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Background

Observations D, model ‘H with parameters 0

All information of the parameters is contained in the posterior

p(D|0, H)p(6|H)
p(DIH)

where p(D|H) = [, p(D|0, H)p(0|H)dO

p(9|D,H) —

Marginalisation principle:

p(x|D, H) = /9 p(x|8, H)p(8|D, H)d6

How to assess possible approximations ¢(8) of the posterior

p(0|D, H)?

How to approximate p(D|H)?



Bayesian analysis of approximations

Choosing the best approximation is a decision problem
Bayesian method: specify utility, maximise expected utility

For approximations (@) € Q and “true parameter values” 6 € (2,

define a score function u: Q9 x ) — R

Expected utility

/ u(q, 0)p(6]D)de’



Properties of score functions

e The score function is proper, if
sup u(q) = u(p(0|D))
which is attained only if ¢(8) = p(0|D)
e [ he score function is local, if

u(q,0) = ug(q(0))



Score functions

Example. The quadratic score function

1w(q.0) = A [2(](9) _ / q(H’)QdH’] + B(6)

corresponding to the expected utility

is a proper, non-local score function



Bayesian analysis of approximations

Proposition. Smooth, proper, local score functions are of the form
u(q,8) = Alogq(6) + B(0),

where A > 0 and B(0) are arbitrary.

Proof. We maximise the expected utility

a(g) = / ue(q(6))p(6|D)d6

subject to constraint [ ¢(8)d@ = 1. This is done by finding an

extremum of

Fla) = ala) ~ 4| [ a)ds - 1).



Proof contd.
A necessary condition for this follows from the variational principle

2 Pla() +ar()],_y = 0

O
for any function 7 : {2 — R. this implies a differential equation
u'(q(0))p(6|D) — A =0,
which should hold for ¢(6) = p(@|D). The solutions of this are

u(q,0) = Alog q(0) + B(0).



Bayesian analysis of approximations

Theorem. Differences of expected utilities under smooth, proper, local
score functions are given by the (scaled) Kullback—Leibler (KL)
divergence

p(6|D)

2(0) do.

A Dy (p(8]D) || (6)) = A / p(6]D) log

Proof. Evaluate @(p(|D)) — a(q(8)).



Properties of KL divergence

e In information theory, the KL divergence

_ . p(0|D)
Dicr(p(8]D) || 4(8)) = / p(0ID) 10z 2 7o

measures the overhead when using distribution g to code events

following p

e The choice of A reflects the choice of unit of measure, essentially

the base of the logarithm

e Natural logarithm In yields nats, while log, gives bits



Exponential families

Definition A set of distributions with densities

p(016) = g5 expl€”0(0)

is an exponential family with natural parameters &, sufficient statistics
®»(0) and partition function Z(§).

Examples: Gaussian, gamma, multinomial, Dirichlet, ...

Theorem For exponential families,

Velog Z(€) = (0(0)).



Properties of the KL divergence

Theorem. Given an approximation in an exponential family

1
Z(§)

the KL divergence Dk (p(0|D) || ¢(0]€)) is minimized when

(0(0))po1D) = (0(0))q(61¢)-

q(0|¢) = exp (&1 ¢(0)),



Proof. Consider
f(&) = Dkr(p(8|D) || q(0]€)) = (logp), + (log Z(£)), — (£ 6(0)),
= (logp)p +log Z(&) — £ (4(0)),.

Zeroing the gradient yields the desired condition, because for exponential

families
Ve log Z(€) = ((6)).
The minimality of the extremum can be checked using the second

derivatives.



Properties of the KL divergence

e In VB, the reverse of KL divergence is used:

Dt a(6) || p(6ID)) = [ a(6)1og pg;f;g) 6.

e Having large ¢(@) with very small p(@|D) causes large values of the

divergence

e Hence the VB approximation will be contained in the true

distribution



Limitations of naive mean field variational
Bayes

e The marginal likelihoods and especially rankings evaluated by VB
are often quite reliable

e The estimates of the marginals may not be as good, variances can
be underestimated

e Sometimes a simpler mode of solution may be preferred because of
inadequate approximation



Analysis of variational Bayesian ICA
(A. llin & H. Valpola)

Consider the ICA model
x =As+n
Gaussian noise n ~ N (0, Xy)
Non-Gaussian source prior p(s) = | [, p(si)
These yield non-diagonal posterior covariance for s:

Yop X X+ ATEA



Limitations of variational Bayes

The form of the true posterior p(s(t) | A, x(t))

T T

ICA PCA
The cost of the posterior and source model misfit

T

- — - Cost of posterior misfit
—— Cost of source model misfit

ICA PCA

[llustration of the trade-offs between the ICA and PCA solutions.



Limitations of variational Bayes

v =20.6 v =0.7
»»»»»»» e O L —.:—./.«;.;®~—

VB solutions to ICA problem as a function of non-Gaussianity of the
sources



Expectation propagation

e An approximate inference method proposed by Thomas Minka in
2001

e Suitable for approximating product forms

H ti(0) ~ H t;(0)
i=0 i=0

e lterative refinement of the terms ;(0)



Expectation propagation
e The parameter posterior is

1 N

p(OID) = 55p(6) [ [ p(x16)

e As a function of @, this can be written as

p(0) [T p(x.10) = []1:(0)

where t43(60) = p(@) and ¢,(0)

p(x:|0)



e Now approximate each term separately to get

N
= ][0
i=0
e Fit the approximation by finding

min Dgcr(t:(0) | [ £;(0) 11 2:(0) | [ £,(0))

£:(6) Ve JF1



Expectation propagation algorithm

Input £4(80),...,tn(0)
Initialise 1o(8) = to(6),4;,(8) =1 for i > 0, ¢(8) = [[1-, 1:(0)
repeat
for:=0,..., N do
Deletion: q\;(8) o< L% =T, 7;(6)

ti(0)
Projection: #7¥(0) « argmin Dgr,(t;(8)q\i(0) || 1:(8)q\:(9))
£;(0)
Inclusion: ¢(8) « 7" (0)q\;(0)
end for

until convergence



Expectation propagation algorithm (2)

Input t9(0),...,tx5(0)
Initialise ¢o(6) = t0(0),1,(0) =1 fori >0, ¢(0) = [[,_,:(0)
repeat

for:=0,..., N do

Deletion: ¢\;(8) o< 2% =TT, ;(6)

ti(0)
Inclusion: ¢(0) « arg rr(lg)l Dy (t:(0)qi(0) || ¢(9))
q
. fhew q(0)
Update: ¢7"(0) «— 2. (0)
end for

until convergence



The clutter problem

Consider a simple Gaussian mixture for D = {x;},

p(x]0) = wN (x; 6,1I)+ (1 — w)N(x; 0,101)
p(0) = N(6; 0,100I).

A suitable exponential family for this is formed by

N(x; m,vl) = N(x; &)

with sufficient statistics ¢(x) = (x,x!x), natural parameters

€= (v 'm, —%v_l) and normalisation Z (&) = (27w)d/2 exp(

1 T

2

51N 11
v

).



Expectation propagation algorithm

Input to(0),...,tn(0)
Initialise 15(8) = to(6),4;(8) =1 for i > 0, ¢(8) = [[1v, #:(0)
repeat
for:=0,...,N do
Deletion: ¢\;(0) a6) _ | J

Inclusion: ¢(0) « arg l’l’(lg)l Dy (t:(0)q\:(0) || ¢(9))
q

. q(0)
Update: = 20

end for

until convergence



EP for the clutter problem (1):
Initialisation

For the clutter problem, we have

Now initialise §, =0 for:=1,..., N.



Expectation propagation algorithm

Input £4(80),...,tn(0)
Initialise 7(0) = to(0),%:(0) = 1 for i > 0, q(0) = [T\, #:(6)
repeat
for:=0,....,N do
Deletion: ¢\;(0) o 26) _ 112 t;(09)

ti(0)
Inclusion: ¢(0) « arg rr(lggl Dy (t:(0)q\:(0) || ¢(9))
q
. fhew q(0)
Update: ¢0"(0) «— 2:(0)
end for

until convergence



EP for the clutter problem (2):
Deletion

When working with natural parameters, the deletion operation

7]
Q\i(e) X gig))

is trivial to implement with

E\i :E—éi-



Expectation propagation algorithm

Input £4(80),...,tn(0)
Initialise = t0(6), — 1 fori >0, ¢(0) =[],
repeat
for:=0,...,N do
. 5
Deletion: ¢\;(0) 20) _ [T

Inclusion: ¢(@) < arg H(lg)l D1, (t:i(0)g\:(0) || ¢(0))
q

. q(0)
Update: = 20

end for

until convergence



EP for the clutter problem (3):
Inclusion

The inclusion operation:

q(0) argg(l}gr)lDKL(ti(e)Q\i(H) | q(0))

requires matching sufficient statistics of

t:(0)q\i(0) = (wN(xs; 0,1) + (1 —w)N(x;; 0,10I)) N(0; &\;)

_ (w/\/ (9; (Xi,_%)> + (1 — w)N(x;; 0, 101)) N(0; &\;)

_— 2(€7) N(8; €7) + (1 — w)N(x;; 0, 100N (8; &,;)
7 (e~ 1)) Z(&,) i

o rN(6; €7) + (1 — )N (6; &),

where £ = §\; + (x5, —3)



EP for the clutter problem (3):
Inclusion (cont.)

We wish to match the sufficient statistics of the Gaussian mixture
t:(0)q\i(0) o< rN(8; €7) + (1 — )N (8; &)
These are simply
m=rm* + (1 —r)my;

v+mim=r (vF + (m+)Tm+) +(1—r) (v\i + m{im\i)



Expectation propagation algorithm

Input £4(80),...,tn(0)
Initialise 7(0) = to(0),%:(0) = 1 for i > 0, q(0) = [T\, #:(6)
repeat

for:=0,....,N do

Deletion: ¢y;(0) oc L2 =TT, ;(0)

ti(0)
Inclusion: ¢(0) « arg o Drr(ti(0)q\:(0) || ¢(0))
q
. fhew q(0)
Update: ¢7¢V(0) «— 2 (0)
end for

until convergence



EP for the clutter problem (4):
Update

When working with natural parameters, the update operation

new Q(H)
6) = Q\z(e)

is again trivial with

& :E_g\i'



Marginal likelihood by EP

e The EP algorithm may be extended to evaluate the marginal
likelihood p(D|H)

e To do this, we include a scale on #;(0) and through them for ¢(6):

(2

where ¢*(0) is a normalised version of ¢(8) and
Zi = [ 9.i(0)t:(0)d0

e Finally we approximate

p(DIH) ~ / 1(6)d6 = / [17 e




Marginal likelihood for the clutter problem

For the clutter problem

()
40) =2 0\i(0)
implies
L Z(&)
(3
N Z(€) .
Z; = W (G~ 1)) 7€) + (1 — w)N(x;; 0,101I).
And globally

Si
i=1

p(DIH) ~ /Hfi(e)de = ZZ((fO))



EP for belief networks

e A probabilistic model may be represented as a directed graph
corresponding to a factorisation of the joint distribution

p(x) = H p(x;|parents(z;))

T; EX
e Derive an EP algorithm using the term factorisation
ti(x) = p(zi|parents(z;))

and a factorial posterior approximation

q(x) = ] ] ax(z)
k



e For each term t;(x) the factorisation implies a factorial
approximation
Lx)= ] flan)
ke{i,pa(i)}

e Equivalently, for each factor ¢i(xx), this corresponds to a regular
EP approximation

qr(Tr) = H tik(Tk),

ie{i,ch(i)}



EP for belief networks

Input £1(x), ..., tN(X)

Initialise £;1,(zx) = 1, qu(zr) = [T; tar (k)

repeat

fori=1,...,N do
for all k£ do
Deletion: qu\; x (%) o % =1L tin ()

end for
for all k£ do

Projection: 7¢%(xy) D vy V(%) TLar @i (25)
Inclusion: gx(z) «— %% (zk)q\i k(%)
end for
end for

until convergence



EP for belief networks (T. Minka)

q(a:_]_-)

tik(2k) = Zwi,mj p(xi|Tk, ©5)qi(x:)q; ()

S~



EP for belief networks (T. Minka)

sl




EP for belief networks

e The presented EP algorithm is equivalent to a well-known method
called (loopy) belief propagation

e For tree structured graphs, it converges in one pass to yield correct
marginals

e For general graphs there are no guarantees and it may even diverge



EP for belief networks

e The EP formulation allows simple generalisation to more accurate
approximations

e Use fewer more complicated terms t;(x)

e Factorisation g(x) = ][, qx(xx) over nodes can still be assumed to
only evaluate the marginals



An energy function for EP

e Assume an approximation in an exponential family exp(A’ ¢(8))

e With an exact prior,

q(8) o p(8)exp(v’ ¢(8))
and
0, (0) = p(8)exp(A] ¢(0))

e Let N be the number of terms ¢;(0)



e Now, EP fixed points correspond to stationary points of the objective

myinmiix (N — l)log/p(H)exp(uTgb(H))dH

o / t:(8)p(8)exp( A ¢(6))d6

such that (N — 1)I/j = Zz >\’LJ
e Note: non-convex optimisation problem

e Also other formulations for the energy function



Summary
Kullback—Leibler divergence Dg . (p(6|D) || q(0)) is a reasonable
measure of goodness of approximation

EP uses this in a tractable manner to optimise
Dk r(ti(0)q\:(0) || t:(8)q\:(0))
Provides good approximations of marginals and marginal likelihood

Alternative interpretation to existing belief net algorithms

Algorithm may not converge (— explicitly minimise the energy?)



