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Abstract. We study discriminative joint density models, that is, gen-
erative models for the joint density p(c,x) learned by maximizing a dis-
criminative cost function, the conditional likelihood. We use the frame-
work to derive generative models for generalized linear models, including
logistic regression, linear discriminant analysis, and discriminative mix-
ture of unigrams. The benefits of deriving the discriminative models from
joint density models are that it is easy to extend the models and inter-
pret the results, and missing data can be treated using justified standard
methods.

1 Introduction

We study a classification task where a learning set, consisting of paired data
(x, c), is given. The c is the value of a categorical variable, associated with
observations x. The observations may be collected from several different kinds
of data sources; some may be real-valued measurements from sensors, whereas
some may be probabilistic predictions. What all the values x have in common is
that the c are assumed to depend on them. The task is to predict c for a test set
where only the values of x are known. The c are often referred to as the (values
of the) dependent variable, and the x the values of the independent variable or
covariate.

There are two traditional modeling approaches for predicting c, discrimina-
tive and generative. Discriminative models optimize the conditional probability
p(c|x) (or some other discriminative criterion) directly. The models are good
classifiers, since they do not waste resources on modeling those properties of the
data that do not affect the value of c, that is, the distribution of x. A classic
example of a discriminative model is logistic regression, which is a special case of
Generalized Linear Models (GLMs) [1]. In GLMs, functions of linear combina-
tions βT x of the independent variables are sought in order to predict p(c|x, β).

The other traditional approach is generative modeling of the joint distribu-
tion p(c,x). The benefit of generative models is that compared to purely dis-
criminative models, they add prior knowledge of the distribution of x into the
task. This facilitates for example inferring missing values, since the model is



assumed to generate also the covariates x. The models are often additionally
simpler to construct, and their parameters offer simple explanations in terms of
expected sufficient statistics. A classic example of generative models is the linear
discriminant analysis (LDA).

Several publications have been devoted to comparing the discriminative and
generative approaches [2–4]. A common model pair in the comparisons has been
Linear Discriminant Analysis (or Naive Bayes) vs. logistic regression. With in-
finite amount of data, generative modeling by maximizing the joint likelihood
produces optimal parameters for classification, assuming that the true data dis-
tribution is contained in the model family. However, with real-world data this is
unlikely [5], and better predictions for c can be achieved by maximizing the condi-
tional likelihood.3 In practice, with large amounts of data, generative models are
inferior to discriminative models, since the assumed model is always incorrect,
but with small sample sizes generative models may show better performance [4].

The two modeling approaches are related. A discriminative classifier can be
obtained by simply changing the objective function from the joint likelihood
p(c,x|θ) to the conditional likelihood p(c|x, θ) by use of the Bayes formula, and
then optimizing the model parameters. The method has been put to extensive use
in speech processing applications, where good results have been obtained using
discriminative hidden Markov models [6]. What is often neglected is that even
after converting a joint density model to a discriminative model, the model still
constructs a density estimate for x. In this paper we show that this information
may be useful, even if the model is inaccurate, for example in predicting missing
values of x. We also show that the discriminative joint density models are very
close to so-called generalized linear models with random effects. The models
operate in the same parameter space, but the generative formulation restricts
the space.

Discriminative joint density models allow straightforward generalization to
combining different types of measured data: continuous, categorical, or proba-
bilities. In this paper we introduce, as an example, a discriminative joint density
model for multinomial data, a discriminative version of the mixture of unigrams
model.

3 Joint density modeling minimizes the Kullback-Leibler divergence between the model
p(c,x|θ) and the “true” model p(c, x),

DKL =
∑

p(c,x) log
p(c,x)

p(c,x|θ) =
∑

p(c, x) log
p(c|x)

p(c|x, θ)
+

∑
p(x) log

p(x)

p(x|θ) ,

where the first term is the conditional likelihood. If the true model is included in
the model family, the latter term can be made to vanish, but otherwise, in the
case of an incorrect model, it is always nonzero for joint likelihood models. When
the true model is not within the model family, the joint likelihood model is thus
asymptotically always worse than the conditional likelihood model.



2 Background

2.1 Exponential Family Distributions

An exponential family distribution can always be written in the canonical form

p(x|θ) = exp
(
T (x)T θ − log Z(θ)− log Y (x)

)
, (1)

where the T (x) are the (observed) sufficient statistics, θ the natural parameters,
and log Z(θ) is the convex normalization term (partition function).

The key definition [7] needed here is the dual parameter µ, 4

µ = 〈T (x)〉p(x|θ) = ∂ log Z
∂θ . (2)

The natural parameters do not in general (with Gaussian being the exception) lie
within the same space as the sufficient statistics [8], which complicates their use
and interpretation. This is why exponential distributions are usually expressed
in terms of dual parameters µ which lie in the same space as the mean of the
sufficient statistics (and sometimes they are referred to as expected sufficient
statistics, for obvious reasons). The mapping Eq. (2) constrains the allowed
values of dual parameters to a plane tangential to the partition function log Z(θ).
This means that it is always possible to find a θ∗ corresponding to the sufficient
statistics T (x) (see [7, 8] for more details).

2.2 Generalized Linear Models

In GLMs [1] the dependent variable c is modelled with an exponential family
distribution of the form

p(c|x,B) = exp{T (c)T (BT x)− F (BT x)− log Y (c)} . (3)

The GLM thus assumes a mapping θ = BT x to natural parameters. The function
µ = f(θ) = ∂

∂θF (θ) then provides a mapping to dual parameters. Here f(θ) is
the inverse of a link function. The most often used is the canonical link function
which is obtained if we select the partition function f(θ) = ∂

∂θ log Z(θ).

Generalized Linear Model with Random Effects. It is realistic to assume
that there is uncertainty associated with the measured values of x, that is, they
contain noise. In statistical modeling the most common assumption is additive
noise, θ = BT x + Zu, where Z is assumed to be known and u is an exponential
family noise term [9]. The approach thus makes a probabilistic mapping to nat-
ural parameters. Here BT x provides the sufficient statistics for θ. Notice that
the approach is still fully discriminative; the distribution of x is not modelled.

In GLMs with random effects the log-likelihood log p(c|x,B,u) + log p(u|A)
is then optimized with respect to β and u [9], with known values of the noise
variance A (it is determined by Z). See [1, 9] for more detailed descriptions.
4 For compactness of our formulas, we will denote 〈T (x)〉p(x|θ) = Ep(x|θ) {T (x)}.



3 Discriminative Joint Density Modeling

In a discriminative joint density model the set of variables Y is divided into
two classes, Y = C ∪ X, where the C are the dependent variables over which
we want to discriminate and the X are the independent variables. The log-
likelihood of the discriminative model is log p(C|X, θ) = log p(Y |θ)− log p(X|θ).
Optimization of discriminative generative mixture models is usually done using
gradient ascent-based methods (as in this paper). Various EM-type algorithms
have also been proposed (see [10] and references therein).

We concentrate here on mixture models, where the identity of the mixture
component is a hidden variable. The theory is more general, however. Each
value of the hidden variable is associated with a deterministic mapping to a
value of the dependent variable c. We will next illustrate the differences between
discriminative and ordinary joint density modeling with Linear Discriminant
Analysis (LDA).

3.1 Linear Discriminant Analysis

As usually expressed in terms of dual parameters, the a posteriori decision rule
of LDA is [11]

p(C = j|xi) =
π(j)p(xi|m̄j ,S)∑
j′ π(j′)p(xi|m̄j′ ,S)

, (4)

where π(j) is the prior class probability, and m̄j denotes the mean of the dis-
tribution of x for the class j. Index i runs over data items, i ∈ [1 . . . N ]. LDA
assumes that data from each class is generated from a Gaussian distribution, all
of the classes having the same within-class covariance S.

The decision rule (4) is a direct formulation of a discriminative joint density
model cost function, with each class being modeled by one Gaussian. Usually,
the above equation is not optimized directly. Instead, an asymptotically optimal
classifier that models the joint likelihood is obtained by estimating µi by class
centroids, and S by the within-class covariance. The joint likelihood solution and
the discriminative solution obtained by optimizing Eq. (4) are asymptotically the
same if the “true” data distribution follows the assumptions of the LDA model.
Otherwise the solutions differ (see Fig.1 for a toy example).

3.2 Log-Linear Regression

As illustrated in the toy example of Figure 1, the best model for classification
optimizes p(c|x, β), which in the case of LDA is the a posteriori decision rule. A
classic example of a case where p(c|x, β) is optimized directly is the log-linear
regression.

In log-linear regression the probability of a class j for a data item xi is
computed by

p(C = j|xi,B) ≡ pji =
eβT

j xi∑
j′ e

βT
j′

xi
, (5)
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Fig. 1. Difference of class distributions of discriminative and joint density models.
Discriminative modeling is optimal for predicting c (Left). In a joint likelihood model
the class difference is optimized only implicitly, resulting in softer class borders (Right).
In this toy example both models have the same covariance matrix, the within-class
covariance, and only the cluster centroids are optimized. The contour plot shows the
probability p(c|x) in 0.1 intervals. “X” and “O” denote samples from different classes.

where x is the vector of independent variables and βj the vector of coefficients
for a given class j. The βj is constructed to incorporate also a constant term
βj0 by having one component of x to be always 1. The βj form the columns of
matrix B. Each observation i can be considered as a draw from a multinomial,
and hence the log-likelihood will be

L =
N∑

i=1

C∑
j=1

δ(ci, j) log pji , (6)

where δ(ci, j) picks the class index j corresponding to the class of sample i.
We will next show the relationship between LDA and loglinear models. By

inserting Eq. (5) into the log-likelihood (6), we get

L =
N∑

i=1

C∑
j=1

δ(ci, j)βT
j xi − log

∑
j′

eβT
j′xi

 . (7)

We may take the constant term βj0 out from βj = [βj0 βj,1...d] ,

L =
N∑

i=1

C∑
j=1

δ(ci, j)
(
βj0 + βT

j,1...dxi

)
− log

∑
j′

eβj′0eβT
j′,1...d

xi

 . (8)

At this point we insert prior information into the model family: we require that
the βj0 and x come from exponential family distributions. We first require that
βj0 comes from a multinomial distribution by reparameterizing βj0 → log π(j)−
log

∑
j π(j) (here we in effect add a constraint that

∑
j π(j) = 1). The term

βT
j,1...dxi can be interpreted to be log p(xi|βj,1...d) without the normalization



term. We can restrict x to an exponential family model by reparameterizing
βT

j,1...dxi → βT
j,1...dxi−log Z(βj,1...d)−log Y (xi). The βj,1...d then form the natural

parameters and xi the sufficient statistics of the model.
Using Equation (1), we get

L =
N∑

i=1

C∑
j=1

δ(ci, j) (log π(j) + log p(xi|βj,1...d))− log

∑
j′

π(j′)p(xi|βj′,1...d)


=

N∑
i=1

log

∏
j (π(j)p(xi|βj,1...d))

δ(ci,j)∑
j′ π(j′)p(xi|βj′,1...d)

.

This is the same as LDA in Eq. (4) if the p(xi|βj,1...d) are Gaussian.
Notice that the constraint that x can be modelled by an exponential family

distribution restricts the parameter space of βj,1...d through log Z(βj,1...d).5 As
an example, for multinomial distributions this effectively removes one degree of
freedom, since

∑
µ = 1. Note additionally that the discriminative joint density

model prefers values of β which are close to the θ∗ corresponding to the mean
of the observed sufficient statistics of x.

4 General Description of Discriminative Joint Density
Models

We will now formalize a general description of the discriminative joint density
model. We define a model that generates the observed (categorical) values c and
the associated measurements x. Each measurement xi consists of S different
kinds of data sources indexed by s, each modelled with an appropriate expo-
nential family distribution. Our goal is to optimize P (c|X, θ), where θ = {π, β}
denote all parameters of the model. We assume that X can be modelled using an
exponential family distribution, given a mixture component l. The information
x carries about c is therefore visible also in the sufficient statistics of X, and
thus the parameters of the generative distributions. The model can be optimized
for discriminating the classes by maximizing the conditional likelihood

p(ci|xi, θ) =

∏
k

(∑
l∈Ck

p(l,xi|βl, π(l))
)δ(ci,k)∑

l′ p(l′,xi|βl′ , π(l′))
, (9)

where l indexes the mixture component, and Ck is the set of components as-
sociated with class k. π(l) is the probability that the data was generated from
mixture component l, and βl are the parameters of the component l. See also
Figure 2.

The observed variables of our model are the classification C and the as-
sociated independent variables Xs. The parameters of the model are given by
5 Logistic regression, on the other hand, assumes that the β are independent with

values allowed to vary over the whole real-valued space.
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Fig. 2. A graphical model of the discriminative joint density model. Here l is the index
of the distribution that is used to predict class c. The grey circles indicate observed
values. S is the number of data sources, and N the number of data items.

θ = {π, β1...L
1...S }. Notice that the generative models are the same for the discrim-

inative and joint likelihood models. The difference is in the optimization.
A benefit of the discriminative joint density formulation, compared to alter-

native discriminative models, is that the model (and thus logistic regression) is
easy to extend into cases where x is better modelled by a mixture of exponen-
tial family models. The generative formulation also makes it simple to model
several independent variables and different forms of data, such as multinomial
or probability distributions [12]. Besides giving class predictions, the parameters
of the discriminative joint density models are directly interpretable in terms of
sufficient statistics for x.

4.1 Generative Model for Generalized Linear Models

The generative formulation can be easily extended to the GLM model class, of
which the log-linear model (see Section 3.2) is a special case. For simplicity, we
will assume that exactly one mixture component j corresponds to each class
label c. For convenience we will drop out the index i from xi, ci in the following.

We begin with the objective function of discriminative joint density models,
Eq. (9), which can also be written as

p(c|x, β) = exp{δ(c, j) log p(x, j|βj , π(j))− log
∑
j′

p(x, j′|βj′ , π(j′))} . (10)

By comparing this form with (1), we notice that the form corresponds to a
multinomial distribution with natural parameters θj = log p(x, j|βj , π(j)), suffi-
cient statistics T (c) = δ(c, j), and with log Z(θ) = log

∑
j′ p(x, j′|βj′ , π(j′))} =

log Z(p(x|β, π)). Since we pick one class for each x, the log Y (c) is zero.
By writing θ in an exponential family notation, we get

θj = log p(x, j|βj , π(j)) = T (x)T βj − log Z(βj)− log Y (x) + log π(j)− log Z(π) .
(11)

The log Y (x)-term can be left out, since it is the same for all components j. By
inserting Eq. (11) into Eq. (10), we get

p(c|x, β) = exp{T (c)T
(
BT T (x)− log Z(β) + log π − log Z(π)

)
− log Z(p(x|β))}.

(12)



The π and log Z(π) can be incorporated into the matrix B, similarly to the
log-linear case. The vector log Z(β) consists of components log Z(βj).

Now, when the generative model and the GLM have been expressed in the
exponential family notation in Equations (12) and (3), respectively, we will point
out their difference. In case of multinomials considered in this paper, the Y (c) in
(3) is zero because of the form of the sufficient statistics. Of the remaining terms
within the exponent, the last one in both models is the normalization term. The
essential difference then is the term log Z(βj) in (12). In case of multinomial
distribution it removes one degree of freedom in the model. This can be shown
by adding a displacement λ to each component of βj , which does not change the
predictions of the model (12). GLM, in contrast, does not have such a restriction.

The generative model in effect introduces prior information into GLMs: as-
suming that the generative model for x is (nearly) correct, we can restrict the
(effective) parameter space of β. The restriction provides an additional benefit,
since by mapping the parameters to their dual parameters (through log Z(β)),
the values of β can be interpreted in terms of sufficient statistics of x.

The model is very similar to GLMs (with random effects), since both models
define a probabilistic mapping to θ. However, in discriminative joint density
models the uncertainty is defined for values of x, whereas in GLMs with random
effects the uncertainty is defined for θ. The discriminative joint density models,
however, have an additional benefit: By expressing the noise terms for individual
x, we form a generative distribution for x.

4.2 Connection to Maximum Entropy Discrimination

In maximum entropy discrimination (MED) [13], discriminative functions of the
form L(X|θ) = log p+

p−
are optimized. The p+, p− denote probabilistic models

for the class + and −, respectively. In contrast, the discriminative joint density
modeling cost function can be expressed by

p+

p+ + p−
=

1
1 + exp{− log p+

p−
}

=
1

1 + exp{−L(X|θ)}
. (13)

The cost function thus is a monotonic (sigmoid) transformation of the MED
objective function.

The main advantage of the discriminative joint density modeling cost func-
tion over MED is that the output is the probability of the corresponding class,
thus expressing directly the level of uncertainty in class prediction. Generaliza-
tion to the case of several classes is also simpler and more straightforward to
implement.

4.3 Missing Data

It is of interest to know whether the estimate p(c|x, θ) can benefit from data
where the x is incomplete for some data items. Let us denote vectors with missing



values by x = [y z], where y is the missing data and z the known components.
The conditional log-likelihood with missing data can then be written as

L =
∑

i∈Dfull

log p(ci|xi, θ) +
∑

i∈Dmiss

∫
p(y|ci, zi, θ) log p(ci|y, zi, θ)dy , (14)

where we denote by Dfull the data set with all entries known, and by Dmiss the
data with missing entries. In order to infer the value for missing data, we need
to make a distributional assumption for y. A feasible one is p(y|ci, θ) used in the
generative model. If the data really has been generated from the model family
this is the correct assumption, but in the real world the performance depends
on how close the model family is to the “true” generative distribution.

Practical Implementation. There are several possibilities to optimize Eq. (14).
We now present a simple approach that makes computations tractable by con-
structing a lower bound for Lmiss, the cost function for the missing part of the
data. For discriminative joint density models it can be written as

Lmiss =
∑

i∈Dmiss

〈log p(ci,y, zi|θ)〉p(y|ci,zi,θ) − 〈log
∑

j

p(j,y, zi|θ)〉p(y|ci,zi,θ) .

(15)
The latter term can be upper bounded (and thus we obtain a lower bound for
Lmiss) by applying Jensen inequality

〈log
∑

j

p(j,y, zi|θ)〉p(y|ci,zi,θ) ≤ log
∑

j

〈p(j,y, zi|θ)〉p(y|ci,zi,θ) ≤ log
∑

j

p(j, zi|θ),

where the last expression follows from 〈p(y|j, zi, θ)〉p(y|ci,zi,θ) ≤ 1. A simple lower
bound of the cost function for missing data then follows

Lmiss ≥
∑

i

〈log p(ci,y, zi|θ)〉p(y|ci,zi,θ) −
∑

j

log p(j, zi|θ) , (16)

where the missing values y are replaced by their expectation under p(y|ci, zi, θ)
in the first term, and omitted in the second term.

4.4 Discriminative Document Modeling

The mixture of unigrams model [14] is a hidden variable model that generates
word counts for documents. The model assumes that each document is generated
from a mixture of M hidden “topics”,

∑M
j=1 πjp(xi|βj), where j is the index of

the topic, and βj the multinomial parameters that generate words from the topic.
The vector xi is the observed word counts for document i, and πj the probability
of generating the words from the topic j. In its simplest form with one topic per
class the model is a naive Bayes classifier.

In a discriminative mixture of unigrams the document vector is generated
from a mixture of topics (multinomials), where each class is assigned a subset
of topics. In this paper we will illustrate the functionality of the discriminative
mixture of unigrams in two cases: either with one or five topic vectors per class.



5 Experiments

We used the Reuters data set [15]. A subset of 4000 documents from four cat-
egories was selected, 1000 from each category. The categories were: Corporate-
Industrial (CCAT), Economics and Economic Indicators (ECAT), Government
and Social (GCAT), and Securities and Commodities Trading and Markets
(MCAT). Each of the selected documents was classified to only one of the four
classes. The words that occurred less than 200 times in the whole subset were
left out, thus leaving 1952 words. The data set was then split into equal-sized
training and test sets.

The second data set was the MNIST data6. The data consists of gray level
images of handwritten digits. The data was thresholded to ones and zeros with a
threshold gray level value of 128 (with a maximum of 255) before evaluating the
models. The training and test data sets each consisted of 10000 samples, each
sample being a binary image of 784 pixels.

A discriminative mixture of unigrams model (d-MUM) with one and five
components was applied. Reference methods included the naive Bayes classifier,
loglinear regression, k-means algorithm (where each class was modelled by its
centroid), and k-nearest neighbor search (k-NN), where the size of the neigh-
borhood was chosen by dividing the full training set to training and validation
sets.7 The k-means and k-NN algorithms were computed using dot product and
Hellinger distances. The classification accuracies for the test data set are reported
in Table 1. With the Reuters data the performances of the loglinear model and

Table 1. Classification accuracies for the test sets. Comparisons (1),(2),(3): significant
(p < 0.01) difference (McNemar’s test).

Method Accuracy (%)
Reuters MNIST

k-means 79.9 64.1
k-means (Hellinger) 81.9 76.0
k-NN (5-nn) 74.6 (9-nn) 84.8

k-NN (Hellinger) (5-nn) 86.9 (1) (5-nn) 94.9
naive Bayes 59.0 68.9

loglinear 92.2 90.9 (2)(3)

d-MUM 1 component 92.5 (1) 90.5 (2)

d-MUM 5 components 92.3 93.2 (3)

d-MUM are roughly equal. With MNIST data, the loglinear model is better than

6 Available at http://yann.lecun.com/exdb/mnist/
7 The computational complexity of k-NN is not comparable to the other methods, since

the method computes pairwise distances between every data point pair, whereas in
the other methods only C “prototypes” are used.



1-component d-MUM, but loses to 5-component d-MUM. Both models clearly
outperform the joint likelihood (naive Bayes) model.

In a second experiment the MNIST teaching data was corrupted by randomly
replacing pixels with missing values. The experiment was run for 10, 30, 50, and
75 % missing data. A baseline comparison method was logistic regression where
missing values were imputed by the mean of the known pixel values for the
given pixel and class. We also compared to the current state-of-the-art, k-NN
imputation which has been reported to outperform several other methods [16].

The discriminative MUM compares favourably to the k-NN imputation with
missing values computed based on the 10 nearest neighbors. Besides being more
accurate, our method is considerably faster, since k-NN imputation is O(N2),
where N is the amount of samples8. This is an additional cost, since the optimiza-
tion durations for the loglinear model and discriminative MUM (with missing
value imputation) are roughly equal.
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Fig. 3. Performance with missing data. The performance of discriminative MUM (solid
line) compared to logistic regression with k-NN imputation (dashed line) and impu-
tation by the mean of the class (dotted line). Horizontal axis: Percentage of missing
data. Vertical axis: Classification accuracy (%). The difference between k-NN imputa-
tion and d-MUM is significant with 75 %, and mildly significant (p=0.033) with 50%
missing data.

6 Discussion

The aim of this paper has been to set the stage for further contributions on dis-
criminative joint density models. Several theoretical connections were explored.
We have also shown that the paradigm can be easily applied to discriminative
document modeling with a simple case of mixture of unigrams model introduced
in this paper, and that the generative mechanism for x in discriminative joint
density models still contains useful information for example in predicting missing
values.
8 For computational reasons, we divided the data set to blocks of 1000 samples and

then imputed the missing values. This took more than 12 hours for each data set.
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