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Abstract— We have recently introduced rigorous
goodness criteria for information visualization by posing
it as a visual neighbor retrieval problem, where the task
is to find proximate high-dimensional data based only on
a low-dimensional display. Standard information retrieval
criteria such as precision and recall can then be used for
information visualization, and we introduced an algorithm,
Neighbor Retrieval Visualizer (NeRV), to optimize the total
cost of retrieval errors. NeRV was shown to outperform al-
ternative methods, but the comparisons did not include one
of the methods widely used for information visualization,
namely the Self-Organizing Map (SOM). In empirical ex-
periments of this paper the SOM turns out to be comparable
to the best methods in terms of smoothed precision, but not
in terms of recall. On a related measure called trustwor-
thiness, the SOM outperforms all others. Finally, we sug-
gest that for information visualization tasks the free param-
eters of the SOM could be optimized with cross-validation
to maximize its visual information retrieval performance.
This would remove the need to choose the size of the SOM
grid and the final radius by rules of thumb.

1 Introduction

Traditionally nonlinear dimensionality reduction methods
have been used either as (i) preprocessing methods to re-
duce the number of input variables or represent the inputs
in terms of more natural variables describing the embedded
data manifold, or as (ii) a way of making the data set more
understandable, by making the similarity relationships be-
tween data points explicit through visualizations. Visual-
izations are commonly needed in exploratory data analysis
and in interfaces to high-dimensional data.

Early nonlinear projection methods introduced a repre-
sentation for the data points and optimized the represen-
tations to minimize representation error. Most can be in-
terpreted as multidimensional scaling (MDS) methods [2]
that minimize some measure of preservation of pairwise
distances between data points.

Manifold learning methods construct the projection by
searching for data manifolds embedded in the original data
space. Isomap [13] infers the manifold through local neigh-

borhood relationships, and visualizes it by MDS; Locally
Linear Embedding (LLE) [10] approximates the manifold
locally by linear surfaces; Laplacian Eigenmap (LE) [1]
and Hessian Eigenmap (HLLE) [4], are very similar but
based on graph theory; Semidefinite Embedding (SDE)
[18] aims at maximizing the variance in the feature space
while preserving the distances between neighbors; Align-
ment of Local Models (ALM) [17] and other similar ap-
proaches first fit local models to the data and then search
for a transformation that aligns them globally. Finally,
there are more heuristically derived but surprisingly well-
performing algorithms, such as the Curvilinear Compo-
nents Analysis (CCA) [3].

The Self-Organizing Map (SOM) [8] has been used for
both of the dimensionality reduction tasks, but it has not
been compared with the most recent methods. In this pa-
per we will carry out the comparison. We will additionally
introduce a method for finding the best grid size and final
radius for visualizing a given data set with a SOM.

2 Visual neighbor retrieval

Although visualization algorithms and applications have
sometimes been motivated using an information retrieval
task, the connection has been vague. We show a more ex-
plicit connection by showing how typical usage of a visu-
alization of a data set can be interpreted as an information
retrieval task.

Consider a data analyst exploring a high-dimensional
data set. For example, the data could consist of a large set
of indicators of welfare for all the countries in the world.
The analyst selects a country, say Finland, and wishes to
find out which other countries have a similar welfare pro-
file. He or she uses the visualization to pick a few countries
that appear most similar, after which the profiles of these
countries can be investigated in more detail to determine
how exactly they are related to Finland’s profile. To that
end, the visualization system should provide a visual inter-
face that allows neighbors, similar objects, to be selected
from the display. Additionally, we assume that the analyst
has not decided on the country of interest before he or she
sees the visualization, so the display should not be biased



towards any particular set of objects.
Assuming that the user of our visualization will have

needs similar to those of the data analyst described above,
we define our visualization task as one ofvisual neighbor
retrieval, where the goal of the user is to find a small set
of nearest neighbors of a few interesting data points. Thek
nearest neighbors of a data point are the set ofk data points
that lie closest to it in the original data set. The purpose of
a visualization algorithm is then to provide a single display
that allows the user to find the neighbors of a data point
as faithfully as possible, without prior knowledge of which
data points the user is going to select.

Three methods have been specifically designed with vi-
sual neighbor retrieval in mind: Neighbor Retrieval Visu-
alizer (NeRV) [16], fastNeRV [16] and LocalMDS [15].
There is also some evidence [7, 14] that the SOM would
perform well in this task.

2.1 Neighbor Retrieval Visualizer

The Stochastic Neighbor Embedding (SNE) algorithm [5]
was originally motivated as a method for placing a set of
objects into a low-dimensional space in a configuration that
preserves neighbor identities. Such a projection does not
try to preserve pairwise distances as such, as MDS does,
but instead theprobabilitiesof points being neighbors.

A probability distribution is defined in the input space,
based on the pairwise distances, to describe how likely it is
that the pointi is a neighbor of pointj. The same is done
in the low-dimensional output or projection space. The al-
gorithm then optimizes the configuration of points in the
output space so that the original distribution of neighbor-
ness is approximated as closely as possible in the output
space.

More formally, the probabilitypij of the pointi being a
neighbor of pointj in the input space is defined to be

pij =
exp (−

d(xi,xj)
2

σ2

i

)
∑
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)
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whered(xi,xj) is the Euclidean distance between the data
pointsxi andxj . The width of the Gaussian,σi, is set
either manually or by fixing the entropy of the distribution.
Setting the entropy equal tolog k sets the “effective number
of neighbors” tok.

Similarly, the probability of the pointi being a neighbor
of point j in the output space is defined to be

qij =
exp (−
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The SNE algorithm searches for the configuration of points
yi that minimizes the KL divergenceD between the proba-
bility distributions in the input and output spaces, averaged
over all points.

It was shown in [16] that optimizing the cost function
of SNE is equivalent to optimizing a smoothed version of
recall in a visual neighbor retrieval context, and that by re-
versing the direction of the KL-divergence in the cost func-
tion of SNE we get a method that optimizes smoothed pre-
cision instead of recall. In practice, however, it would be
best to optimize a compromise between precision and re-
call. The compromise has a fundamental first-principles
interpretation. Precision is proportional to the number of
false positives and recall to the number of misses. If we
know the relative cost of each type of error, we can com-
pute the total cost as their weighted sum, and minimization
of the total cost obviously isthenatural objective.

If we assign a relative costλ to misses and(1 − λ) to
false positives, then the total cost function to be optimized
is

ENeRV = λEi[D(pi, qi)] + (1 − λ)Ei[D(qi, pi)]

= λ
∑

i

∑

j 6=i

pij log
pij

qij

+ (1 − λ)
∑

i

∑

j 6=i

qij log
qij

pij

.

(3)

For step functions and smallδ this reduces to a total in-
formation retrieval cost, a compromise between precision
and recall, and for Gaussian functions as in SNE it can be
interpreted as a smoothed cost. We call the method that
optimizes (3)Neighbor Retrieval Visualizer (NeRV), since
it interprets the visualization problem as a problem of re-
trieving neighbors based on the visualization display.

By setting the parameterλ ∈ [0, 1] we choose to focus
more on either the probabilities that are high in the input
space (recall) or in the output space (precision). Whenλ =
1 the method becomes SNE and whenλ = 0 it focuses
purely on avoiding false positives.

We optimize the cost function using a conjugate gradi-
ent algorithm. A heuristic but very effective way of avoid-
ing local minima is to initialize the optimization by starting
with a large width of the Gaussian neighborhood,σ2

i , and
reducing it stepwise after each optimization step until the
final value is reached. After this initialization, normal con-
jugate gradients are run with a fixed Gaussian for each data
point.

2.2 fNeRV

The main drawback of the NeRV algorithm is its compu-
tational complexity. Each gradient step is of complexity
O(n3), wheren is the number of data points. This makes
NeRV practical only for relatively small data sets. One ap-
proach to reducing the computational cost is to use approx-
imations of the cost function of NeRV [16].

Zhu and Rohwer [19] have developed an information-
geometric extension of the Kullback-Leibler divergence
that is valid for all positive measures instead of just nor-
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malized ones. The extended divergence is

DKLe(pi, qi) =
∑

j 6=i

qij − pij + pij log
pij

qij

. (4)

By replacing the Kullback-Leibler divergences in the
NeRV cost function with the extended divergence we can
use the exponential density values inpij andqij without the
normalization. This reduces the complexity of the gradi-
ent step toO(n2) which is comparable with other distance
based methods. The method optimizing this approximate
cost function is calledfast Neighbor Retrieval Visualizer
(fNeRV).

2.3 LocalMDS

We have previously [15] introduced a method calledLocal
Multidimensional Scaling (LocalMDS)that can be thought
of as a heuristic but faster method than NeRV, aimed at
achieving the same goals. It is a derivative of CCA with
an indirect ability to control the tradeoff between precision
and recall.

The CCA cost function penalizes errors in preserving
distances of points that are neighbors in theoutput space.
By disregarding errors in distances between points that
are far from each other in the visualization, CCA allows
discontinuities to be created in the mapping. These dis-
continuities allow better preservation of local distanceson
both sides of a discontinuity (a “cut” in the data manifold),
which usually leads to high precision in the resulting vi-
sualization. On the other hand, the discontinuities reduce
recall.

In LocalMDS a term is added to the cost function to dis-
courage formation of discontinuities. This is achieved by
additionally penalizing errors in distances between points
that are close by in theinput space. The tradeoff between
these two terms governs the tradeoff between trustworthi-
ness and continuity. The cost function of LocalMDS is

E =

1

2

∑

i

∑

j 6=i

[(1−λ)(d(xi,xj)−d(yi,yj))
2F (d(yi,yj), σi)

+ λ(d(xi,xj) − d(yi,yj))
2F (d(xi,xj), σi)]

(5)

where the parameterλ ∈ [0 . . . 1] controls the tradeoff and,
as in the CCA algorithm, during the optimization the radius
of the area of influence around data pointi, σi, is slowly
reduced. The coefficientF (d(xi,xj), σi) emphasizes local
distances; here,F is simply a step function that equals1
when d(xi,xj) < σi and 0 otherwise. The final radius
is set equal to the distance of thek:th nearest neighbor of
the data pointi in the original space. In practice a value
aroundk = 20 has proven to be a good choice on the data
sets tested.

When λ is set to zero the cost function is reduced to
that of the basic CCA algorithm, with the exception that
the neighborhood end radiuses are set differently for each
data point. A good setting forλ is usually in the range
[0 . . . 0.5]. The cost function is optimized with the stochas-
tic gradient descent introduced for CCA in [3].

2.4 The dredviz package

An implementation of the NeRV, fNeRV and lo-
cal MDS algorithms, as well as the trustwor-
thiness and continuity measures, is available at
http://www.cis.hut.fi/projects/mi/software/dredviz. The
implementation is open source software and written in
ANSI/ISO C++, meaning that it should compile and run
on any platform with an ANSI/ISO C++ compiler.

3 Comparison of the SOM with
other information visualization
methods

We compared the visualization performance of the SOM
with that of other methods on three data sets. The first is
a small, artificial, low-dimensional set; the two others are
high-dimensional real-world sets. The SOM had a hexag-
onal grid of 12 by 16 units, resulting in approximately five
data points for each grid unit.

3.1 Data sets

Thick S-curve. The first data set is a simple toy set of
1000 points sampled from a folded low-dimensional man-
ifold, a two-dimensional S-shaped surface embedded in
R3. The surface is generated by sampling points uniformly
from a planar S-shaped curve made up of two unit circle
halves and adding a uniformly distributed displacement or-
thogonal to the plane of the curve. We introduce some
noise into the manifold by adding a spherical normally dis-
tributed displacement with a standard deviation of 0.6.

Mouse gene expression. The second data set is a col-
lection of gene expression profiles from different mouse
tissues [12]. Expression of over 13,000 mouse genes had
been measured in 45 tissues. We used an extremely sim-
ple filtering method, similar to that originally used in [12],
to select the genes for visualization. Of the mouse genes
clearly expressed (average difference in Affymetrix chips,
AD > 200) in at least one of the 45 tissues (dimensions), a
random sample of 1600 genes (points) was selected. After
this the variance in each tissue was normalized to unity.

Gene expression compendium. The third data set is
a large collection of human gene expression arrays [11,
http://dags.stanford.edu/cancer]. Since the
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current implementations of all methods do not tolerate
missing data we removed samples with missing values al-
together. First we removed genes that were missing from
more than 300 arrays. Then we removed the arrays for
which values were still missing. This resulted in a data
set containing 1278 points and 1339 dimensions.

3.2 Dimensionality reduction methods in-
cluded

In addition to NeRV and fNeRV, we compared the SOM
with the following dimensionality reduction methods:
Principal Component Analysis (PCA) [6], metric Multi-
dimensional Scaling (MDS) [2], Locally Linear Embed-
ding (LLE) [10], Laplacian Eigenmap (LE) [1], Hessian
Eigenmap (HLLE) [4], Isomap [13], Curvilinear Compo-
nent Analysis (CCA) [3], Local MDS (LMDS) [15], and
Curvilinear Distance Analysis (CDA) [9], which is a vari-
ant of CCA that uses graph distances to approximate the
geodesic distances in the data. LLE, LE, HLLE and Isomap
were computed using code from their developers; MDS,
CCA, CDA, and LMDS use our own code.

3.3 Performance measures used

We used three pairs of performance measures to compare
the SOM with the other methods. Given our formulation
of information visualization in terms of visual neighbor re-
trieval, smoothed recall and smoothed precision are a natu-
ral first choice.

Smoothed recall and smoothed precision are sensitive to
errors in local structure: rather than just checking whether
the k nearest points are the same in both spaces, which
would fulfill the requirements of simplest formulations of
information retrieval, the measures also penalize violations
in the internal structure of the neighborhood. In many tasks
this sensitivity is desirable, but if the user of the visual-
ization is only interested in retrieving a certain number of
neighbors, and does not care about the exact structure of the
retrieved neighborhood, the measures do not quite match
the task. Thus we chose trustworthiness and continuity [7]
to complement our first pair of measures: they are well es-
tablished and completely indifferent to the relationshipsbe-
tween thek nearest points as long as thek nearest points
are the same in the input and output space.

Finally, because our motivation is based in information
retrieval, we also plotted standard precision–recall curves.

3.4 Results

The right column of Figure 1 shows trustworthiness and
continuity plotted for all methods and all three data sets.
In terms of trustworthiness, the SOM beats every other
method by a wide margin on both gene expression data sets,
and is also among the top performers on the S-curve data.
In the Figure trustworthiness and continuity are calculated

with a neighborhood ofk = 20, but we found that on the
gene expression data sets, the SOM had the highest trust-
worthiness for any value ofk between 1 and 50. The SOM
also did very well in terms of smoothed precision, match-
ing or beating NeRV on the gene expression data sets, even
though NeRV optimizes the measure directly forλ = 0.
When measured by smoothed recall, however, NeRV was
clearly better on all three data sets.

The reason why the SOM can sometimes be even bet-
ter in terms of precision than a method designed to opti-
mize that measure is probably that, in the SOM displays,
we search for the neighboring data points using the path
distance computed along the SOM lattice. The edges are
weighted by the distance between the corresponding model
vectors, which corresponds roughly to visual distances on
so-called U-matrix displays. The weighted path distances
are not Euclidean any longer, whereas the comparison
methods have to settle for Euclidean distances. If we use
non-weighted (and hence two-dimensional) distances, the
SOM is not as good.

The effect of varying the final radius on the
trustworthiness–continuity trade-off was erratic: while
trustworthiness tended to decrease as the final radius was
increased, a corresponding systematic increase in continu-
ity is visible only for the S-curve data set. Smoothed pre-
cision and smoothed recall responded slightly more reg-
ularly, as increasing the final radius resulted in a marked
increase in smoothed recall on two of the three data sets.
Clearly the final radius affects these trade-offs, but it does
not seem as if we can, in general, expect to control them by
adjusting that parameter alone.

4 Optimizing the SOM for informa-
tion visualization

Choosing the size of the grid and the final radius is a tra-
ditional non-trivial problem faced in any application of the
SOM. We saw in Section 3.4 that the final radius influences
all our measures of goodness for information visualization,
in some cases very strongly. Unfortunately we also noticed
that there was no simple, general relationship between the
measures and the final radius that would allow us to for-
mulate a rule for choosing the parameter optimally for in-
formation visualization. We suspected that the reason why
the measures responded so unpredictably to changes in the
final radius was that they were also affected by the size of
the SOM grid, and that the effects of the two parameters
were not independent, which would mean that one param-
eter could not be chosen optimally without regard to the
other.

The solution we propose involvesn-fold cross-validation
using trustworthiness and continuity for testing the maps.
We divide the training data setS into n equal-sized parts
S1, . . . Sn. For each combination of parameters that we
wish to test, we then trainn maps, where the training data
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Figure 1: KL–KL curves (left), precision–recall curves (middle) and trustworthiness–continuity curves (right) for different
values ofλ (NeRV, fNerv, LocalMDS) andσ (SOM) on three data sets. The precision–recall curves were calculated with
the 20 nearest neighbors in the input space as the set of relevant items and the number of retrieved items (neighbors) is
varied from 1 to 100. The KL–KL curve and the trustworthiness–continuity curves were calculated using a neighborhood
of 20 points. For the SOM, both KL–KL and trustworthiness–continuity were calculated using the path distance computed
along the SOM lattice. On each plot, the best performance is in the top right corner. PCA: Principal Component Analysis;
MDS: metric Multidimensional Scaling; LLE: Locally LinearEmbedding; LE: Laplacian Eigenmap; CCA: Curvilinear
Component Analysis; CDA: CCA with geodesic distances; HLLE: Hessian Eigenmap.
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Figure 2: The results of the cross-validation procedure.
Each point corresponds to one combination of final radius
and grid size: the first number of the label is the final ra-
dius, and the second the number of data points per grid unit.
For clarity, only the best performers, as well as the combi-
nations that performed best in the actual test, are included.

for theith map consists ofS\Si, that is,S with Si removed.
The removed partSi is used as validation data: we find the
best-matching units on the newly-trained map for the points
in Si, and then calculate the trustworthinessTi and continu-
ity Ci of that projection. We then use the averages of these
measures,T = (1/n)

∑n

i=1 Ti andC = (1/n)
∑n

i=1 Ci,
to compare different parameter combinations.

We applied the cross validation-based method to the S-
curve data set. This data set was chosen in part because
it was by far the fastest to visualize due to its low dimen-
sionality, but above all because we could easily generate a
new data set with same distribution as the training set for
testing purposes, which we could not have done with ei-
ther of the real world data sets. We divided the data set
into seven parts. The length to width ratio of the grid of
each map trained was approximately 1.5. Using the results
for the cross-validation, displayed in Figure 2, we would
now choose the parameter combination that best matches
our preferences. For example, if we wanted to maximize
trustworthiness at any cost to continuity, we would use a
final radius of 0.3 and a grid with as many units as there
are points in the data set.

To test how good the parameter combinations recom-
mended by our method actually were, we trained one map
for every parameter combination with the complete S-data
set, and then calculated trustworthiness and continuity for
each map using a new set generated from the same distri-
bution. The results are plotted in Figure 3.

When we compare Figures 2 and 3, we see that the pa-
rameter combinations suggested by our method are trust-
worthy: if we look at the best combinations suggested by
our method, displayed in Figure 2, we see that all of these
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Figure 3: Continuity and trustworthiness (k = 20) for
SOMs of various parameter combinations when applied to
a data set different from (but generated from the same dis-
tribution as) the one they were trained on. Each point corre-
sponds to one combination of final radius and grid size: the
first number of the label is the final radius, and the second
the number of data points per grid unit. For clarity, only
the best performers, as well as the combinations that per-
formed best in the cross-validation, are included. The most
trustworthy parameter combination in the method compar-
ison in Section 3, (0.3, 5), is shown for reference.

are among or near the best performing combinations in the
actual test Figure 3. There are also no parameter combi-
nations that turn out to be significantly better than the best
combinations suggested by our method.

In particular, note that the cross-validation method
would give us better parameter combinations than the ones
we used in our method comparison in Section 3, where the
grid size was fixed to five data points per code vector using
a rule of thumb.

5 Discussion

We have compared the SOM with a variety of nonlin-
ear dimensionality reduction methods in the task of vi-
sual neighbor retrieval. The SOM produced the most trust-
worthy projection by far for the two real world data sets,
and was similar to or even slightly better than NeRV in
terms of smoothed precision. Good performance as mea-
sured by these two measures is of primary importance in
visual neighbor retrieval, because the user of the visualiza-
tion must be able to trust the information provided by the
visualization for it to be useful. The SOM also did well, if
not quite as well as NeRV, in terms of continuity, but when
measured by smoothed recall, its performance was clearly
worse than that of NeRV.

We introduced a method based onn-fold cross-
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validation for choosing the grid size and final radius of a
SOM to produce an optimal visualization of a given data
set. The results of our experiment with the artificial S-curve
data set were very encouraging. All the produced param-
eter combinations performed well with test data different
from the one the SOMs were trained on (precision), and
the method managed to find most of the best-performing
parameter combinations (recall). What is more, our re-
sults showed a clear relationship between the parameters
and the trustworthiness–continuity trade-off for this data
set. A small final radius with a large grid produced the
most trustworthy but least continuous projections, whereas
a large final radius and small grid produced the most con-
tinuous but least trustworthy projections. Maps with small
final radii and small grids produced the worst projections
in terms of both measures.

Although the results are promising, further study is
needed to determine how the cross-validation method for
choosing parameters works for more general data sets.
The data set we used was a low-dimensional folded man-
ifold, whereas many real world data sets are very high-
dimensional and do not have such clear-cut structure.

We would additionally like to point out that calculating
trustworthiness and continuity directly for the mapping of
the validation data, as we did in the cross-validation, may
be misleading when the grid size of the map is large com-
pared to the size of the validation data. If the validation
data consists of relatively few points scattered all over the
map, the resolution is very different from what it would be
for the whole data set. One way to get around this poten-
tial problem would be to project both the training data and
the validation data, and then calculate trustworthiness and
continuity, but ignoring any errors that do not involve one
of the points belonging to the validation data.
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