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We model dependencies between m multivariate continuous-valued information sources by a combina-
tion of (i) a generalized canonical correlations analysis (gCCA) to reduce dimensionality while preserving
dependencies in m−1 of them, and (ii) summarizing dependencies with the remaining one by associative
clustering. This new combination of methods avoids multiway associative clustering which would require
a multiway contingency table and hence suffer from curse of dimensionality of the table. The method is
applied to summarizing properties of yeast stress by searching for dependencies (commonalities) between
expression of genes of baker’s yeast Saccharomyces cerevisiae in various stressful treatments, and sum-
marizing stress regulation by finally adding data about transcription factor binding sites.
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1. Introduction

Integration of multiple information sources is becom-
ing increasingly important in bioinformatics. It has
become evident that most of the important questions
in molecular and cell biology cannot be answered by

studying a single data source, like DNA sequence or
gene expression. Due to complexity and noise of bio-
logical systems, either lots of prior knowledge or data
are required to constrain models, and single sources
of measurements then suffice only for producing
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general overviews. In contrast, approaches that
combine several relevant data sources have shown
potential to answer specific biological questions.4,22

However, the works integrating heterogeneous data
sets presented so far tend to be tailored to specific
tasks. Their application to other problems is usu-
ally possible only after tedious tailoring by both
methodological and application area experts. Typical
examples of these methods are Bayes nets7 and
inductive logic programming.17

We investigate machine learning methods that
can both integrate multiple information sources and
at the same time are generally applicable to a set
of problems of a certain kind. We assume that the
multiple data sets are multivariate and continuous-
valued. The problem is to find what is common in the
data sets, commonality being defined as such prop-
erties of the data sets that are consistently (statisti-
cally) dependent. The question is then how to utilize
this kind of multiple information in a principled way
to search for dependencies with minimal assumptions
about their nature. Specifically, we study yeast stress
response on gene expression level, and its regulation
by a set of proteins called transcription factors.21

Yeast stress response has been studied intensively
during recent years.5,9 A group of genes appears
to be always affected in various stress treatments,
and this set has been called common environmen-
tal response (CER) or environmental stress response
(ESR) genes. Such stress response is practically the
only way for the simple yeast to respond to various
adverse environmental conditions, and because it is
so easy to elicit, it has been used as a paradigm to
study gene regulatory networks. Even this response
is far from being completely understood, however;
different studies do not even agree on the sets of
stress genes.

In practice we have available a set of gene expres-
sion profiles, that is, a time series of expression for
each gene, for each stress treatment. The common
environmental response should be visible as some
properties that are unknown but common to all
treatments. We assume here that the dependencies
between our gene expression data sets are rather sim-
ple, perhaps even linear, since the data sets are rela-
tively low-dimensional and all the treatments should
induce rather similar expression patterns in yeast.
Based on this we assume that the interesting infor-
mation between expression data sets can be found by

searching for global common variation between the
data sets.

We will maximize the variation that is common to
the stress treatment data sets and try to neglect all
the other variation in the gene expression profiles.
This problem can be solved by a form of gener-
alized canonical correlation analysis.1 Its interpre-
tation as a mutual information-maximizing method
further justifies the use of that specific variant of
generalized canonical correlation analysis.

To explore regulation of the stress response, we
further search for commonalities with data about
how likely different transcription factors (TF), reg-
ulators of gene expression, are to bind to the pro-
moter regions of the genes. If a set of genes has
commonalities in their expression patterns across
stress treatments, and furthermore commonalities
in the binding patters, they are likely to be stress
response genes regulated in the same way.

This kind of dependency exploration can be done
by maximizing the mutual information, or preferably
its finite-data variant, between the data sets. We will
use a previously introduced method, called associa-
tive clustering (AC),14 which clusters two data sets
by maximizing dependency between the clusterings,
and hence should suit the task perfectly. In practice,
a linear method scales better to multiple data sets,
and hence we use generalized canonical correlations
as a preprocessing method to reduce the number of
data sets.

Clustering methods that maximize mutual infor-
mation between the data sets have been formalized
in the information bottleneck framework,8,25 directly
applicable to discrete data, and extended to continu-
ous vectorial data.3,13 Associative clustering can be
viewed as an extension to the current information
bottleneck algorithms for finite sets of continuous-
valued data.

The methods of clustering with constraints are
also close in spirit to AC; there the clustering is
supervised by constraining pairs of samples to belong
(or not to belong) to the same cluster.2,26 This will
lead to similar results as IB-type clustering if sam-
ples from the same class are constrained to belong to
the same cluster. Common to AC is that this can be
interpreted as one data set (the constraints) super-
vising the other. In AC two data sets supervise each
other, in the sense that the goal is to find dependen-
cies between them.
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Graphical models of dependencies between vari-
ables are another related popular formalism. They
have been applied to modeling regulation of gene
expression.7 The main practical difference from
our clustering approach, which makes the models
complementary, is that our clusterings are intended
to be used as general-purpose, data-driven but not
data-specific, exploratory tools. Associative cluster-
ing is a multivariate data analysis tool that can be
used in the same way as standard clusterings to
explore regularities in data. The findings can then
be dressed as prior beliefs or first guesses in the
more structured graphical models, hopefully helping
to restrict the hopelessly large search space of possi-
ble model structures.

The technical difference from standard cluster-
ings, as well as from standard graphical models, is
that our objective function is maximization of depen-
dency between the data sets. Instead of modeling
all variability in the data the models focus on those
aspects that are common in the different data sets, in
the sense of being consistently dependent. This fits
perfectly the present application.

2. Methods

2.1. Dependencies by mutual
information

Having observed for one set of objects (genes) several
multivariate variables V1, . . . , VM , X (stress treat-
ments and TF-binding) forming several data sets, our
aim is to find clusters of genes that maximize the
mutual information I(V1; . . . ; VM ; X), or its finite-
data version, that is, the Bayes factor. In principle,
AC could be extended to search for a multiway con-
tingency table between the multiple data sets, but
this would lead to severe estimation problems with a
finite data set.

Noting that

I(V1; . . . ; VM ; X) = I(V1; . . . ; VM )

+ I((V1, . . . , VM ); X)

we propose a sequential approximation: first approx-
imate I(V1; . . . ; VM ) by forming the optimal repre-
sentation Y (V1, . . . , VM ) with gCCA, then maximize
I(Y ; X) with AC. In this way we can reduce our
problem to the AC of two variables and, in a sense,
preserve dependencies between all the data sets in
a computationally tractable way. Additionally, note

that we are here specifically interested in clusters of
genes, which justifies the use of AC instead of using
only gCCA which merely produces a projection of
the data.

2.2. Generalized canonical correlation
analysis

We focus on the variation that is common to two or
more of the M data sets and are willing to lose infor-
mation that is due to variables within one data set
only. For this purpose Canonical Correlation Analy-
sis (CCA) is a natural choice. While Principal Com-
ponent Analysis (PCA) works with a single ran-
dom vector and maximizes the variance of projec-
tions of the data, CCA works with a pair of ran-
dom vectors and maximizes the correlation between
sets of projections. While PCA leads to an eigen-
value problem, CCA leads to a generalized eigenvalue
problem.

There are several ways to generalize canoni-
cal correlation analysis to more than two sets of
variables.1,16 Here we use a generalization of CCA
(gCCA) that has a simple connection to mutual
information.1 The gCCA problem can be written as
a generalized eigenproblem

Cξ = λDξ (1)

where C is the covariance matrix of the concatenated
data and D is a block diagonal matrix that consists
of the within-set covariance matrices of the individ-
ual data sets Ci.

In effect, CCA whitens the covariance matrices
within each data set and then performs PCA to
seek the largest variance in the between-data-set
covariances.

2.3. Information-theoretic
interpretation

The gCCA projection can also be interpreted from an
information-theoretic point of view. Assuming that
the variables are normally distributed, there is a
simple connection between mutual information and
CCA18:

I(V1; V2) = −1
2

ln
(

detC

detC1 det C2

)

= −1
2

∏

i

λi = −1
2

∏

i

(
1 − ρ2

i

)
, (2)
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where the λi are the eigenvalues of Eq. (1) and fur-
ther, where the ρi are the canonical correlations. For
multiple data sets the equation generalizes to

I(V1; . . . ; VM ) =
M∑

i=1

H(Vi) − H(V1, . . . , VM )

= −1
2

ln
detC

detC1 · · · detCM
. (3)

We now show how the whitening of the original
data sets preserves the mutual information. Using
the notation of Eq. (1), such a whitening can be writ-
ten as

V ′ = D−1/2V. (4)

The covariance matrix C′ of the transformed variable
V ′ is

C′ = E[D−1/2V V T D−1/2] = D−1/2CD−1/2, (5)

so the mutual information is preserved in the trans-
formation:

I(V ′
1 ; . . . ; V ′

M ) = −1
2

ln detC′

= −1
2

ln
detC

detC1 · · · detCM

= I(V1; . . . ; VM ). (6)

Moreover, after data-set-wise whitening the
mutual information depends only on the joint
entropy, which can be shown as follows. In general,
mutual information can be written as

I(V1; . . . ; VM ) =
M∑

i=1

H(Vi) − H(V1, . . . , VM ). (7)

The entropy of an individual data set Vi with dimen-
sionality di is in general

H(Vi) = −
∫

p(vi) ln p(vi) dv

=
di

2
(ln(2π) + 1) +

1
2

ln detCi. (8)

After whitening of the within-data covariances
the covariance-dependent term of the entropy
vanishes,† giving H(V ′

i ) = di
2 (ln(2π) + 1).

The mutual information I(V ′
1 ; . . . ; V ′

M ) is now

I
(
V ′

1 ; . . . ; V ′
M

)
= const. − H

(
V ′

1 , . . . , V ′
M

)
, (9)

which intuitively means that all the mutual informa-
tion is now represented by the joint entropy plus a
constant.

Our goal is to make a dimensionality reduc-
tion that maximally preserves the mutual informa-
tion I

(
V ′

1 ; . . . ; V ′
M

)
. Thus, according to Eq. (9) the

best approximation is the one that maximally pre-
serves the entropy, H

(
V ′

1 , . . . , V ′
M

)
. The dimension-

ality is reduced by sequentially searching for the
one-dimensional projection that best approximates
the original d-dimensional variable. We thus seek for
the one-dimensional projection V ′′ = aT V ′, with
aT a = 1, that maximizes the entropy of the projec-
tion, H(V ′′). The entropy of the projected variable
V ′′ is

H(V ′′) =
1
2

ln var V ′′ + const., (10)

where

var V ′′ = E[aT V ′(V ′)T a] = aT C′a (11)

and therefore, the entropy of the projection will be

H(V ′′) =
1
2

ln aT C′a + const. (12)

Since aT C′a is the variance of V ′ in the direction of
a, it is maximized by choosing a to be the first princi-
pal component of C′. So, actually, the maximization
of the entropy coincides with maximization of the
variance, i.e., PCA for the transformed variable V ′.
This is equivalent to performing gCCA for the origi-
nal variable V , since, as already noted in the previous
section, gCCA produces the same result as whiten-
ing the within-data covariances of the data sets and
then performing PCA.

2.4. Associative clustering

Having observed a set of paired data samples
{(xk,yk)}k from two continuous, vector-valued ran-
dom variables X and Y , we wish to find subsets of
data that are informative of dependencies between
X and Y . We use a previously introduced method,
associative clustering (AC),14 that produces two sets
of partitions, one for X and the other for Y . The
aim of AC is to make the cross-partition contingency
table represent as much of the dependencies between

†One should note that whitening (i.e., transforming the covariance matrix to the identity matrix) is not the only possibility
to set 1

2 ln detCi = 0, but it is the only one that implies equal contributions of the original variables within each data
set. Because we have no prior information that any of the variables within a data set would be more important than the
others, it seems reasonable to require equal variances.
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X and Y as possible. A Bayesian criterion for the
dependency is detailed below.

Because the partitions for x and y define the mar-
gins of the contingency table, they are called margin
partitions, and they split the data into margin clus-
ters. The cells of the contingency table correspond
to pairs of margin clusters, and they split data pairs
(x,y) into clusters. Denote the count of data within
the contingency table cell on row i and column j by
nij , and sums with dots: ni· =

∑
j nij .

The AC optimizes the margin partitions to max-
imize dependency between them, measured by the
Bayes factor between two hypotheses: the margins
are independent (H) vs. dependent (H̄). The Bayes
factor is (derivation omitted)

P ({nij}|H̄)
P ({nij}|H)

∝
∏

ij Γ(nij + αij)∏
i Γ(n·i + αi)

∏
j Γ(nj· + αj)

,

(13)

where the α come from priors, set equal to 1 in this
work. The cell frequencies are computed from the
training samples {(xk,yk)}k by mapping them to the
closest margin cluster in each space. The clusters are
parameterized by prototype vectors m.

During optimization the partitions are smoothed
to facilitate the application of gradient-based meth-
ods. As the final cost function to optimize, we have

log BF’ =
∑

ij

logΓ

(
∑

k

g(x)
i (xk)g(y)

j (yk) + αij

)

−λ(x)
∑

i

logΓ

(
∑

k

g(x)
i (xk) + αi

)

−λ(y)
∑

j

logΓ

(
∑

k

g(y)
j (yk) + αj

)
,

(14)

where

g(x)
i (x) ≡ Z(x)(x)−1 exp

(
−‖x− m(x)

i ‖2/σ2
(x)

)
,

and similarly for g(y). The g(·) are the smoothed
Voronoi regions at the margins. The Z(·) is set
to normalize

∑
i g(x)

i (x) =
∑

j g(y)
j (y) = 1. The

parameters σ control the degree of smoothing of the
Voronoi regions and the λ are regularizing param-
eters: if set larger than one, they favour solutions
with equal-sized margin clusters. AC is optimized
with conjugate gradient method. More details can
be found from the previous publications.14

2.5. Uncertainty in results

Our use of Bayes factors in AC is different from their
traditional use in hypothesis testing.10 We do not
test any hypotheses but the Bayes factor is maxi-
mized to explicitly hunt for dependencies. However,
for the current implementation of AC, this leaves
the Bayes factor of AC conditioned on the cluster-
ing model. Together with the finiteness of the real
world data and local minima in optimization, this
results in uncertainty in the results.

We tackle the problem of uncertainty by using
bootstrap6 to produce several perturbed cluster-
ings. There are analogous approaches in the liter-
ature, where a more traditional clustering method
has been applied to gene expression data, and has
been bootstrapped.15 In our case, we wish to find
cross-clusters (contingency table cells) that signify
dependencies between the data sets, and that are
reproducible.

Reproducibility of the clusters is estimated
with bootstrap, by sampling 100 bootstrap data
sets from the original data set and clustering
each with AC. Dependency of clusters in each
bootstrap AC is estimated by generating several
(1000) data sets of the same size as the original
one from the marginals of the contingency table
(i.e., under the null hypothesis of independence).
Cross-clusters containing more observations than
expected by chance given the independent margins
(p < 0.01 with Bonferroni correction) are defined as
dependent.

The two criteria of dependency and reproducibil-
ity will finally be combined by evaluating, for every
gene pair, how likely they are to occur within the
same significantly dependent cross-cluster in clus-
tering models computed in the different bootstrap
data sets. This similarity matrix will finally be sum-
marized by hierarchical clustering. Cutting the tree
(arbitrarily) then gives the the most dependent,
robust subsets of the data.

2.5.1. Contributions of the original variables
in clusters

Finally, the obtained reliable clusters are to be inter-
preted in terms of the original variables. In other
words, we investigate which transcription factors
bind strongly in a specific cluster. Additionally, the
binding tendency should of course be reliable.
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We utilize here the localness of our clusters in
each data space and compute the average profile of
the original data for the final TF-binding clusters.
Average profiles are compared to randomized average
profiles, computed from the data vectors for 10000
random sets of the same size as the cluster. This
offers a way to identify abnormally high and small
values of TF-binding in the cluster.

3. Yeast Gene Expression under
Stress, and Its Regulators

3.1. Data

We used data from several experiments to ana-
lyze the dependencies between yeast stress genes
and their regulators. Common stress response was
sought from expression data of altogether 16 stress
treatments5,9: heat (2), acid, alkali, peroxide, NaCl,
sorbitol(2), H2O2, menadione, dtt(2), diamide,
hypo-osmotic, aminoacid starvation, and nitrogen
depletion. A short time series had been measured
from each, and in total we had 104 dimensions. For
these genes we picked up the TF-binding profiles of
113 transcription factors,20 to search for dependen-
cies with expression patterns. In total we ended up
having 5998 yeast genes. All the values were normal-
ized with respect to the zero point of each time series
(or other control), and then the natural logarithm of
these ratios was taken. Missing values were imputed
by genewise averages in each data set.

3.2. Dimensionality Reduction
by gCCA

We started with the 16 separate stress genes expres-
sion data sets, in total 104-dimensional expression
data. The number of gCCA components was cho-
sen such that the same components could be found
from left-out data reasonably well (measured with
the angle between the components) in 20-fold cross-
validation. This resulted in 12 generalized canonical
components.

We then checked whether gCCA managed to pro-
duce meaningful components. This was verified by
testing the association of the 12 first gCCA com-
ponents to genes known to be affected by stress,
namely the putative environmental stress response
genes (ESR) found earlier.9 Of the 12 generalized
canonical components 9 showed statistically signif-
icant association to ESR genes known to be either

Fig. 1. Projection of the genes on the first two gCCA
components revealing how the known ESR genes are sep-
arated from the rest of the genes by gCCA. Triangle up:
upregulated ESR genes, triangle down: downregulated
ESR genes, dots: the rest of the genes.

up-regulated or down-regulated (Wilcoxon rank-sum
test; p < 0.05). gCCA thus managed to capture the
variation relevant to ESR genes.

Figure 1 demonstrates that the putative ESR
genes are separated reasonably well from the gene
mass even in a two-dimensional projection.

3.3. Associative clustering for stress
expression and TF binding

We next analyzed with associative clustering the
dependencies between the 12-dimensional expression
data, resulting from preprocessing by gCCA, and the
113-dimensional TF-binding data. The goal was to
find subsets of genes having maximal dependency
between their TF-binding and expression under
stress. The number of AC clusters was chosen to
produce about 10 data points in the cross-partition
table (equivalently, contingency table) on the aver-
age, resulting in a table with 30 × 20 cells.

To verify that there are dependencies the AC is
able to detect, the contingency table produced by
AC was compared with the contingency table pro-
duced by independent K-means clusterings in both
the data spaces, in a 10-fold crossvalidation run. AC
found statistically significantly higher dependency
between the data sets than K-means (p < 0.05;
paired t-test), and the actual values of the log Bayes
factors were −23.45 for AC and −48.96 for K-means.
This confirmed that at least a subset of the genes
has a non-random dependency between TF-binding
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Fig. 2. Dendrogram of the hierarchical clustering visualizing the similarities between all the genes clustered with 100 boot-
strap AC models. Vertical axis represents the average dissimilarity of the genes: 100 means that a pair of genes never
occur in the same significantly dependent cross-cluster in 100 bootstrap runs, and 0 that they always co-occur. Note that
there is a mass of genes whose dissimilarity, or co-occurances in the different cross-cluster, is over 80, which was the cutoff
threshold to produce the final clusters. Several very reliable clusters can also be seen, as downward protruding peaks.

and expression (discernible from these data sets),
although the data globally does not show depen-
dency (log Bayes factor is negative).

After these preliminary checks we used the AC
to search for salient dependencies between the stress
expression data and the TF binding data. A similar-
ity matrix was produced by bootstrap analysis with
100 samples as described in Sec. 2.5, and summa-
rized by hierarchical clustering. Figure 2 shows a few
clear clusters interspersed within a background that
shows no apparent dependencies. We cut the dendro-
gram at the height of 80. This defines a threshold on
reliability: if genes occur together, within significant
clusters, more than in 20 of the 100 bootstrap AC:s
on the average, their association is defined reliable.

We validated the clusters extracted from Fig. 2 by
investigating the distribution of earlier-found puta-
tive ESR genes within them. Since we had designed
the models to hunt for regulation patterns of ESR
genes, we expected some of our clusters to con-
sist of ESR genes. Indeed, upregulated ESR genes
were enriched statistically significantly in 14 out of
the 51 clusters (hypergeometric distribution; p-value
< 0.001), and downregulated ESR genes in 12 of
them. This confirms that our method has succeeded
in capturing stress-related genes in clusters.

3.4. Biological interpretation

For more detailed interpretation of the clusters they
were analyzed with EASE11 to find significant enrich-
ments of gene ontology classes. In total we found
14 statistically significant enriched (Bonferroni cor-
rected p-value from Fisher’s exact test < 0.05) GO
slim classes‡ in our 51 clusters. Additionally the
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Fig. 3. A gene cluster related to cell cycle, revealing
both how cell-cycle machinery is driven down under
stress, and the putative regulators for that set of genes.
Upper figure represents the mean expression profile
(bars) of the genes with their confidence intervals (lines,
computed by random sampling) revealing how the genes
are downregulated practically in every treatment, and
thus conveying information about the shut down of
the cell cycle machinery. The lower figure represents the
mean TF binding profile (with confidence intervals) of the
genes revealing several significant, strong TF bindings.
The most interesting of these are analyzed in the text.

enrichments of ESR genes as well as interesting, non-
random TF bindings were used as indicators to select
clusters for the analysis. We present here representa-
tive examples of the biological interpretations of the
clusters.

The cluster in Fig. 3 is an example of a set of
genes that are not specifically associated to stress,
but obviously behave very homogeneously under
stress. The cluster actually contains only two genes

‡go slim mapping.tab at ftp://genome-ftp.stanford.edu/pub/yeast/data download/literature curation/.
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known to be ESR genes. Nevertheless, this rela-
tively large cluster can be used to demonstrate two
characteristic predictions obtained using AC and
confirmed by biological observations. First, this clus-
ter is highly enriched in genes involved in the pro-
cess of cell cycle (12 out of 57, Bonferroni corrected
p-value 3.5e-5). This reflects the coordinated expres-
sion of also other genes than the ESR genes, in other
words coordination can be highlighted in most exper-
imental conditions. Second, AC will propose a set of
transcription factors involved in the regulation of the
member genes of the cluster. This is of special value
in this case, because although co-ordinated interac-
tions between different signal transduction pathways
are essential in biological systems, interpathway con-
nections are difficult to identify. The two most promi-
nent transcription factors of this cluster are coded
by SWI4 (YER111C) and FKH2 (YNL068C), which
both are known to be involved in cell cycle control.
However, they operate on different parts of the pro-
cess, as shown by Shapira and coworkers for the Fork-
head factor.23

The significant TF bindings in the same cluster
also include ASH1, which is not directly related to
the cell cycle process but rather to mating type selec-
tion. However, mating-type switching in the yeast
is a multi-step programme, which enables Ash1p to
asymmetrically localize to the daughter cell nucleus
at the end of cell division in order to prevent the
daughter cell from switching mating type. Thereby,
it is interesting to see that AC has grouped ASH1
together with SWI4 and FKH2.

By far the most consistent cluster is the one
in which all genes are down-regulated in every
treatment and also classified as downregulated ESR
genes.9 More than 90 of its 100 genes have a GO
annotation referring to protein biosynthesis (P-value
1.2e-86). Now, these genes are well known to be
strictly co-regulated and therefore this finding is not
in itself very special, although it confirms the effi-
ciency of the clustering method. However, a closer
look at the associated transcription factors is inter-
esting, especially if one looks at factors such as
SFP1 (YLR403W). This factor inhibits nuclear pro-
tein localization when present in multiple copies and
is thereby a regulator of transcription factor activ-
ity. It has been associated to the process of cell size.
Yeast establishes this balance by enforcing growth
to a critical cell size prior to cell cycle commitment

(‘Start’) in late G1 phase. Interestingly, Jorgensen
and collaborators have show that SFP1 is one of
two potent negative regulators of ‘Start’.12 SFP1
is shown to be an activator of the ribosomal pro-
tein (RP) and ribosome biogenesis (Ribi) regulons,
the transcriptional programs that dictate ribosome
synthesis rate in accord with environmental and
intracellular conditions. This clearly shows that the
prediction of associated transcription factors by the
AC algorithm has a potential to produce meaningful
regulator hypotheses.

Finally, we demonstrate some novel hypotheses
obtained by associative clustering. The cluster in
Fig. 4 contains 11 genes, of which 10 belong to
ESR as defined by Gasch et al.9 These genes con-
tain mainly (7) hypothetical open reading frames
(as classified in Stanford Genome Database). Two of
them are annotated as responding to stress. Of the
four better-known genes two are involved in gluta-
mate and glutatione catabolism and their expression
is known to be expressed mainly as a response to
nitrogen starvation or oxidative stress, both typical
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Fig. 4. A gene cluster consisting almost totally of ESR
genes, which still are largely unknown. Upper figure rep-
resent the mean expression profile of the genes with
their confidence intervals (computed by random sam-
pling) revealing how the genes are upregulated practically
in every treatment, confirming the earlier definition as
upregulating ESR genes. The lower figure represents the
mean TF binding profile (with confidence intervals) of
the genes revealing two significant, strong TF bindings,
which are now potential regulators for these genes.
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stress inducers. The associated transcription factor
DAL82 (YNL314W) is a positive regulator of allo-
phanate inducible genes. The other highly associated
TF STB1 (YNL309W) has to be associated to SWI6
to be activated whereafter it is involved in G1/S tran-
sition during the cell cycle.

4. Discussion

We have demonstrated the effectiveness of
exploratory dependency modeling for characterizing
yeast gene expression under stress, and its regulation.

We applied generalized canonical correlations
(gCCA) in a novel way to multiple stress expression
sets to produce one representation for the sets, which
preserves mutual information between the sets. This
preprocessed data was then clustered with AC to
maximize its dependency with binding profiles of a
set of regulators.

Biological relevance of the clusters was confirmed
with several tests and database searches. We can con-
clude that our approach succeeded notably well both
in confirming some known facts, and in generating
new hypotheses.

From the technical point of view, the main ben-
efit from gCCA in this work was the reduction of
the multiple data sets into one representation, in
a mutual information-preserving way. However, the
resulting two stage approach is naturally subopti-
mal, since combining the projection and clustering
into one method should improve the results. This is
one possible future research direction.

Another interesting future research direction is
to use a kernel version of gCCA24,1 in combining
the data sets. In principle, the nonlinear kernel CCA
is superior in finding the correlating components
when the data is not normally distributed. However,
further work will be required to study the regulariza-
tion of the kernel CCA, the choice of kernel function,
its application in the integration of the data sets,
and its interpretation. There exist additionally other
promising kernel-based data integration methods in
bioinformatics.19

From a biological perspective, the TF-binding
data is problematic since it has been measured in
optimal environmental conditions, while the gene
expression has been measured under environmental
stress. This implies that, for example, the stress reg-
ulators such as MSN2p, that are known to bind to
genes only under stress, cannot be found in this type

of analysis. The results are expected to improve when
new binding data measured under stress become
available. In spite of the slight deficiency in the
data, we managed to extract many biologically mean-
ingful clusters and hypotheses for their regulators.
Moreover, this kind of combination of data sets
can be seen as a complementary study to previous
ones,5,9 having potential to reveal both totally new
stress regulators as well as cell mechanisms that are
regulated in concert both under stress and in normal
growth conditions.
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14. S. Kaski, J. Nikkilä, J. Sinkkonen, L. Lahti, J. Knu-
uttila and C. Roos, Associative clustering for explor-
ing dependencies between functional genomics data
sets. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, in press.

15. M. K. Kerr and G. A. Churchill, Bootstrapping
cluster analysis: Assessing the reliability of conclu-
sions from microarray experiments, in Proc. National
Academy of Sciences 98 (2001) 8961–8965.

16. J. R. Kettenring, Canonical analysis of several sets
of variables, Biometrika 58(3) (1971) 433–451.

17. R. D. King, Applying inductive logic programming
to predicting gene function, AI Magazine 25 (2004)
57–68.

18. S. Kullback, Information Theory and Statistics
(Wiley, New York, 1959).

19. G. R. G. Lanckriet, T. D. Bie, N. Cristianini,
M. I. Jordan and W. S. Noble, A statistical frame-
work for genomic data fusion, Bioinformatics 20(16)
(2004) 2626–2635.

20. T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom,
Z. Bar-Joseph, G. K. Gerber, N. M. Hannett,

C. T. Harbison, C. M. Tomphson, I. Simon,
J. Zeitlinger, E. G. Jennings, H. L. Murray,
D. B. Gordon, B. Ren, J. J. Wyrick, J.-B. Tagne,
T. L. Volkert, E. Fraenkel, D. K. Gifford and R. A.
Young, Transcriptional regulatory networks in Sac-
charomyces cerevisiae, Science 298 (2002) 799–804.
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