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Abstract - In a visualization task, every nonlinear projection method needs to make a com-
promise between trustworthiness and continuity. In a trustworthy projection the visualized
proximities hold in the original data as well, whereas a continuous projection visualizes all
proximities of the original data. A multidimensional scaling method, curvilinear components
analysis, is good at maximizing trustworthiness. We extend it to explicitly make a user-tunable
parameterized compromise between trustworthiness and continuity.
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1 Introduction

In information visualization one of the main tasks is to reduce the dimensionality of data
to two or three to visualize proximities within a data set. In general, it is not possible to
reduce the dimensionality without losing some of the proximities in the process. Two kinds
of errors can occur. First, data points originally farther away may enter the neighborhood of
a sample in a projection. These errors decrease the trustworthiness of the visualization, as
they create neighborhood relationships that are not present in the data. Second, data points
that are originally in the neighborhood can be pushed farther away in the visualization.
Because of the second type of errors, not all neighborhood relationships become visualized.
Each dimensionality reduction method necessarily makes a tradeoff between these two kinds
of errors. This setting is analogous to the precision—recall tradeoff in information retrieval.
We have earlier [4] argued that trustworthiness is often more important since the visualized
proximities are particularly salient. It would be even better to let the user decide about the
compromise, and in this work we will extend a visualization method to make a parameterized
compromise between trustworthiness and continuity. The method is a kind of a local multidi-
mensional scaling method, curvilinear component analysis [3]. It aims at preserving pairwise
distances but not all of them; only distances between points close-by on the visualization are



WSOM 2005, Paris

preserved. The formulation of neighborhoods in the projection plane shares some motivation
with the Self-Organizing Map [5]. We call the new method local multidimensional scaling.

New methods for estimation of data manifolds of embeddings have been presented in recent
years. So far, Isomap [2], Locally linear embedding (LLE) [8] and Laplacian Eigenmap [1],
have not been compared in the task of visualization where the dimensionality of the repre-
sentation is not selected based on the manifold but constrained by the display. We compare
these methods with the curvilinear components analysis and the new local multidimensional
scaling.

2 Methods

2.1 Measuring trustworthiness of a visualization

We consider a projection onto a display trustworthy if the set of k closest neighbors of
a point on the display are also close by in the original space. We will use the following
trustworthiness measure to compare the different visualization methods, and to quantify the
compromise made by the new method. See [4, 10] for details.

Let N be the number of data samples and r(i, j) be the rank of the data sample j in the
ordering according to the distance from i in the original data space. Denote by Uk(i) the set of
those data samples that are in the neighborhood of size k of the sample i in the visualization
display but not in the original data space. Our measure of trustworthiness of the visualization
is

M1(k) = 1 −
2

Nk(2N − 3k − 1)

N
∑

i=1

∑

j∈Uk(i)

(r(i, j) − k) . (1)

The errors caused by discontinuities may be quantified analogously to the errors in trustwor-
thiness. Let Vk(i) be the set of those data samples that are in the neighborhood of the data
sample i in the original space but not in the visualization, and let r̂(i, j) be the rank of the
data sample j in the ordering according to the distance from i in the visualization display.
The effects of discontinuities of the projection are measured by

M2(k) = 1 −
2

Nk(2N − 3k − 1)

N
∑

i=1

∑

j∈Vk(i)

(r̂(i, j) − k) . (2)

The worst attainable values of both measures may, at least in principle, vary with k, and were
estimated in the results (Fig. 1) with random projections and with random neighborhoods.

2.2 Curvilinear component analysis (CCA)

The starting point of CCA [3] is a random initialization of points (yi) in the reduced-
dimensional output space, and a pairwise distance matrix between the original data points
(xi). The cost function measures preservation of the original pairwise distances, weighted by
a coefficient F that depends on the distance between the points in the output space:

E =
1

2

∑

i

∑

j 6=i

(d(xi,xj) − d(yi,yj))
2F (d(yi,yj), σy) . (3)
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F is usually defined as an area of influence around a data point in the output space:

F (d(yi,yj), σy)) =

{

1 if d(yi,yj) ≤ σy

0 if d(yi,yj) > σy .
(4)

The cost function is optimized using a form of stochastic gradient descent algorithm. In the
beginning of optimization the radius of the area of influence, σy, is kept large enough to cover
all or at least most of the data points. During the optimization it is slowly reduced to zero.

2.3 Controlling the tradeoff: Local MDS

We propose a new method, local MDS, which is a derivative of CCA with the ability to control
the tradeoff between trustworthiness and preservation of original neighborhoods.

While the CCA cost function (3) penalizes errors in preserving distances for neighboring
points in the output space, the basic idea of the extension is to add a term that penalizes
errors in preserving distances for close-by points in the input space. The tradeoff between
these two terms, tunable by a parameter λ, governs the tradeoff between trustworthiness and
continuity. The cost function of local MDS is

E =

1

2

∑

i

∑

j 6=i

[(1−λ)(d(xi,xj)−d(yi,yj))
2F (d(yi,yj), σi)+λ(d(xi,xj)−d(yi,yj))

2F (d(xi,xj), σi)] ,

=
1

2

∑

i

∑

j 6=i

(d(xi,xj) − d(yi,yj))
2[(1 − λ)F (d(yi,yj), σi) + λF (d(xi,xj), σi)] , (5)

We optimize the cost function with the stochastic gradient decent introduced for CCA in [3].
During the optimization the radius of the area of influence, σi around data point i, is slowly
brought down to the distance of the k:th nearest neighbor of the data point i in the original
space. The results shown here were produced with k = 20. Setting λ = 0 results in a normal
CCA projection (with the difference that the end radius of the area of influence σi is larger
than zero and different for each data point; for CCA the end radius of each data point is
customarily reduced to zero).

We also tested a radius of influence which was the same for each data point and was brought
to zero at the end of optimization. The behavior was quite similar but a nonzero end neigh-
borhood makes controlling of the compromise more robust.

3 Experiments

3.1 Data Sets

Thick S-curve. A simple data set having a folded lower-dimensional manifold, a two-
dimensional S-shaped curve in a three-dimensional space, was constructed as follows. First,
the data was uniformly sampled from a two-dimensional S-shaped sheet. Then, to give the
manifold a thickness, a spherical normally distributed displacement was added to each point.
The data set consists of 1000 data points.
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Gene expression compendium. We used the large collection of human gene expression
arrays collected by Segal et al. [9]. (The normalized expression compendium is available from
http://dags.stanford.edu/cancer.)

For visualization we removed samples with missing values from the data. First we removed
genes that were missing from more than 300 arrays. Then we removed the arrays that still
contained missing values. This resulted in a data set containing 1278 arrays and 1339 genes
(dimensions).

This is a very hard data set to visualize. The data is very high dimensional and there do not
seem to be any low dimensional manifold structures that the methods could take advantage
off.

Mouse gene expression. We additionally visualized a collection of gene expression profiles
from different mouse tissues. For details of the data set and of preprocessing see [4].

3.2 Comparison of visualization methods

We compared the new manifold estimation methods mentioned in the Introduction with CCA
and SOM in a visualization task.

The methods having a number of neighbors parameter k were run several times with values
of k going from 4 to 20. CCA and SOM were run ten times on each data set. The SOM size
was set such that the average number of data points in each unit was about 5. The SOM
neighborhood was decreased to one during the optimization. In each case the result with the
best trustworthiness was selected.

When trying to get insights on a data point a human analyst usually looks at a handful (say
10) data points around it. Thus it is very important that the visualization preserves small
neighborhoods well, that is, that the visualization is trustworthy. It is clear from Fig. 1 that
in terms of trustworthiness the SOM and CCA are the best methods on both of these data
sets, with a clear difference from the other methods. On the Gene expression compendium
the SOM is also the second best at preserving the original neighborhoods. CCA is the worst
method in this respect. Based on these tests it seems that the new manifold extraction
methods can have a hard time dealing with manifolds that have a higher dimensionality than
the display. In both cases the trustworthiness is similar to that of the PCA.

3.3 Local MDS

The effect of varying λ is illustrated in Fig. 2 where trustworthiness and continuity (of a
neighborhood of the size 10) are plotted as a function of λ. When λ is increased there is an
overall tendency for trustworthiness to decrease and continuity of original neighborhoods to
increase.

There is a point (usually at around λ = 0.2 . . . 0.5) after which continuity of original neigh-
borhoods may start to decrease. This happens because the second part of the cost function
does not optimize continuity directly. If λ is too large, the unfolding effect of the first part
of the cost function may not be enough to keep the projection from folding on itself. This
is evident on the Fig. 2c where continuity first increases sharply and then starts to decline.
Thus, based on empirical findings, we recommend that λ should be kept within the range
[0, 0.5].
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Figure 1: The change in trustworthiness and continuity of original neighborhoods as the number of
neighbors k in the neighbor set is varied. Small neighborhoods are the most important ones. a) Thick
S-curve manifold, b) Gene Expression Compendium. Rproj is the average value of 100 linear random
projections. The trustworthiness and continuity values of random neighborhoods are approximately
0.5. PCA: Principal component analysis, LLE: Locally linear embedding, L-Eigenmap: Laplacian
eigenmap, CCA: Curvilinear component analysis, SOM: Self-organizing map.
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Figure 2: The relationship between trustworthiness and preservation of original neighborhoods as a
function of λ, for a neighborhood of the size of 10.
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The overall performance of local MDS ranges from, and sometimes outperforms, that of CCA
to that of PCA, the former being the best in terms of trustworthiness and the latter in terms
of continuity.
Fig. 4 gives three examples of local MDS projections. A spherical data set is projected
first with λ = 0 and then with λ = 0.1 and finally with λ = 0.9. When λ is zero the
local MDS splits the sphere open, into roughly two discs. When λ is increased the edges
where continuity is violated the worst get pulled closer together to minimize the number of
neighborhoods that become split, and to reduce the distance between those neighborhoods
that cannot be connected.

4 Discussion

An extension to CCA, curvilinear distance analysis (CDA) [6, 7], was recently introduced.
The main idea of CDA is to replace the Euclidean distances in the original space with geodesic
distances in the same manner as in the Isomap algorithm. The same change could also be
done in local MDS. However it would have to be decided whether continuity is desired on
the manifold or globally. This would affect whether the second term of the local MDS cost
function should be based on geodesic or Euclidean distances.

5 Conclusions

We tested several different nonlinear dimensionality reduction methods. Of these, Isomap,
Laplacian Eigenmap, and LLE are designed to extract manifolds while CCA and SOM are
more generally targeted for dimensionality reduction. One of the main tasks that these
methods are used for is visualization. Thus it is important to understand how they perform
in typical visualization situations and what kinds of tradeoffs they make. Of the methods
tested here only SOM and CCA can be recommended for general visualization tasks where
high trustworthiness is required. If preservation of original neighborhoods is required the
linear method PCA is a good first choice.
We introduced an extension of CCA called local MDS, that according to the preliminary
results is capable of controlling the tradeoff between trustworthiness and continuity of the
projection.
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Figure 3: Trustworthiness and preservation of original neighborhoods of a local MDS projection as a
function of λ. a) Thick S-curve manifold, b) Gene expression compendium, c) Mouse gene expression.
Results from Principal component analysis (PCA) and Curvilinear component analysis (CCA) are
included for reference.
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Figure 4: Three projections of a three-dimensional spherical cell with local MDS. On the left, trust-
worthiness of the projection is maximized by selecting λ = 0. In the middle and right, discontinuity
of the projection is penalized as well, by setting λ = 0.1 and λ = 0.9, respectively.
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