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Introduction

Dimensionality reduction by gCCA extracts common 
properties of data sets

Dependency exploration by Associative Clustering:
hunting for hints of stress regulation

We develop methods for mining data sets for properties that are unknown a priori, but 
known to be common to all sets. Data comes in tuples or pairs (x,y), with x and y 
coming from different sets.

Yeast stress is a prototype case study. A group of yeast genes, called common 
environmental response (CER) or environmental stress response (ESR) genes, 
responds to stress. Their behavior should, by definition, have common properties across 
stress treatments (the data sets).

Objectives
Introduce general-purpose methods for extracting common properties from data sets:
� canonical correlation (CCA)-based depenency-preserving dimensionality reduction
� bootstrapped associative clustering for exploring dependencies between data sets
� Extract stress-related gene expression by the dimensionality reduction method
� Apply associative clustering to explore (regulatory) dependencies between the stress-
related expression and transcription factor binding data

Methods
Dimensionality reduction by gCCA

Standard Canonical Correlation Analysis (CCA) 
finds pairs or components, one from x and one 
from y, such that the components correlate 
maximally. For Gaussian data the components 
maximize mutual information between the sets.

CCA can be computed by whitening both data 
sets separately, and computing principal 
components (eigenvectors) of the concatenated 
data z=[x y].

CCA can be interpreted as dimensionality 
reduction as follows: Whitening removes the non-
interesting data set-specific variation, and only 
between-data variation remains. Dimensionality 
reduction by principal components analysis then 
tries to preserve this interesting variation.

This whole procedure can be generalized (gCCA) 
directly to several data sets: Whiten all data sets 
and compute principal components of the 
concatenated data.

Data

Expression data: Short time series from altogether 16 stress treatments, a total of 
106 time points. The data was collected from (Causton et al., Mol Biol Cell, 2001) 
and (Gasch et al., Mol Biol Cell, 2000). Each treatment is used as a separate data 
set.

Transcription factor (TF) binding data: Binding profiles of 113 transcription factors, in 
the promoter region of each gene, had been measured by Lee et al. (Science 2002).

Log ratios for 5998 genes, profiles normalized with respect to zero point of time 
series (or other control). Missing values imputed by genewise averages within each 
data set.

Associative clustering (AC)

AC clusters two data sets such that statistical 
dependency between the two clusterings is 
maximized. The clusters detect regularities and 
exceptions in co-occurrences of x and y.

Clusters are defined by K-means-type 
prototypes: x belongs to cluster i if x is closest to 
m
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The two clusterings form a contingency table of 
co-occurrence counts n

ij
. The clusters are 

optimized by maximizing the Bayes factor 
between two models, in which the contingency 
table is thought to arise from independent or 
dependent margins, respectively.

Contingency table cells are colored according to 
their deviance from independence. Yellow: 
unexpectedly many genes (implies regularities), 
Blue: unexpectedly few (implies outliers)

Search for reliable groups by bootstrap

We search for sets of genes that (1) occur in the 
same cluster pair (contingency table cell) reliably 
and that (2) signify dependencies between the 
data sets. 

(1) Is taken care of by bootstrap: For each pair of 
genes, compute the probability that the genes 
occur in the same contingency table cell. This is 
a similarity measure.

(2) Is taken care of by only considering yellow 
(regular) contingency table cells.

Finally, the similarities are summarized. Here we 
used hierarchical clustering, and selected the set 
of N=51 most homogeneous clusters for further 
analysis.

Results
Dimensionality reduction by gCCA separates 
known stress genes

The number of canonical components (=12) was 
chosen to maximize mutual information in cross-
validation.

These components showed significant 
association (Wilcoxon rank sum test, p<0.01) with 
known environmental stress genes (ESR, Gasch 
et al., Mol Biol Cell, 2000).

Already two components separate nicely up-
regulated (red) and down-regulated (green) 
stress genes from the mass.

AC finds dependencies between stress-
related expression and TF-binding data

Compared to independent K-means clusterings 
of both data sets, AC found significantly higher 
statistical dependency between the data sets 
(p<0.01, paired t-test in 10-fold cross-validation).

Moreover, known ESR genes are enriched in the 
reliable (judged based on bootstrap) clusters: 
upregulated ESR genes in 14 out of N=51 
clusters and downregulated ESR genes in 12.
Interpretations of the dependencies

EASE (Hosack et al., Genome Biol, 2003) gives 
interpretations: 14 remaining even after the ultra-
conservative Bonferroni correction.

Profiles of TF binding suggest regulatory 
interactions.

Discussion

Conclusions
We have introduced methods for 
dependency-preserving dimensionality 
reduction (gCCA-based) and dependency 
exploration (Associative Clustering-based).

The methods work: They find stress-related 
genes and possibly interesting regulatory 
interactions.

More work is needed for interpretations.

Our exploratory models are complementary to 
the popular graphical models of regulation (a la 
Friedman and others): They are simpler-to-use in 
novel tasks and in that sense more general-
purpose (have been used in modeling 
dependencies of gene expression in mouse and 
man, for instance).

Technical difference: We model only the common 
properties of data sets, instead of all data-specific 
details.
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