Jarkko Venna, and Samuel Kaski. Local multidimensional scaling. Neural Networks, 19, pp 889--899, 2006. (preprint pdf)

In a visualization task, every nonlinear projection method needs to make a compromise between trustworthiness and continuity. In a trustworthy projection the visualized proximities hold in the original data as well, whereas a continuous projection visualizes all proximities of the original data. We show experimentally that one of the multidimensional scaling methods, curvilinear components analysis, is good at maximizing trustworthiness. We then extend it to focus on local proximities both in the input and output space, and to explicitly make a user-tunable parameterized compromise between trustworthiness and continuity. The new method compares favorably to alternative nonlinear projection methods.



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.