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Associative Clustering (AC): Technical Details
Janne Sinkkonen, Samuel Kaski, Janne Nikkilä, Leo Lahti

Abstract

This report contains derivations which did not fit into the paper [3]. Associative clustering (AC) is a method for
separately clustering two data sets when one-to-one associations between the sets, implying statistical dependency,
are available. AC finds Voronoi partitionings that maximize the visibility of the dependency on the cluster level.
The main content of this paper are technical results related to the algorithm: A Bayes factor interpretation of AC,
derivation of gradients for optimizing AC with a smoothing trick, and the connection of AC objective to mutual
information.

I. INTRODUCTION

The abstract clustering task solved by associative clustering [3], [6] is the following: cluster two sets
of data, with samples x and y, each separately, such that (i) the clusterings would capture as much as
possible of the dependencies within data pairs (x,y), and (ii) the clusters would contain (relatively) similar
data points. The latter is roughly a definition of a cluster.

Figure 1 gives a brief overview of the method. For paired data {(xk,yk)} of real vectors (x,y) ∈

R
dx × R

dy , we search for partitionings {V
(x)
i } for x and {V

(y)
j } for y. The partitions can be interpreted

as clusters in the same way as in K-means; they are Voronoi regions parameterized by their prototype
vectors m

(x)
i : x ∈ V

(x)
i if ‖x − m

(x)
i ‖ ≤ ‖x − m

(x)
i′ ‖ for all i′, and correspondingly for y.

II. DERIVATION OF THE BAYES FACTOR FOR AC

Given a paired data set {(xr, yr)}r, xr ∈ X , yr ∈ Y , and two parameterized families of clusterings,
fx(x; θx) : X → {1, 2, . . . , K}, and fy(y; θy) : Y → {1, 2, . . . , L}, the goal of AC is to find parameters of
cluster solutions, θx and θy, such that a measure of dependency between the cluster indices {fx(xr; θx)}r
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Fig. 1. Associative clustering in a nutshell. Two data sets are clustered into Voronoi regions. The Voronoi regions are defined in the
standard way as sets of points closest to prototype vectors, but the prototypes are not chosen by minimizing a quantization error but by other
means described in the text. In this example, the data sets are gene expression profiles and TF binding profiles. A one-to-one correspondence
between the sets exist: Each gene has an expression profile and a TF binding profile. As each gene falls to a TF-Voronoi cluster and to
an expression cluster, we get a contingency table by placing the two sets of clusters as rows and columns, and by counting genes falling
to each combination of an expression and a TF cluster. Rows and columns, that is, the Voronoi regions defined within one data set, are
consequently called margin clusters, while the combinations corresponding to the cells of the contingency table are called cross clusters.
Associative clustering by definition finds Voronoi prototypes that maximize the dependency seen in the contingency table. Voronoi regions
are representations for the data sets just as the linear combinations in canonical correlation analysis. In both cases, dependency between
the two parametrized representations is maximized. Maximization of dependency in a contingency table results in a maximal amount of
surprises, gene counts in cells not explainable by the margin distributions. The most surprising clusters with very high or low number of
genes give rise to interesting interpretations. Reliability can be assessed by the bootstap.
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and {fy(yr; θy)}r is maximized. We will later assume fx and fy to be Voronoi partitionings parameterized
by their the Voronoi prototypes, and X and Y to be real spaces. This section, however, derives a general
form for the Bayes factor for which the parameterization of the clusters is irrelevant.

Because samples over r are assumed independent, a sufficient statistics for cluster indices over the
whole data set, {fx(xr; θx), fy(yr; θy)}r, are just the counts of different combinations. Therefore, denote
by nij the number of samples belonging to the cluster i in space X and to the cluster j in space Y , and
denote ni· =

∑

j nij , n·j =
∑

i nij .
The counts {nij}ij form a contingency table. We will measure dependency by the Bayes factor between

likelihood for dependent margins (hypothesis MD) and likelihood for independent margins (MI ):

BF =
P ({nij}|MD)

P ({nij}|MI)
. (1)

The following result presented, e.g., by Good, 1976, is utilized [2]. The posterior probability of observing
B-bin multinomial counts ts with the sum T =

∑

s ts, given a Dirichlet prior p(θ) ∝
∏

s θt0−1
s , is

P ({ts}) =

∫

P ({ts}|θ)p(θ)dθ =
Γ(Bt0) T !

∏

s Γ(ts + t0)

Γ(t0)B Γ(T + Bt0)
∏

s ts!
. (2)

The hypothesis of dependent margins corresponds to the assumption of a Dirichlet prior (with nd “prior
data points” in each bin) over the whole contingency table. The numerator of (1) then comes directly
from (2).

In the denominator, the hypothesis of independent margins, independent Dirichlet priors are assumed
for the margins, with parameters n(x) and n(y). Under the hypothesis of independence, the prior over the
cells of the contingency table is a product of the margin priors. For the denominator of (1), then,

P ({nij}|MI) = P ({nij}, {n·j}, {ni·}, MI)

= P ({nij}|{n·j}, {ni·}, MI) P ({n·j}, {ni·}|MI)

= P ({nij}|{n·j}, {ni·}, MI) P ({n·j}|MI) P ({ni·}|MI) ,

where the first term comes from the hypergeometric distribution and the two last terms from (2).
With these priors, the whole Bayes factor becomes

BF = P ({nij}|MD) × 1/P ({nij}|{n·j}, {ni·}, MI) × 1/P ({n·j}|MI) × 1/P ({ni·}|MI)

∝

∏

ij Γ(nij + n(d))
∏

ij nij!
×

N !
∏

ij nij!
∏

j n·j!
∏

i ni·!
×

∏

j n·j!
∏

j Γ(n·j + n(y))

∏

i ni·!
∏

i Γ(ni· + n(x))

∝

∏

ij Γ(nij + n(d))
∏

j Γ(n·j + n(y))
∏

i Γ(ni· + n(x))
.

Constants due to priors, fixed bin number and N are omitted.
In summary, a suitable cost function for maximizing the dependence in the contingency table is

BF ∝

∏

ij Γ(nij + n(d))
∏

i Γ(ni· + n(x))
∏

j Γ(n·j + n(y))
. (3)

The parameters n(d), n(x), and n(y) arise from Dirichlet priors. If all prior parameters are set to unity,
BF becomes equivalent to the hypergeometric probability classically used as a dependency measure of
contingency tables. In the limit of large data sets, (3) becomes mutual information of the margins (Section
IV).
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III. DERIVATION OF THE GRADIENTS OF THE LOG BAYES FACTOR

Optimizing BF with respect to Voronoi region centroids determining the counts n(·) is hard, for the BF
is not a continuous function of the centroid vectors. In AC, a smoothed version of BF is optimized with
respect to the parameters {m(x)} and {m(y)} by a conjugate-gradient algorithm (for a textbook account
see [1]).

To start, from (3) one obtains the extended and log-transformed cost function

log BF’ =
∑

ij

log Γ(nij + n(d)) − λ(y)
∑

j

log Γ(n·j + n(y)) − λ(x)
∑

i

log Γ(ni· + n(x))

with log BF’ = log BF + const. if λ(·) = 1. Values λ(·) > 1 are used for regularization. Rationale for
regularization is discussed elsewhere [3] (but see also [4], [5] for more thorough discussion and testing
in the one-margin case).

For shortness of notation, we will denote data samples that always appear inside sums by x,y instead
of xr,yr, and ’index’ in the closing summation simply by x and y. It is now assumed that x ∈ X ⊂
R,y ∈ Y ⊂ R.

As an introduction to smoothing, we may think the counts {nij} are produced as sums over indicator
functions g

(x)
i (x) and g

(y)
j (y):

nij =
∑

(x,y)

g
(x)
i (x)g

(y)
j (y)

n·j =
∑

(x,y)

g
(x)
i (x)

∑

j

g
(y)
j (y) =

∑

x

g
(x)
i (x)

ni· =
∑

y

g
(y)
j (y)

Here g
(x)
i (x) = 1 if the sample x falls into cluster j, and zero otherwise. g

(y)
j (y) is defined analogously

for y. Note that the clusters in X are indexed by i or i′, and the clusters in Y by j.
The indicator functions are (here implicitly) parametrized by the Voronoi prototypes: g

(x)
i (x) = 1 if the

prototype with index i is the closest of all prototypes in X to the sample x. It is clear that the values
of the indicator functions are mostly constant but change noncontinuously as a functions of locations of
prototypes: when a sample x crosses the Voronoi region border from region i to region k, g

(x)
i (x) changes

abruptly from one to zero, and g
(x)
i′ (x) does the opposite. The gradient of {g

(x)
i (x)} or {g

(y)
j (y)} with

respect to the Voronoi prototype is therefore almost always zero, and sometimes does not exist. The same
then holds for the gradient of the Bayes factor log BF’, which renders conventional nonlinear optimization
methods unusable.

To get good gradients, we extend the concept of indicator functions such that g
(x)
i (x) ∈ [0, 1] (analo-

gously for y). At the limit σ(x) → 0 of the smoothing parameter σ(x), the original indicator functions and
therefore original, non-smoothed Voronoi regions are obtained. Specifically, we set

g
(x)
i (x) = Z(x)(x)−1e−‖x−m

(x)
i

‖2/σ2
(x) ,

g
(y)
j (y) = Z(y)(y)−1e−‖y−m

(y)
j

‖2/σ2
(y) .

with Z(x) and Z(y) such that
∑

j g
(y)
j (x) =

∑

i g
(x)
i (y) = 1.

Denote for brevity tij = nij +n(d). The gradient of the cost function with respect to the Voronoi centers
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m
(x)
i of space X is

∇
m

(x)
i

log BF’ =
∑

i′j

Ψ(ti′j)
∑

(x,y)

g
(y)
j (y)∇

m
(x)
i

g
(x)
i′ (x) − λ(x)

∑

x,i′

Ψ(tk·)∇
m

(x)
i

g
(x)
i′ (x)

=
∑

(x,y),i′

[

∑

j

Ψ(ti′j)g
(y)
j (y) − λ(x)Ψ(ti′·)

]

∇
m

(x)
i

g
(x)
i′ (x) ,

where Ψ(·) is the psi or digamma function, the derivative of log Γ(·). The gradient of the smoothed
indicator functions is

∇
m

(x)
i

g
(x)
i′ (x) =

1

σ2
(x − m

(x)
i )(δi′i − g

(x)
i′ (x))g

(x)
i (x) .

We will denote the original cost function log BF’ extended by the smoothed indicators by log BF”. (The
original cost is obtained by setting σ(x) → 0, σ(y) → 0.) Substituting the gradients of the smooth indicators
and applying the algebraic identity

∑

i′

(δi′i − yi′)yiLi′ =
∑

i′

yi′yi(Li − Li′)

gives

σ2
(x)∇m

(x)
i

log BF” =
∑

(x,y),i′

(x − m
(x)
i )(δi′i − g

(x)
i′ (x))g

(x)
i (x)

[

∑

j

Ψ(ti′j)g
(y)
j (y) − λ(x)Ψ(ti′·)

]

=
∑

(x,y),i′

(x − m
(x)
i )g

(x)
i′ (x)g

(x)
i (x)(L

(x)
i (y) − L

(x)
i′ (y)) ,

where
L

(x)
i (y) =

∑

j

Ψ(nij + n(d))g
(y)
j (y) − λ(x)Ψ(ni· + n(x)) .

Since the cost function is symmetric with respect to the two spaces X and Y , the gradient with respect
to a cluster of Y-space is obtained analogously.

IV. CONNECTION TO MAXIMIZATION OF MUTUAL INFORMATION

Applying Stirling’s approximation log Γ(x + 1) = x log(x) − x + O(log(x)) to the logarithmic Bayes
factor

1

N
log BF =

1

N

∑

i,j

log Γ(nij + n(d)) −
1

N

∑

i

log Γ(ni· + n(y)) −
1

N

∑

j

log Γ(n·j + n(x)) (4)

yields

1

N
log BF =

1

N

∑

i,j

[(nij + a) log(nij + a) − (nij + a) + O(log(nij + a))]

−
1

N

∑

i

[(ni· + b) log(ni· + b) − (ni· + b) + O(log(ni· + b))]

−
1

N

∑

j

[(n·j + c) log(n·j + c) − (n·j + c) + O(log(n·j + c))] (5)
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where a = n(d) − 1, b = n(x) − 1, and c = n(y) − 1. Applying the algebraic identity (x + y) log(x + y) =
x log(x) + x log(1 + y/x) + y log(x + y) further yields

1

N
log BF =

1

N

∑

i,j

[

nij log nij + nij log(1 +
a

nij

) + a log(nij + a) − (nij + a) + O(log(nij + a))

]

−
1

N

∑

i

[

ni· log ni· + ni· log(1 +
b

ni·
) + b log(ni· + b) − (ni· + b) + O(log(ni· + b))

]

−
1

N

∑

j

[

n·j log n·j + n·j log(1 +
c

n·j
) + c log(n·j + c) − (n·j + c) + O(log(n·j + c))

]

. (6)

With ni· =
∑

j nij and n·j =
∑

i nij, we may rewrite

1

N
log BF =

∑

i,j

nij

N
log

nij

ni·n·j
+ 1 +

∑

i,j

nij

N
log

1 + a
nij

(1 + b
ni·

)(1 + c
n·j

)

+
∑

i,j

[

a

N
log(nij + a) −

a

N
+ O(

1

N
log(nij + a))

]

−
∑

i·

[

c

N
log(ni· + b) −

b

N
+ O(

1

N
log(ni· + b))

]

−
∑

·j

[

c

N
log(n·j + c) −

c

N
+ O(

1

N
log(n·j + c))

]

. (7)

On the basis of Taylor approximations of the type

log

(

1 +
a

nij

)

=
a

nij
+ O

(

a2

n2
ij

)

the term
∑

i,j

nij

N
log

1 + a
nij

(1 + b
ni·

)(1 + c
n·j

)

of (7) is bounded by O(N−1) and therefore also by O(N−1 log N). Likewise, because a, b, and c are
constants and because nij ≤ N , n·j ≤ N , and ni· < N , all the rest of the terms are also bounded by
O(N−1 log N). Therefore we have

1

N
log BF =

∑

i,j

pij log
pij

p̂ipj
− log N + 1 + O

(

1

N
log N

)

= Î(I, J) − log N + 1 + O

(

1

N
log N

)

, (8)

that is, the logarithmic Bayes factor approaches mutual information of the distribution pij = nij/N with
the margins pi = ni·/N and pj = n·j/N , plus a constant term.
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