Abhishek Tripathi, Arto Klami, and Samuel Kaski. Using Dependencies to Pair Samples for Multi-View Learning. In the IEEE 2009 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2009), in press. (preprint pdf)

Several data analysis tools such as (kernel) canonical correlation analysis and various multi-view learning methods require paired observations in two data sets. We study the problem of inferring such pairing for data sets with no known one-to-one pairing. The pairing is found by an iterative algorithm that alternates between searching for feature representations that reveal statistical dependencies between the data sets, and finding the best pairs for the samples. The method is applied on pairing probe sets of two different microarray platforms.



Copyright 2009 IEEE. Published in the IEEE 2009 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2009), scheduled for April 19 - 24, 2009 in Taipei, Taiwan Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

All authors belong to Helsinki Institute for Information Technology HIIT and Adaptive Informatics Research Centre. The work was partly supported by PASCAL2, EU Network of Excellence, and by a grant from University of Helsinki's Research Funds