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ABSTRACT

We construct an atlas of a gene expression databank, to
visualize similarity relationships between expression data
sets. Such an atlas could be used as an interface to the
databank, for users searching for relevant background data
or data for their own in-silico analyses. The two main re-
search problems in constructing an atlas are (1) to prepro-
cess the data to make different sets commensurable, and
(2) to visualize the data. In this work we use only very
simple preprocessing to study its feasibility, and focus on
the visualization. We compare several recently introduced
methods in the task, and show that a method called curvi-
linear components analysis outperforms the newer ones in
terms of trustworthiness of the projections. The visual-
izations reveal the main sources of variation in the data,
namely the differences between data sets, different labs,
and different measurement methods, which supports fea-
sibility of the visualization method in the task. The other
conclusion is that better methods are needed for making
the data sets commensurable.

1. INTRODUCTION

A large community-resource or private gene expression
databank consists of numerous data sets submitted by sev-
eral parties. They may have been measured for different
purposes, with different treatments and methods in differ-
ent laboratories. Several such databanks have been estab-
lished and they continue to grow. A key challenge is how
to best use the databanks to support further research. In
this paper we discuss a subproblem: How to construct a
visualization of the actual contents to help in finding in-
teresting or relevant sets. Such a visualized atlas would
complement potential meta-data about the data sets, by
revealing more about the mutual similarities of the actual
data than the imperfect meta-data, that is, textual annota-
tions and descriptions.

The first big problem in visualizing gene expression
data sets stems from their dimensionality, which may be
thousands or even tens of thousands, equaling the num-
ber of genes on a microarray. We will compare several
dimensionality reduction techniques, with the traditional

linear principal components analysis (PCA) [1] serving as
the baseline.

We have earlier [2] compared PCA, multidimensional
scaling methods (MDS) [3], and the Self-Organizing Map
(SOM) [4] in a related task: visualization of similarity re-
lationships between genes, based on their expression pro-
files in a set of treatments. The result of the comparison
was that the SOM visualizations were more trustworthy,
in the sense that a set of genes found close-by on a SOM
display was more likely to be similar in terms of the orig-
inal data as well. In other words, the proximities visible
on the displays were more trustworthy. The other side of
the coin is whether the visualization is able to show all of
the proximities present in the original data. It turned out
that the SOM was among the best methods here as well.
There is later evidence [5] that a related method, curvilin-
ear components analysis (CCA) [6], may outperform even
the SOM in this task.

There has recently been a surge of interest in methods
for finding latent lower-dimensional manifolds of data, or
nonlinear embeddings of smaller-dimensional data mani-
folds in a higher-dimensional data space. We will include
these methods in the comparison with CCA.

Another main problem in visualizing gene expression
data sets, and in fact in all comparisons of the sets, is how
to make them commensurable. The measurement results
depend at least on experimental and measurement pro-
cedures, the specifics of the organism and its biological
state, biological sampling, measurement devices, and nor-
malization and postprocessing procedures. Nevertheless,
even very simple normalization procedures have resulted
in promising data analysis results in a recent study which
combined data from a variety of human cancer studies [7].
This prompted us to study the feasibility of a gene expres-
sion data atlas, where only very simple procedures have
been applied to make the sets commensurable.

2. METHODS

In this section we describe briefly the main classical meth-
ods for visualizing similarity relationships in the data, and
the recent ones that focus on finding data manifolds or
embeddings.



2.1. Multidimensional scaling

We did not include traditional multidimensional scaling
to the comparisons, but a short description helps to under-
stand the more complex methods below.

There are several different variants of MDS [3], but
they all have a common goal: to find a configuration of
points that preserves the pairwise distance matrix. The
simplest version is the linear MDS [8, 9], also called clas-
sical scaling. The solution to Linear MDS can be found
by solving an eigenvalue problem.

A slightly more complex version is metric MDS. Its
cost function is

E =
∑

ij

(di,j − d(yi, yj))
2, (1)

where di,j is the distance in the input space and d(yi, yj)
the distance in the output space, between the representa-
tions yi and yj of the points.

Most versions of MDS use a variant of this cost func-
tion. Sammon’s mapping [10] gives small distances a
larger weight. In non-metric MDS [11] the distances are
modified by a monotonic function. There is a huge num-
ber of different variants, but all have basically the same
form.

2.2. Principal component analysis (PCA)

The goal of PCA [1] is to find components having maxi-
mal variance. Linear components correspond to directions
in or subspaces of the data space, and when the data are
projected to a PCA component the variance in the data is
preserved maximally. The components can be found by
solving the eigenvalue problem

Cxa = λa , (2)

where Cx is the covariance matrix of the vectorial data x.
For visualization the data points need to be projected onto
a two-dimensional plane defined by the two main compo-
nents. This is done by

yi = Axi, (3)

where A is the matrix containing the eigenvectors corre-
sponding to the two largest eigenvalues, and yi is the two-
dimensional representation of xi.

PCA is very closely related to linear MDS. It can be
shown [9] that when the dimensionality of the solutions is
the same, the projection of the original data to the PCA
subspace equals the configuration of points found by lin-
ear MDS that is calculated from the Euclidean distance
matrix of the data. Thus the cost function of PCA tries to
preserve the squared distances between data points.

2.3. Locally linear embedding (LLE)

The LLE algorithm [12] is based on the assumption that
the data lies on or close to a low-dimensional manifold
in the high-dimensional space. If this is the case then we
can make a locally linear approximation of the manifold,

and assume that a point and its neighbors lie in or close
to a locally linear subspace on the manifold. The geom-
etry of this subspace can be captured by calculating the
linear coefficients that reconstruct each data point from its
neighbors. Here the neighbors are the k nearest neighbors
of the data point. The reconstruction error is defined as

E(W) =
∑

i

|xi −
∑

j

Wijxj |
2. (4)

To find the optimal weight matrix W the reconstruction
error is minimized subject to the constraints that Wij = 0
if i and j are not neighbors, and

∑

j Wij = 1.
For visualization we want to reduce the dimensional-

ity of the data. To achieve this we have to solve another
optimization problem,

E(Y) =
∑

i

|yi −
∑

j

Wijyj |
2 , (5)

where yi is the low-dimensional representation of the data
point i. This time the weight vectors are kept constant
during optimization and the positions of the data points
are changed. The problem can be solved by finding the
p + 1 smallest eigenvalues of the matrix (I − W)T (I −
W) (details in [12]), where p is the dimensionality of the
output. The smallest eigenvalue corresponds to a constant
eigenvector and the next p give the coordinates of the data
points within the manifold space.

The LLE implementation at
http://www.cs.toronto.edu/∼roweis/lle/was used in the ex-
periments.

2.4. Laplacian Eigenmap

The Laplacian Eigenmap [13] algorithm is similar to the
LLE algorithm. The first step is to form the k-nearest-
neighbor graph. Each data point is a vertex in the graph.
There is an edge from point i to point j if j is among the
k nearest neighbors of i. The graph differs from the one
used in LLE in that the neighbor relation is symmetric. If
the data point i is a neighbor of j then j is also always a
neighbor of i. After the graph has been formed the edges
have to be given weights. The simple method of assign-
ing Wij = 1 if the points i and j are neighbors and zero
otherwise has been found to work well in practice [14].

The configuration of points in the low-dimensional space
can be found by solving the generalized eigenvalue prob-
lem

Ly = λDy, (6)

where D is a diagonal matrix with elements Dii =
∑

j Wij ,
and L = D − W. The embedding of the data points
is given by the eigenvectors having the p smallest eigen-
values, after discarding the smallest (always zero) eigen-
value.

2.5. Isomap

The Isomap [15] is a variant of MDS. It finds a config-
uration of points that matches the given distance matrix.



The difference from traditional MDS is in how the dis-
tances are defined. Isomap uses geodesic distances instead
of direct pairwise distances. The geodesic distances are
approximated with the shortest path distances calculated
along the k-nearest-neighbor graph. The graph is defined
in the same way as in the Laplacian Eigenmap, except that
the weights of the edges are set to the Euclidean distances
between the connected points.

The actual embedding of points is found by standard
linear MDS, applied to the shortest-path distance matrix.
It has been shown [16] that this algorithm is asymptoti-
cally able to recover certain types of manifolds.

The Isomap implementation available at
http://isomap.stanford.edu/ was used in the experiments.

2.6. Curvilinear component analysis (CCA)

Like Isomap, CCA [6] has similarities with MDS. Where
Isomap changes the definition of distances, CCA chooses
to preserve only a subset of the distances. The starting
point is a random initialization of points (yi) in the reduced-
dimensional output space, and a pairwise distance matrix
between the original data points (xi). The cost function
measures preservation of the original pairwise distances,
but now weighted by a coefficient F that depends on the
distance between the points in the output space. Here
CCA differs from traditional MDS methods. The idea is
to concentrate on preserving distances between close-by
points in the output space. The cost function is

E =
1

2

∑

i

∑

j 6=i

(d(xi, xj) − d(yi, yj))
2F (d(yi, yj), λy).

(7)
The term F (d(yi, yj), λy)) determines how strongly er-
rors in reproducing the distance between the points i and
j contributes to the cost function. It is usually defined
as an area of influence around a data point in the output
space:

F (d(yi, yj), λy)) =

{

1 if d(yi, yj) ≤ λy

0 if d(yi, yj) > λy.
(8)

The cost function is optimized using a form of stochas-
tic gradient descent algorithm. In the beginning of op-
timization the radius of the area of influence, λy , is kept
large enough to cover all or at least most of the data points.
During the optimization it is slowly reduced to zero. Thus,
at initial stages CCA performs exactly as standard non-
linear MDS where all distances are treated equally. The
dynamic reduction of the area of influence around data
points results in an unfolding effect in the mapping. Con-
trary to the other methods described here, the cost function
of CCA can have several local optima. Although this can
potentially cause problems, the solutions found by CCA
have been quite good in practice, even starting from only
one initialization.

3. MEASURING TRUSTWORTHINESS OF A
VISUALIZATION

When visualizing similarities of data points, the local ones
are the most salient: when looking at a point the first per-

ceptions are which other points are proximate, and which
proximate points form groups. We have developed a way
to measure how trustworthy the proximities presented by
the visualization are [2, 17].

We consider a projection onto a display trustworthy if
the set of k closest neighbors of a point on the display are
also close-by in the original space. This is measured for
all data points. Our measure of trustworthiness quantifies
errors in terms of rank distances, sums the errors over all
data points, and normalizes the result to lie between 0 and
1.

While trustworthiness measures show how well the
points in a neighborhood on the display match the neigh-
borhood in the original space, it is also of interest to know
what happens to those points that are pushed out of the
neighborhood in the visualization process. The original
neighborhood might not be preserved because of discon-
tinuities in the projection. As a result of the latter kinds of
errors, not all proximities existing in the original data are
visible in the visualization.

The errors caused by discontinuities may be quantified
analogously to the errors in trustworthiness. A neighbor-
hood of k closest data samples in the original space is de-
fined for each sample, and whenever some of the samples
is projected outside of the neighborhood after the projec-
tion, the errors are computed in terms of rank distances in
the output space. The errors are again summed over all
data samples, and the result normalized to lie in between
0 and 1.

4. ATLAS OF A DATABANK

We constructed an atlas of a gene expression databank,
aimed at revealing proximity relationships between and
within the data sets of the databank. The atlas is computed
of a collection of cancer expression sets which have been
preprocessed only lightly, to make them somewhat more
commensurable.

4.1. Data and preprocessing

We used the large collection of human gene expression ar-
rays collected by Segal et al. [7]. (The normalized expres-
sion compendium is available from
http://dags.stanford.edu/cancer.) The compendium con-
sists of 26 different sets, each from a different publication,
from altogether 1973 arrays. Three different types of mi-
croarrays were included, and the studies were carried out
in 6 different institutions.

The data sets were normalized using the same meth-
ods as in [7]. In the expression values measured with
Affymetrix chips, logs (base 2) were taken (truncating to
10 expression values that are below 10). For the data sets
generated using cDNA chips the log-ratio (base 2) of the
measured and control sample was taken. After this the
expression values of data sets were normalized, for each
gene and data set separately, by subtracting the mean of
the gene’s expression in the data set from each expression
value. Finally, the values were rounded to the accuracy of
one decimal.



For the visualization we then removed samples with
missing values from the data. First we removed genes that
were missing from more than 300 arrays. Then we re-
moved the arrays that still contained missing values. This
resulted in a data set containing 1278 arrays and 1339
genes.

4.2. Comparison of visualization methods

Visualization of the compendium of gene expression data
sets is a very demanding task for any method. The visu-
alization has to reduce the dimensionality from 1339 to 2
while still preserving local structure of the data. To make
the task even harder the data in the compendium has been
produced with different methods and comes from differ-
ent types of experiments. All this means that it is very un-
likely that there is a nicely-formed low-dimensional man-
ifold in the data space.

We compared the visualization methods by comput-
ing the measures described in Section 3 for varying values
of the neighborhood parameter k. Small values are the
most important, for the smallish neighborhoods are more
salient in visualizations, and hence if they are not trust-
worthy neither is the whole display. Methods having a
nearest neighbor parameter were run with the parameter
ranging from k = 4 to k = 20, CCA was run ten times
from different random initializations, and the best ones in
terms of the trustworthiness were selected.

The performance of the methods can be seen in Fig-
ure 1. None of the visualizations have a particularly high
trustworthiness. This reflects the difficulty of the task.
CCA was the best, followed by Laplacian Eigenmap and
PCA. All of the methods were somewhat better in pre-
serving the original neighborhoods. PCA was the best in
this respect, followed by Laplacian Eigenmap. LLE per-
formed poorly on both measures. That PCA performs so
well, in conjunction with the overall low trustworthiness
values, suggests that there is very little low-dimensional
manifold structure that could be utilized in the data.

4.3. Are data from different platforms commensurable?

It is conceivable and even plausible that a large proportion
of the variance in the data is due to secondary attributes.
The measurement platform, that is, whether the data has
been measured by cDNA microarrays or oligo chips, will
affect the results, and likewise the measurements carried
out in different laboratories may be different for many rea-
sons.

This would naturally reduce the usefulness of the atlas.
If a user is studying, say, B lymphoma and searches for
relevant data, it would be nice to be able to find and use
data from all platforms (and all institutions). This is of
course sensible only if the variation due to the platform is
relatively small.

We tested this by measuring whether data from a can-
cer type is more commensurable with data of the same
cancer type but measured on a different platform, or with
any data measured from the same platform. For instance,

Table 1. Are data from the same platform more similar
than data from the same cancer type? Pairwise compari-
son of the classification strength of the cancer type vs the
platform/institution. Data points measured with the plat-
form of the column on samples of the cancer type of the
row were classified to either of the two classes. The win-
ner (on the average) is shown in the table, together with
the classification rate it achieved. Classification was done
in the original data space.

Cancer type/ cDNA Hu95 HuGeneFL
Platform
B lymphoma cDNA B lymphoma

1.0000 0.7011
Leukemia Hu95 HuGeneFL

0.9657 0.9998
Lung Cancer cDNA Hu95

1.0000 0.8465
NCI60 cDNA NCI60

1.0000 0.8704
Cancer type/ Stanford Harvard MIT
Institution
B lymphoma Harvard

0.8397
Leukemia Harvard MIT

0.9573 0.9783
Lung Cancer Stanford Harvard

1.0000 0.7755
NCI60 NCI60

0.9799

to see whether the B lymphoma arrays in the gene expres-
sion compendium were really organized based on the can-
cer type and not the platform, we selected a set of arrays
that were both cDNA and measured from B lymphoma
samples. We then measured whether this set was better
classified to either the class of B lymphoma arrays or the
class of cDNA arrays.

4.3.1. How the classification was done

To measure the commensurability of cancer types in com-
parison to secondary attributes (platform or institution)
we defined a data group X consisting of all data having
both a common cancer type and a common value of the
secondary attribute. We then defined two additional data
groups, Y and Z. Group Y consisted of all data having the
same cancer type as X but a different value of the sec-
ondary attribute. Group Z consisted of all data having the
same secondary attribute value as group X but a different
cancer type. We then classified all points as belonging to
either group Y or Z.

Technically, we used a k-nearest-neighbor classifier
(k = 5). If the groups Y and Z differed in size a data set
of the same size as the smaller one was sampled from the
larger group (same size to give both groups the same prior
probability). Each data point in X was then classified by a
knn classifier, by finding the k nearest neighbors from the
combined set of Y and Z. The majority class within the k
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Figure 1. The change in trustworthiness (a) and preservation of original neighborhoods (b) of the visualized gene expres-
sion compendium, as the number of neighbors k in the neighbor set is varied.

closest samples wins.

The classification was repeated 1000 times with differ-
ent random samples from the larger group. At the end the
mean classification rate of the group was calculated and
reported. We additionally computed P-values for reject-
ing the hypothesis that the group X comes from the distri-
bution of the attribute group with the larger classification
rate, but the results were almost always highly significant
and we decided to report the more informative mean clas-
sification rates.

4.3.2. Results

The result was that cDNA measurements of B lymphoma
samples were always closer to other cDNA measurements,
and B lymphoma samples measured with other platforms
were more different.

We performed the same experiment on several cancer
type vs. platform or institute pairs. The complete results
are shown in Table 1.

The results are quite clear concerning the cDNA plat-
form. The cDNA measurements are always closer to other
cDNA measurements than to measurements of the same
cancer type but made with a different platform. A similar
effect, although not as strong, can be found for the Hu95
platform. On HuGeneFL the results vary.

These results strongly suggest that the simple prepro-
cessing used in [7] is not able to remove effects caused
by the platform. Note that this does not necessarily imply
anything about the validity of the results in [7]; the paper
has different goals and methods.

A similar effect can be found between the cancer types
and the institute where the data was measured. This may,
however, to a large extent be explained by the fact that
most institutes prefer a specific platform.

4.4. Visualizing the gene expression compendium

Displays of the gene expression compendium, that is, gene
expression atlases computed with the different methods,
are presented in Figure 2. In the displays the symbols de-
note the measurement platform but they could of course
alternatively show the institution or cancer type.

First of all, the display shows that the PCA mixes up
the measurement platforms badly, whereas CCA differen-
tiates them nicely into different areas of the display (note
that none of the methods has had access to the labels; all
are completely unsupervised). LLE and Laplacian Eigen-
map have artifacts in their display, resulting in badly vary-
ing display resolution and hence difficulties in interpreta-
tion without using a magnifying glass. The trustworthi-
ness comparisons in Section 4.2 suggest that the displays
may not be the most useful ones even with a magnifying
glass. The Isomap display is more informative but appar-
ently not as clear in separating the classes as CCA.

Secondly, the CCA display shows that CCA is capable
of revealing the separation of the measurement platforms
in the data space, which was shown in the previous section
to be a major source of variation in the data.

5. CONCLUSIONS

We benchmarked a set of methods for the extremely diffi-
cult task of visualizing proximity relationships within the
high-dimensional space of microarray measurements. It
turned out that an older method called curvilinear com-
ponents analysis (CCA) outperformed newer methods in
terms of trustworthiness of the visualizations.

The methods were compared as a feasibility study for
constructing a visualizable gene expression atlas, that is,
an atlas of gene expression data sets. It turned out that
the simple preprocessing methods could not make the dif-
ferent data sets particularly commensurable. The visual-
izations did show, however, relationships between the dif-
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Figure 2. Sample visualizations of the gene expression atlas by (a) PCA, (b) LLE, (c) Laplacian Eigenmap, (d) Isomap,
and (e) CCA. Each dot denotes one microarray; the symbols here show the measurement platform.



ferent labs and measurement array platforms, which are
the main sources of variation in the data. Hence, if stan-
dardization and more sophisticated preprocessing meth-
ods continue to develop to bring the biologically inter-
esting variation to the fore, the information visualization
methods are likely to be able to visualize it.
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