ method is the K-means or Linde-Buzo-Gray (LBG) vector
quantization [9]. According to [8], LBG quantization yields better CBIR perfor-
mance than the SOM used as a pure vector quantizer. This is understandable
as the SOM algorithm can be regarded as a trade-off between two objectives,
namely clustering and topological ordering. Consequently, we will use LBG quan-
tization in the reference system of the experiments.

The choice for the number of quantization bins is a significant parameter
for the VQ algorithm. Using too few bins results in too broad image clusters to
be useful whereas with too many bins the information about the relevancy of
images fails to generalize to other images. Generally, the number of bins should
be smaller than the number of neurons on the largest SOM layer of the TS-SOM.



In the experiments, we have used 4096 VQ bins, which coincides with the size
of the second bottommost TS-SOM levels. This results in 14.6 images per VQ
bin, on the average, for the used database of 59 995 images. Another significant
parameter is the number of candidate images that are taken into consideration
from each of the parallel vector quantizers. Different selection policies lead again
either to breadth first or depth first searches. In our implementation, we rank the
VQ bins of each quantizer in the descending order determined by the proportion
of relevant images of all graded images in them. Then, we select 100 yet unseen
images from the bins in that order.

After the vector quantization stage, the set of potential images has been
greatly reduced and more demanding processing techniques can be applied to
all the remaining candidate images. Now, one possible method – also applied in
our reference system – is to rank the images based on their properly-weighted
cumulative distances to all already-found relevant images in the original feature
space. Finally, as in the PicSOM method, we display 20 best-scoring images to
the user. In [8], it was found out that the VQ method benefits from this extra
processing stage. As calculating distance in a possibly very high-dimensional
space is a computationally heavy operation, the vector quantization can thus
be seen to act as a preprocessor which prunes a large database as much as it is
necessary before the actual image similarity assessment is carried out.

3 Experiments

The performance of a CBIR system can be evaluated in many different ways.
Even though the interpretation of the contents of images is always casual and
ambiguous, some kind of ground truth classification of images must be performed
in order to automate the evaluation process. In the simplest case – employed
also here – some image classes are formed by first selecting verbal criteria for
membership in a class and then assigning the corresponding Boolean membership
value for each image in the database. In this manner, a set of ground truth
image classes, not necessary non-overlapping, can be formed and then used in
the evaluation.

3.1 Performance Measures and Evaluation Scheme

All features can be studied separately and independently from others for their
capability to map visually similar images near each other. These kinds of feature-
wise assessments, however, have severe limitations because they are not related
to the operation of the entire CBIR system as a whole. In particular, they do not
take any relevance feedback mechanism into account. Therefore, it is preferable
to use evaluation methods based on the actual usage of the system.

If the size of the database, N , is large enough, we can assume that there is an
upper limit NT of images (NT � N) the user is willing to browse. The system
should thus demonstrate its talent within this number of images. In our setting,
each image in a class C is “shown” to the system one at a time as an initial image



to start the query with. The mission of the CBIR system is then to return as
much as possible similar images. In order to obtain results that do not depend
on the particular image used in starting the iteration, the experiment needs to
be repeated over every image in C. This results in a leave-one-out type testing
of the target class and the effective size of the class becomes NC − 1 instead of
NC and the a priori probability of the class is ρC = (NC − 1)/(N − 1).

We have chosen to show the evolution of precision as a function of recall
during the iterative image retrieval process. Precision and recall are intuitive
performance measures that suite also for the case of non-exhaustive browsing.
When not the whole database but only a smaller number NT � N of images is
browsed through, the recall value very unlikely reaches the value one. Instead,
the final value R(NT ) – as well as P(NT ) – reflects the total number of relevant
images found that far. The intermediate values of P(t) first display the initial
accuracy of the CBIR system and then how the relevance feedback mechanism
is able to adapt to the class. With an effective relevance feedback mechanism,
it is to be expected that P(t) first increases and then turns to decrease when a
notable fraction of relevant images have already been shown.

In our experiments, we have normalized the precision value by dividing it
with the a priori probability ρC of the class and call it therefore relative preci-
sion. This makes the comparison of the recall–precision curves of different image
classes somewhat commensurable and more convenient because relative precision
values relate to the relative advantage the CBIR system produces over random
browsing.

3.2 Database and Ground Truth Classes

We have used images from the Corel Gallery 1 000 000 product in our evaluations.
The database contains 59 995 color photographs originally packed with a wavelet
compression and then locally converted in JPEG format with a utility provided
by Corel. The size of each image is either 384×256 or 256×384 pixels.

The images have been grouped by Corel in thematic groups and also keywords
are available. However, we found these image groups and keywords rather incon-
sistent and, therefore, created for the experiments six manually-picked ground
truth image sets with tighter membership criteria. All image sets were gathered
by a single subject. The used sets and membership criteria were:

– faces, 1115 images (a priori probability 1.85%), where the main target of
the image is a human head which has both eyes visible and the head fills at
least 1/9 of the image area.

– cars, 864 images (1.44%), where the main target of the image is a car, at
least one side of the car has to be completely shown in the image, and its
body to fill at least 1/9 of the image area.

– planes, 292 images (0.49%), where all airplane images have been accepted.
– sunsets, 663 images (1.11%), where the image contains a sunset with the

sun clearly visible in the image.
– houses, 526 images (0.88%), where the main target of the image is a single

house, not severely obstructed, and it fills at least 1/16 of the image area.



– horses, 486 images (0.81%), where the main target of the image is one or
more horses, shown completely in the image.

3.3 MPEG-7 Content Descriptors

MPEG-7 [5] is an ISO/IEC standard developed by Moving Pictures Expert
Group. MPEG-7 aims at standardizing the description of multimedia content
data. It defines a standard set of descriptors that can be used to describe vari-
ous types of multimedia information. The standard is not aimed at any particular
application area, instead it is designed to support as broad a range of applications
as possible. Still, one of the main applications areas of MPEG-7 technology will
undoubtedly be to extend the current modest search capabilities for multimedia
data for creating effective digital libraries. As such, MPEG-7 is the first serious
attempt to specify a standard set of descriptors for various types of multimedia
information and standard ways to define other descriptions as well as structures
of descriptions and their relationships.

As a nonnormative part of the standard, a software Experimentation Model
(XM) [6] has been released for public use. The XM is the framework for all
reference code of the MPEG-7 standard. In the scope of our work, the most
relevant part of XM is the implementation of a set of MPEG-7-defined still
image descriptors. At the time of this writing, XM is in its version 5.3 and not
all description schemes have yet been reported to be working properly. Therefore,
we have used only a subset of MPEG-7 content descriptors for still images in
these experiments. The used descriptors were Scalable Color, Dominant Color,
Color Structure, Color Layout, Edge Histogram, and Region Shape.

The MPEG-7 standard defines not only the descriptors but also special met-
rics to be used with the descriptors when calculating the similarity between im-
ages. However, we use Euclidean metrics in comparing the descriptors because
the training of the SOMs and the creation of the vector quantization prototypes
are based on minimizing a square-form error criterium. Only in the case of Dom-
inant Color descriptor this has necessitated a slight modification in the use of
the descriptor. The original Dominant Color descriptor of XM is variable-sized,
i.e., the length of the descriptor varies depending on the count of dominant col-
ors found. Because this could not be fit in the PicSOM system, we used only
two most dominant colors or duplicated the most dominant color if only one was
found. Also, we did not make use of the color percentage information. These two
changes do not make our approach incompatible with other uses of Dominant
Color descriptor.

3.4 Results

Our experiments were two-fold. First, we wanted to study which of the four
color descriptors would be the best one to be used together with the one tex-
ture and one shape descriptors in the table. Second, we wanted to compare the
performance of our PicSOM system with that of the vector-quantization-based



variant. We performed two sets of experiments in which the first question was
addressed in the first set and the second question in both sets.

We performed 48 computer runs in the first set of experiments. Each run
was characterized by the combination of the method (PicSOM / VQ), color
feature (Dominant Color / Scalable Color / Color Layout / Color Structure)
and the image class (faces / cars / planes / sunsets / houses / horses).
Each experiment was repeated as many times as there were images in the image
class in question, the recall and relative precision values were recorded for each
such instant and finally averaged. 20 images were shown at each iteration round,
which resulted in 50 rounds when NT was set to 1000 images. Both recall and
relative precision were recorded after each query iteration. Figure 3 shows, as
a representative selection, the recall–relative precision curves of three of the
studied image classes (faces, cars, and planes). Qualitatively similar behavior
is observed with the three other classes as well. The recorded values are shown
with symbols and connected with lines.

The following observations can be made from the resulting recall–relative
precision curves. First, none of the tested color descriptors seems to dominate
the other descriptors and on different image classes the results of different color
descriptors often vary considerably. Regardless of the used retrieval method
(PicSOM or VQ), Color Structure seems to perform best with faces and us-
ing Scalable Color yields best results with planes and horses. With the other
classes (cars, sunsets, houses), naming a single best color descriptor is not as
straightforward. The second observation is that, in general, if a particular color
descriptor works well for a particular image class, it does so with both retrieval
algorithms. Third, the PicSOM method more often obtains better precision then
the VQ method when comparing the same descriptor sets, although the differ-
ence is rather small. Also, in the end, PicSOM has in a majority of cases reached
a higher recall level. The last observation here is, that the difference between
the precision of the best and the worst sets of descriptors is larger with the VQ
method than with PicSOM. This can be observed, e.g., in the planes column of
Figure 3.

In the second set of experiments, we wanted to use all the available MPEG-7
visual content descriptors simultaneously. Runs were again made separately for
the six image classes and the two CBIR techniques. The results for all classes
can be seen in Figure 4, where each plot now contains mutually comparable
recall–relative precision curves of the two techniques. It can be seen in Figure 4
that in all cases PicSOM is at first behind of VQ in precision, but soon reaches
and exceeds it. In some of the cases (faces and cars), this overtake by PicSOM
takes only one or two rounds of queries. With planes, reaching VQ takes the
longest time, 11 rounds, due to the good initial precision of VQ, observed also
in Figure 3 with the Scalable Color descriptor.

Of the tested image classes, sunsets yields the best retrieval results as its
relative precision rises at best over 30 and, on the average, almost half of all
the images in the class are found among the 1000 retrieved images. This is
understandable as sunset images can be well described with low-level descriptors,
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Fig. 3. Recall–relative precision plots of the performance of different color descriptors
and the two CBIR techniques. In all cases also Edge Histogram and Region Shape
descriptors have been used.
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Fig. 4. Recall–relative precision plots of the performance of the two CBIR techniques
when all four color descriptors were used simultaneously together with Edge Histogram
and Region Shape descriptors.



especially color. On the other hand, houses is clearly the most difficult class, as
its precision does not ever rise much above twice the a priori probability of the
class. This is probably due to the problematic nature of the class as, descriptor-
wise, there is not a large difference between the single houses and groups of
houses, e.g., small villages.

As the final outcome of the experiment, it can be stated that the relevance
feedback mechanism of PicSOM is clearly superior to that of VQ’s. The VQ
retrieval has good initial precision but after a few rounds, when PicSOM’s rel-
evance feedback begins to have an effect, retrieval precision with PicSOM is in
all cases higher. The houses class can be regarded as a draw and a failure for
both methods with the given set of content descriptors.

One can also compare the curves of Figure 3 and the curves in the upper row
of Figure 4 for an important observation. It can be seen that the PicSOM method
is, when using all descriptors simultaneously (Figure 4), able to follow and even
exceed the path of the best recall–relative precision curve for the four alternative
single color descriptors (Figure 3). This behavior is present in all cases, also with
the image classes not shown in Figure 3, and can be interpreted as an indication
that the automatic weighting of features is working properly and additional,
inferior, descriptors do not degrade the results. On the contrary, the VQ method
fails to do the same and the VQ recall–relative precision curves in Figure 4
resemble more the average than the maximum value of the corresponding VQ
curves in Figure 3. As a consequence, the VQ technique is clearly more dependent
on the proper selection of used features than the PicSOM technique.

4 Conclusions

In this paper, we have described our content-based image retrieval system named
PicSOM and shown that MPEG-7-defined content descriptors can be success-
fully used with it. The PicSOM system is based on using Self-Organizing Maps
in implementing relevance feedback from the user of the system. As the system
uses many parallel SOMs, each trained with separate content descriptors, it is
straightforward to use any kind of features. Due to PicSOM’s ability to auto-
matically weight and combine the responses of the different descriptors, one can
make use of any number of content descriptors without the need to weight them
manually. As a consequence, the PicSOM system is well-suited for operation
with MPEG-7 which also allows the definition and addition of any number of
new content descriptors.

In the experiments we compared the performances of four different color de-
scriptors available in the MPEG-7 Experimentation Model software. The results
of that experiment showed that no single color descriptor was the best one for
all of our six hand-picked image classes. That result was no surprise, it merely
emphasizes the need to use many different types of content descriptors in par-
allel. In an experiment where we used all the available color descriptors, the
PicSOM system indeed was able to automatically reach and even exceed the
best recall–precision levels obtained earlier with preselection of features. This



is a very desirable property, as it suggests that we can initiate queries with a
large number of parallel descriptors and the PicSOM systems focuses on the
descriptors which provide the most useful information for the particular query
instance.

We also compared the performance of the self-organizing relevance feedback
technique of PicSOM with that of a vector-quantization-based reference system.
The results showed that in the beginning of queries, PicSOM starts with a bit
lower precision rate. Later, when its strong relevance feedback mechanism has
enough data to process, PicSOM outperforms the reference technique. In the
future, we plan to study how the retrieval precision in the beginning of PicSOM
queries could be improved to the level attained by the VQ technique in the
experiments.
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