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Abstract. Several bioinformatics data sets are naturally represented
as graphs, for instance gene regulation, metabolic pathways, and protein-
protein interactions. The graphs are often large and complex, and their
straightforward visualizations are incomprehensible. We have recently de-
veloped a new method called local multidimensional scaling for visualizing
high-dimensional data sets. In this paper we adapt it to visualize graphs,
and compare it with two commonly used graph visualization packages in
visualizing yeast gene interaction graphs. The new method outperforms
the alternatives in two crucial respects: It produces graph layouts that are
both more trustworthy and have fever edge crossings.

1 Introduction

It is obvious that the various cellular networks are crucial in studying gene
function and more generally in systems biology. Such networks are naturally
represented as graphs, where nodes are the key elements (genes or proteins) and
the interaction between two elements is represented by an edge connecting the
two nodes. Often the edge is given a weight or length that represents the inter-
action strength. When the size of the interaction network increases it becomes
practically impossible to draw it manually and sophisticated automatic methods
are needed for visualization [1, 2, 3].

In this paper we introduce a new graph drawing algorithm by adapting our
earlier local multidimensional scaling method, and evaluate it and two alterna-
tives in the task of visualizing gene interaction networks.

2 Graph visualization methods

There are two common principles for designing graph layout algorithms for gen-
eral nondirected graphs: the so-called spring model, and a cost function that
aims at preserving graph distances. The two comparison methods are represen-
tatives of the two principles.

2.1 Graphviz

Graphviz [4] is a software package that implements two graph layout methods.
We focus here on the method called Neato, designed for undirected graphs. The
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cost function of Neato which, is almost the same as Sammon’s mapping, is

E =
∑

i<j

(d(xi,xj) − dij)
2

d2
ij

,

where the xi is the locations of node i on the visualization, d(xi,xj) is the
Euclidean distance between the nodes i and j in the layout, and dij is the short-
est path graph distance between nodes i and j. Graphviz uses a majorization
algorithm to optimize this cost function.

Graphviz is available from http://www.graphviz.org/.

2.2 LGL

The LGL graph layout algorithm [3] is based on a spring model where attractive
and repulsive forces affect the graph nodes. Each edge induces an attractive
force between connected nodes and nodes too near each other are affected by
a repulsive force. Each node is given a starting position and then the model is
iterated until the forces reach equilibrium.

The LGL algorithm starts by first selecting a root node and calculating the
minimum spanning tree (MST) of the graph. The layout begins with the root
node and iteratively adds nodes based on their distance from the root in the
MST. A new equilibrium is calculated after adding each new set of nodes.

LGL is available at http://bioinformatics.icmb.utexas.edu/lgl/.

2.3 Local Multidimensional Scaling (MDS)

We have recently [5] introduced a new visualization method for nonlinear pro-
jection of data sets. It minimizes a cost function which is a tunable compromise
between two types of errors: errors in preserving distances for nodes that are
neighbors on the layout (trustworthiness of the visualization), and for points
that are proximate in the original graph (“continuity” of the projection). The
tradeoff is tunable by a parameter λ. The cost function of local MDS is

E =
1

2

∑

i

∑

j 6=i

(d(xi,xj) − dij)
2[(1 − λ)F (d(xi,xj), σi) + λF (dij , σi)] ,

F (d, σ)) =

{

1 if d ≤ σ

0 if d > σ .

Here d(xi,xj) is the distance between the nodes i and j in the visualization
and dij is the shortest path distance on the graph between nodes i and j. We
optimize the cost function with the stochastic gradient descent introduced for
Curvilinear Component Analysis [6]. During the optimization the radius of the
area of influence around each data point i, σi, is slowly brought down. The final
radius is set to equal the distance of the K:th nearest neighbor of the data point
i in the original space.



3 Evaluating the goodness of a graph visualization

There have been relatively few studies on what makes a graph easy to analyze.
One feature that has been found to have a strong degrading effect is the number
of times edges cross in the graph [7, 8]. We will use this measure to evaluate the
graphs produced by the three methods, and additionally measure how well the
proximity structure of the graph is preserved in the node layout process, using
the measures of trustworthiness and continuity defined below.

3.1 Trustworthiness and continuity of a weighted graph layout

We consider a graph layout of a weighted graph to be trustworthy if the set of k

closest neighbors of a node on the display are also close-by on the graph.
Let N be the number of nodes and r(i, j) be the rank of the node j in

the ordering according to the shortest path distance from node i on the graph.
Denote by Uk(i) the set of those nodes that are in the neighborhood of size k of
the node i in the layout but not in the graph. Our measure of trustworthiness
of the visualization is

M1(k) = 1 −
2

Nk(2N − 3k − 1)

N
∑

i=1

∑

j∈Uk(i)

(r(i, j) − k) . (1)

For more details see [9, 10], where the measures have been used for evaluating
quality of dimensionality reduction.

The errors caused by discontinuities may be quantified analogously to the
errors in trustworthiness. Let Vk(i) be the set of those data samples that are in
the neighborhood of the node i in the graph but not in the layout, and let r̂(i, j)
be the rank of the node j in the ordering according to the Euclidean distance
from i in the layout. The measure of continuity, M2(k), is defined analogously
to Eq. (1). The set Vk(i) replaces the set Uk(i) and r̂(i, j) replaces r(i, j) in the
equation.

3.2 Trustworthiness and continuity of an unweighted graph layout

For unweighted graphs the natural neighborhood to preserve for a node is the
set of nodes connected to it. Hence, instead of selecting the k closest neighbors
based on distance which would be equal for many nodes, we choose all directly
connected nodes as the neighborhood. The trustworthiness, defined analogously
to (1), is

Mu
1 = 1 −

2

N

N
∑

i=1

∑

j∈Uk(i)

(r(i, j) − mi)

mi(2N − 3mi − 1)
,

where mi is the number of edges connecting to the node i. The rank r(i, j) of all
points that are at the same distance from i in the graph is the rank of the first
one. This measure could also be used on weighted graphs if we consider direct
connections to be more important than short distances.



The measure of continuity Mu
2 of an unweighted graph layout is defined

similarly.

4 Experiments

4.1 Data

We tested the graph visualization algorithms on two data sets.

Harbison. The Harbison data set [11] on yeast (Saccharomyces) contains p-
values for the bindings of several transcriptional regulators (some in several
conditions) to 6229 genes. We first dropped out genes that could not be matched
to the transcriptional regulators. Then we combined the p-values that were
collected in different treatments by only keeping the smallest (most significant)
one. The graph was formed by connecting genes that had a p-value ≤ 0.001.
Both weighted and unweighted version of the largest connected component graph
(147 nodes) were used in the experiments. Because the scale of the p-values varies
over several magnitudes we transformed the p-values by first taking the negative
logarithm and then subtracting the result from the maximum value. A small
value (0.1) was added to make the shortest distance nonzero.

Lee. The Lee data set [12] contains the regulator–regulator interaction network
of 106 yeast (Saccharomyces cerevisiae) genes. The data only indicates whether
interaction was present or not. This leads to an unweighed graph. The data is
available from
http://jura.wi.mit.edu/cgi-bin/young public/navframe.cgi?s=17&f= .

4.2 Results

All algorithms were run four times to avoid local minima. On local MDS different
values (5, 10, 15 and 20) for the K parameter were tested. On Graphviz and
LGL the run producing the best trustworthiness is reported. The best run on
local MDS was selected based on the λ-weighted average of trustworthiness and
continuity for each value of λ.

Table 1 summaries the results. Local MDS with λ = 0.1 or λ = 0.2 produced
the best results on all three graphs: these layouts had the highest trustworthiness
values together with the smallest numbers of edge crossings. Also continuity of
the local MDS layouts was equal to or better than on the other layouts. On the
two unweighted graphs Graphviz outperformed LGL slightly. On the weighted
graph it performed poorly. It is possible that this was caused by problems in
the implementation and not by the algorithm, however.

A visualization of the gene interaction network (based on the Lee data) with
each of the three methods is presented in Figure 1. It is difficult to judge the
relative quality of the visualizations without a detailed study, but it is clear
that local MDS has produced a layout with fewer edge crossings. This is visible
especially in the central part of the graph.



Harbison data, weighted graph, 147 nodes 802 edges

Method M1/M2 crossings (best/average/worst)

Graphviz 0.57 / 0.72 11536 (9533/12749/17128)
LGL 0.64 / 0.80 5262 (4504/4662/4765)
lMDS λ = 0.1 0.86 / 0.85 4068 (3884/4139/4527)
lMDS λ = 0.2 0.86 / 0.85 4399 (3891/4154/4399)

Harbison data, unweighted graph, 147 nodes 802 edges

Method M
u

1 /M
u

2 crossings (best/average/worst)

Graphviz 0.81 / 0.87 4073 (3964/4182/4432)
LGL 0.81 / 0.87 4455 (4212/4574/5262)
lMDS λ = 0.1 0.97 / 0.86 3625 (3619/3871/4220)
lMDS λ = 0.2 0.96 / 0.87 3825 (3635/3965/4441)

Lee data, unweighted graph, 106 nodes 182 edges

Method M
u

1 /M
u

2 crossings (best/average/worst)

Graphviz 0.93 / 0.96 68 (58/63/68)
LGL 0.92 / 0.95 71 (71/79/94)
lMDS λ = 0.1 0.99 / 0.95 45 (40/50/68)
lMDS λ = 0.2 0.99 / 0.96 33 (33/50/79)

Table 1: Trustworthiness (M1), continuity of the mapping (M2) and number of
edge crossings produced by different methods. On the weighted graph trustwor-
thiness and continuity are reported for a neighborhood size k = 6 which equals
the average number of edges connected to a node. On the unweighted graphs
the actual node-specific neighborhood size is used. In addition to the number
of crossings on the selected layout, the smallest (best), average, and the highest
(worst) number produced on the different runs of each method is given.

a b c

Fig. 1: Examples of gene interaction graph layouts for the Lee data: a) Graphviz
b) LGL c) local MDS (λ = 0.2). Each node in the graph is a gene and an edge
indicates interaction between genes.

5 Discussion

We introduced a new graph layout algorithm, and evaluated it and two earlier
algorithms in the task of visualizing gene interaction networks. Two of the



methods, Graphviz and LGL, have been previously used in bioinformtatics for
visualizing network data and the third is our new method, local Multidimensional
Scaling. We also extended a pair of measures previously used to evaluate the
trustworthiness and continuity of different visualizations to measure the quality
of unweighted graph layouts.

It turns out that local MDS produced graph layouts that were both more
trustworthy and had the least number of edge crossings, which makes them
easier to analyze.
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