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Abstract

Self-Organizing Map (SOM) is an unsupervised neural network method which has prop-
erties of both vector quantization and vector projection algorithms. The prototype vec-
tors are positioned on a regular low-dimensional grid in an ordered fashion, making the
SOM a powerful visualization tool.

SOM Toolbox is an implementation of the SOM and its visualization in the Matlab
5 computing environment. The Toolbox can be used to preprocess data, initialize and
train SOMs using a range of different kinds of topologies, visualize SOMs in various
ways, and analyze the properties of the SOMs and the data, e.g. SOM quality, clusters
on the map, and correlations between variables. With data mining in mind, the Toolbox
and the SOM in general are best suited for the data understanding phase, although they
can also be used for modeling.

SOM Toolbox can be applied to the analysis of single table data with numerical
variables. It is easily applicable to small data sets (under 10000 records) but can also
be applied in case of medium sized data sets (upto 1000000 records). The Toolbox is
mainly suitable for training maps with 1000 map units or less.
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1 General

1.1 About this report

This report presents the SOM Toolbox (version 2) [23], hereafter simply called the Tool-
box, for Matlab 5 computing environment. The SOM stands for Self-Organizing Map (also
called Self-Organizing Feature Map, Kohonen map), a popular neural network based on un-
supervised learning [12]. The Toolbox contains functions for the creation, visualization and
analysis of Self-Organizing Maps. The Toolbox as well as this report and other related works
are available free of charge under the GNU General Public License from

http://www.cis.hut.fi/projects/somtoolbox/

Below, guidelines are given how to obtain and install the Toolbox. In Section 2, the SOM
is shortly introduced. Section 3 gives guidelines to how the Toolbox can and should be used.
Section 4 gives detailed information about how the Toolbox really works: in particular, the
structs and functions of the Toolbox are described.

The first version of the Toolbox was released in autumn 1997 [21]. Compared to that,
this second version has some major changes as well as numerous smaller improvements
and additions. The major changes are in the structs, normalization and visualization. See
Appendix A for more details. The Toolbox is closely related to the SOM_PAK, a program
package implementing the SOM algorithm in C-code [14]. The Toolbox contains functions
for using SOM_PAK programs from Matlab, and has functions for reading and writing data
files in SOM_PAK format, see Appendix B.

Notation. Primarily two font types are used in this report: regular and fixed. The latter
is used to write out Matlab and shell commands and functions, string literals, file names and
web addresses. Also sizes of matrices are typed with fixed font, for example [1000 x 10]
means a matrix with 1000 rows and 10 columns.

1.2 About Matlab

Matlab is a widely used programming environment for technical computing by MathWorks,
Inc. Matlab is available for Windows and various Unix platforms. An evaluation version can
be downloaded from the Internet, see http://www.mathworks. com/.

Matlab features a high-level programming language, powerful visualization, graphical
user interface tools and a very efficient implementation of matrix calculus. These are major
advantages in the data mining research because they allow fast prototyping, testing and
customizing of the algorithms. There are also a large number of toolboxes intended for
a variety of modeling and analysis tasks. These toolboxes are based on a wide span of
methodologies from statistical methods to Bayesian networks.

Matlab can accommodate continuous, categorial and symbolic data. The data model
is a single table, but since the Matlab language is highly flexible it is possible to build
more complicated models. Direct support for object oriented programming is available. With
special toolboxes, connection to (ODBC) databases is possible.

In Matlab, the data mining process is typically highly interactive requiring adequate
knowledge of programming from the user. However, using the graphical user interface tools
it is possible to build simpler end-user interfaces and even create stand-alone applications.

In order to get the most out of this report, some prior familiarity with Matlab would be
good. However, Matlab has a pretty extensive online help. If you encounter a function that
you do not recognize, try the help command followed by the function name, for example

help plot



1.3 About SOM Toolbox

The Toolbox was born out of need for a good, easy-to-use implementation of the SOM in
Matlab for research purposes. In particular, the researchers responsible for the Toolbox work
in the field of data mining, and therefore the Toolbox is oriented towards that direction
in the form of powerful visualization functions. However, also people doing other kind of
research using SOM will probably find it useful — especially if they haven’t yet made a
SOM implementation of their own in Matlab environment. Since much effort has been put
into making the Toolbox relatively easy to use, it can also be used for educational purposes.

The Toolbox can be used to preprocess data, initialize and train SOMs using a range of
different kinds of topologies, visualize SOMs in various ways, and analyze the properties of
the SOMs and data, for example SOM quality, clusters on the map and correlations between
variables!. With data mining in mind, the Toolbox and the SOM in general is best suited
for the data understanding/survey phase, although it can also be used for modeling [4, 24].

The Toolbox consists of two sets of functions: the basic package and the contributed
functions. The basic package is meant to be self-sufficient and well-documented. Except for
the lowest level subroutines, each function has a short help at the beginning of the file, and
a longer help with full details immediately after it. Try help and type commands to view
the helps. For example:

help som_hits % to see the short help
more on % this may be necessary
type som_hits % to see the longer help

Often the help part is longer than the code itself. The contributed functions are add-ons
to the Toolbox. While useful, they are not essential, and in most cases they are less well
documented than the basic package.

The basic package is maintained and copyrighted by the SOM Toolbox Team. The copy-
right statement (GNU General Public License version 2 or later) allows you to freely make
use of, modify and distribute the functions as long as the copyright statement is included
in the distribution. Note that the license does not grant you the right to include the codes
in your own propietary program to be sold as your own. Refer to the Copyright.txt and
License.txt files in the SOM Toolbox distribution for the exact wording of do’s and do-
not’s. For further details concerning licensing etc. please refer to the SOM Toolbox website.

The contributed functions may have their own copyright notices, but some do not. In such
a case, it should be assumed that the GNU General Public License holds for them, too, but
so that the author(s) of the file (listed in the file) have the Copyright. You are also welcome
to contribute your codes to the Toolbox: just send your questions and/or contributions to
somtlbx@mail.cis.hut.fi.If you rather present your work on your own site, please provide
at least the URL of the site so we can link to it.

This report concentrates on the basic package, and only mentions some contributed func-
tions.

1.4 System requirements

The primary requirement is that you have a Matlab, version 5.2 at least?. Just the basic
Matlab is sufficient, no other toolboxes are needed.

Secondary requirement is to have enough memory: the Toolbox uses quite a lot of memory
to speed things up. Matlab itself requires at least 16 MB of memory, but the suggestion is to

1... or components: for historical reasons the term “component” is sometimes used instead of “variable”

in this report. Several scalar variables make up a vector. Thus the they are the components of the vector.
2Version 5.1 may work, t00, if you remove the try - catch commands.



have much more than that. To use the Toolbox, we recommend at least 64 MBs of memory,
preferably more. As an illustrative example, consider making a SOM from a data matrix of
size [10000 x 10]. The data matrix alone requires almost 1 MB of memory, but what really
consumes memory is training. The default number of map units for the above data would
be 500. The training procedures would use one or more matrices of size [5600 x 500]. The
size of these matrices quickly becomes overwhelming as the number of map units increases.
In the case above, the batch training procedure would reserve at least 10 MBs of memory.

Finally, the total diskspace required for the Toolbox itself is less than 2 MBs. The docu-
mentation takes a few MBs more.

1.5 Installation

The Toolbox can be downloaded for free from
http://www.cis.hut.fi/projects/somtoolbox/

Once you have downloaded the relevant files (e.g. somtoolbox2.zip), move them to an
appropriate directory and decompress them using, e.g., unzip, pkunzip or winzip. After
this, install the Toolbox like you would install any other toolbox. If you don’t know how to
do that, just make sure that when you want to utilize the SOM Toolbox, you’re either in the
Toolbox directory, or the directory is in your matlabpath (see commands path, addpath
and pathtool).

On-line help is available from the SOM Toolbox website, but it may be more convenient
to put them somewhere locally. You can do this by decompressing the documentation file
(e.g. somtoolbox2doc.zip) in an appropriate directory.



2  Self-Organizing Map (SOM)

A SOM consists of neurons organized on a regular low-dimensional grid. The number of
neurons may vary from a few dozen up to several thousand. Each neuron is represented by
a d-dimensional weight vector (a.k.a. prototype vector, codebook vector) m = [my, ... ,mq,
where d is equal to the dimension of the input vectors. The neurons are connected to adjacent
neurons by a neighborhood relation, which dictates the topology, or structure, of the map.
In the Toolbox, topology is divided to two factors: local lattice structure and global map
shape. Examples of rectangular and hexagonal lattice structures are shown in Figure 1 and
examples of different kinds of map shapes in Figure 2.

The SOM training algorithm resembles vector quantization (VQ) algorithms, such as k-
means [6]. The important distinction is that in addition to the best-matching weight vector,
also its topological neighbors on the map are updated: the region around the best-matching
vector is stretched towards the presented training sample, as in Figure 3. The end result
is that the neurons on the grid become ordered: neighboring neurons have similar weight
vectors.

Since the weight vectors of the SOM have well-defined low-dimensional coordinates r;
on the map grid, the SOM is also a vector projection algorithm [8]. Together the prototype
vectors and their projection define a low-dimensional map of the data manifold.

2.1 Sequential training algorithm

The SOM is trained iteratively. In each training step, one sample vector x from the input
data set is chosen randomly and the distances between it and all the weight vectors of the
SOM are calculated using some distance measure. The neuron whose weight vector is closest
to the input vector x is called the Best-Matching Unit (BMU), denoted here by ¢:

[|x —m[| = min{|[x —mill}, 1)

where || -|| is the distance measure, typically Euclidian distance. In the Toolbox, the distance
computation is slightly more complicated because of two factors:

e Missing values: In the Toolbox, these are represented by the value NaN in the vector
or data matrix. Missing components are handled by simply excluding them from the
distance calculation (ie. it is assumed that their contribution to the distance ||x —my|
is zero). Because the same variable(s) is ignored in each distance calculation (over
which the minimum is taken), this is a valid solution [18].

e Mask: Each variable has an associated weighting factor, defined in the .mask field
of map and training structs (see Section 4). This is primarily used in binary form
for excluding certain variables from the BMU-finding process (1 for include, 0 for
exclude). However, the mask can get any values, so it can be used for weighting variables
according to their importance.

With these changes, the distance measure becomes:

I —m|* = wi(ze —ma)?, (2)

kEK

where K is the set of known (not missing) variables of sample vector x, z; and my, are kth
components of the sample and weight vectors and wy, is the kth mask value (mask(k)).



(a) Hexagonal grid (b) Rectangular grid

Figure 1: Discrete neighborhoods (size 0, 1 and 2) of the centermost unit: (a) hexagonal
lattice, (b) rectangular lattice. The innermost polygon corresponds to 0-neighborhood, the
second to the 1-neighborhood and the biggest to the 2-neighborhood.

(a) Sheet (b) Cylinder (c) Toroid

Figure 2: Different map shapes. The default sheet shape (a), and two shapes where the map
topology accommodates circular data: cylinder (b) and toroid (c).



After finding the BMU, the weight vectors of the SOM are updated so that the BMU is
moved closer to the input vector in the input space. The topological neighbors of the BMU are
treated similarly. This adaptation procedure stretches the BMU and its topological neighbors
towards the sample vector as shown in Figure 3.

Figure 3: Updating the best matching unit (BMU) and its neighbors towards the input
sample marked with x. The solid and dashed lines correspond to situation before and after
updating, respectively.

The SOM update rule for the weight vector of unit 4 is:
m;(t + 1) = my(t) + a(t)hei (t)[x(t) — my(t)], 3)

where t denotes time. The x(¢) is an input vector randomly drawn from the input data set
at time t, h.;(t) the neighborhood kernel around the winner unit ¢ and «a(t) the learning rate
at time ¢, see Figures 4 and 5. The neighborhood kernel is a non-increasing function of time
and of the distance of unit ¢ from the winner unit ¢. It defines the region of influence that
the input sample has on the SOM.

The training is usually performed in two phases. In the first phase, relatively large initial
learning rate ag and neighborhood radius o are used. In the second phase both learning rate
and neighborhood radius are small right from the beginning. This procedure corresponds to
first tuning the SOM approximately to the same space as the input data and then fine-tuning
the map.

2.2 Batch training algorithm

Also batch training algorithm is iterative, but instead of using a single data vector at a time,
the whole data set is presented to the map before any adjustments are made — hence the
name “batch”. In each training step, the data set is partitioned according to the Voronoi
regions of the map weight vectors, ie. each data vector belongs to the data set of the map
unit to which it is closest. After this, the new weight vectors are calculated as:

i1 hie(®)%;

(4)
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Figure 4: Different neighborhood functions. From the left ’bubble’ h;(t) = 1(o; — d.i),
‘gaussian’ h.;(t) = e~ dei/207 ’cutgauss’ hg;(t) = e‘dgi/%?l(at —d.i), and ep’ h.i(t) =
max{0,1 — (o; — d.;)?}, where o; is the neighborhood radius at time ¢, d,; = ||r. — 1|
is the distance between map units ¢ and ¢ on the map grid and 1(z) is the step function:

1(z) = 0ifz < 0 and 1(z) = 1ifz > 0. The top row shows the function in 1- and the bottom
row on a 2-dimensional map grid. The neighborhood radius used is o; = 2.

<<<<<

Figure 5: Different learning rate functions: ’linear’ (solid line) a(t) = ao (1—t/T'), ’power’

(dot-dashed) a(t) = ap(0.005/ag)*T and *inv’ (dashed) a(t) = /(1 + 100¢/T), where T
is the training length and «y is the initial learning rate.
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where ¢ = argminy {||x; —my||} is the index of the BMU of data sample x;. The new weight
vector is a weighted average of the data samples, where the weight of each data sample is the
neighborhood function value h;.(t) at its BMU ¢. As in the sequential training algorithm,
missing values are simply ignored in calculating the weighted average.
Notice that in the batch version of the kmeans algorithm, the new weight vectors are
simply averages of the Voronoi data sets. The above equation equals this if h;. = 6(4, ¢).
Alternatively, one can first calculate the sum of the vectors in each Voronoi set:

si(t) = i&s (5)

where ny, is the number of samples in the Voronoi set of unit 4. Then, the new values of the
weight vectors can be calculated as:

D hij(t)s;(t)
> i vy his(t)

where m is the number of map units. This is the way batch algorithm has been implemented
in the Toolbox.

m;(t+1) = (6)

11



3 How to use the Toolbox

3.1 Data requirements

The kind of data that can be handled with the Toolbox is so-called spreadsheet or table
data. Each row of the table is one data sample. The items on the row are the variables,
or components, of the data set, see Figure 6. The variables might be the properties of an
object, or a set of measurements measured at a specific time. The important thing is that
every sample has the same set of variables. Thus, each column of the table holds all values
for one variable. Some of the values may be missing, but the majority should be there.

The Toolbox can handle both numeric and symbolic data, but only the former is utilized
in the SOM algorithm. Note that for a variable to be “numeric”, the numeric representation
must be meaningful: values 1, 2 and 4 corresponding to objects A, B and C should really
mean that (in terms of this variable) B is between A and C, and that the distance between
B and A is smaller than the distance between B and C. Identification numbers, error codes,
etc. rarely have such meaning, and they should be handled as symbolic data.

In the Toolbox, symbolic data can be inserted into string labels associated with each
data sample. Consider them like post-it notes attached to each sample. You can check on
them later to see what was the meaning of some specific sample, but the SOM algorithm
ignores them. If you need to utilize the symbolic variables in training the SOM, you can try
converting them into numerical variables using, e.g., mapping or 1-of-n coding [17].

This does not mean that the symbolic data would be useless. The distribution of labels
on the map can be investigated afterwards, see function som_autolabel. The contributed
functions include several which make use of labels in a supervised manner during training,
for example som_supervised and 1vqg3.

~—— 1stvariable
~— 2nd variable
~+— 3rd variable
~—— 4th variable

1stsample —

2nd sample —»

3rd sample —

4th sample  ——

etc.

Figure 6: Table-format data: there can be any number of samples, but all samples have fixed
length, and consist of the same variables.

3.2 Construction of data sets

First, the data has to be brought into Matlab. You can use normal Matlab functions like
load and fscanf. In addition, the Toolbox has function som read data which can be used
to read ASCII data files in SOM_PAK format (see Appendix B). Whichever the case, the
following assumes that all your data is present in the Matlab workspace.

12



Data struct. Typically, the data is put into a so-called data struct, which is a Matlab
struct defined in the Toolbox to group information related to a data set. It has fields for
numerical data (.data), strings (.labels), as well as for information about data set and the
individual variables (for more information, see Section 4). The format of numerical and string
data is described below. If your data only consists of numerical values, you don’t necessarily
have to use data structs at all. Most functions accept numerical matrices (described below)
as well.

Numerical data must be in a matrix of size [dlen x dim], where dlen is the number
of samples, and dim is the number of numerical variables. If D is such a matrix, each row
D(i,:) of the matrix corresponds to one sample, and each column D(:,i) is the collection
of all values of a single variable. If the value of some variables in some samples are missing,
they can be replaced with NaNs. The map struct, which is used to hold all information of a
SOM, has a similar field: .codebook. However, the .codebook field must not contain any
NaNs.

A numerical matrix D can be converted into a data struct with sD=som data struct (D),
or inserted into an existing data struct with sD=som set(sD,’data’,D).

String data are put in the field .1labels of the data struct. This field is a cell array of
strings (see commands cell and cellstr). The size of the array is [dlen x ml], where
ml is the maximum number of labels in a single sample. Note that strings of zero length
(*?) in the array are considered empty and are ignored by the functions. Each row of the
array holds the labels for one sample so that labels sD.labels(i,:) and numerical values
sD.data(i,:) correspond to each other. Also the map struct has .labels field.

If your string data is in this kind of format in variable L, you can insert it to an exist-
ing data struct with sD=som_set(sD, ’labels’,L) or along with the numerical data with
sD=som_data_struct (D, ’labels’,L). Alternatively, the labels can be inserted into the data
struct with function som_label in a much more flexible manner. Of course, one could insert
them by assignment:

% all labels

sD.labels = L;

% or single labels

sD.labels{i,1} = ’label’; % insert content ’label’ into cell
sD.labels(i,1) = {’label’}; % insert a cell {’label’} into an array

3.3 Data preprocessing

Data preprocessing in general can be just about anything: simple transformations or nor-
malizations performed on single variables, filters to remove uninteresting or erronous values,
calculation of new variables from existing ones. In the Toolbox, only the first of these is
implemented as part of the package. Specifically, the function som normalize can be used
to perform linear and logarithmic scalings and histogram equalizations of the numerical
variables (the .data field).

Scaling of variables is of special importance in the Toolbox, since the SOM algorithm
uses Euclidian metric to measure distances between vectors. If one variable has values in the
range of [0, ...,1000] and another in the range of [0, ..., 1] the former will almost completely
dominate the map organization because of its greater impact on the distances measured.
Typically, one would want the variables to be equally important. The default way to achieve
this is to linearly scale all variables so that the variance of each is equal to one. This can be
done simply with sD = somnormalize(sD,’var’) or D = somnormalize(D,’var’).

13



One of the advantages of using data structs instead of simple data matrices is that the data
structs retain information of the performed normalizations in the field .comp norm. Using
function som_denormalize one can reverse the normalization to get the values in the original
scale: sD = som denormalize(sD). Also, one can repeat the exactly same normalizations to
other data sets, for example sD2 = som_normalize(sD2,sD.comp.norm).

All normalizations are single-variable transformations, so one can make one kind of nor-
malization to one variable, and another type of normalization to another variable. Also,
multiple normalizations one after the other can be made for each variable.

For example, consider a data set sD which has three numerical variables. You could do a
histogram equalization to the first variable, a logarithmic scaling to the third variable, and
finally a linear scaling to unit variance to all three variables:

sD = som_normalize(sD,’histD’,1);
sD = som_normalize(sD, ’log’,3);
sD = som_normalize(sD,’var’,1:3);

Your data doesn’t necessarily have to be preprocessed at all before creating a SOM for
it. However, in most real tasks preprocessing is important, even crucial part of the whole
process [17].

3.4 Initialization and training

There are two initialization (random and linear) and two training (sequential and batch)
algorithms implemented in the basic Toolbox®. The simplest way to initialize and train a
SOM is to use function som make:

sM = som_make(sD);

This function both initializes and trains the map. The training is done is two phases: rough
training with large (initial) neighborhood radius and large (initial) learning rate, and fine-
tuning with small radius and learning rate. By default linear initialization and batch training
algorithm are used.

The som make selects map size and training parameters automatically, although it has
a number of arguments to give preferences of for example map size. If you want to have
tighter control over the training parameters, you can use the relevant initialization and
training functions directly. They are: som lininit, som_randinint, som_seqtrain and
som_batchtrain. In addition, the functions som_topol_struct and som_train struct can
be used to get default values for map topology and training parameters, respectively.

3.5 Visualization and analysis

The ordered SOM grid can be used as a convenient visualization platform for showing dif-
ferent features of the SOM (and the data) [22]. In the SOM Toolbox, there are a number
of functions for the visualization of the SOM. Here, they are divided to three categories
according to the different visual primitives:

1. cell visualizations which are based on showing the map grid as it is in the output space
2. graph visualizations which show a simple graph in the place of each map unit

3. mesh visualizations which show the map as a mesh or a scatter plot

3Contributed functions include some more.
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3.5.1 Cell visualizations

Cell type visualizations show the SOM as it is in the output space: a regular lattice of cells
the properties of which show the associated values. Note that these visualization only work
for (1- or) 2-dimensional maps and that ’cell’ and ’toroid’ shapes are treated the same
as ’sheet’.

The basic tool is function som_show:

som_show (sM) ;

which by default shows first the U-matrix calculated based on all the variables and then the
component planes.

o Unified distance matrix (U-matrix) visualizes distances between neighboring map units,
and helps to see the cluster structure of the map: high values of the U-matrix indicate
a cluster border, uniform areas of low values indicate clusters themselves [20].

e Each component plane shows the values of one variable in each map unit.

The values are shown using indexed color coding. For different colormaps, see commands
colormap, jet, hsv, hot, gray. Also other types of planes are possible:

e An empty grid shows only the edges of the units. This may be used as a basis for
labeling or other visualizations where the colored backgroud could be distracting.

e In color planes each unit is given a fixed color. This may be used to show for example
clustering or other identification information for linking different visualizations [7, 10].
There are special tools in the contributed code that give this kind of color tools, for
example som_colorcode and som_clustercolor.

The function som show has various input arguments that may be used to control what
kind of planes to show and in which order. The variable scales may be denormalized back to
the original data scale (if possible) and there are various arguments that change the look of
the visualizations in general, like orientation of colorbars.

A related function is som_show_add which sets additional information on a figure produced
by som_show?: labels, hit histograms, and trajectories.

e Labeling, produced for example by function som_autolabel, is used to categorize the
units (or some units) by giving them names.

e Hit histograms are actually markers that show the distribution of the best matching
units for a given data set. Multiple histograms may be drawn and these are identified
by different colors and/or markers. This makes it possible to compare different data
sets by the distribution of their “hits” on a map. Hit histograms can be calculated
using function som hits.

e Trajectories show the best matching units for a data set that is time series (or any
ordered series). It may be either a line connecting the consecutive best matching units
or a “comet” trajectory where the current (first data sample) best matching unit
has biggest marker and the oldest (last data sample) has smallest marker. There is
a contributed function som_trajectory which can be used for interactive trajectory
behaviour analysis and even for manually segmenting the map and the time series
during the study of the trajectory.

4Some contributed functions, such as som_trajectory, also require that the Matlab figure on which they
are applied has been made using som_show.
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The som_show uses a basic routine som_cplane. This may be used to build customized
cell style visualizations. Customization parameters include

e color of units
e size scaling of units

locations of units

prototypic shape of the unit (arbitrary polygon)

form of units (by scaling the locations of vertices)

3.5.2 Graph visualizations

Graph visualizations are meant for drawing the SOM codebook as a set of conventional
graphs. The idea is that each unit of the codebook is presented using for example pie chart,
and the charts are positioned in the same way as the units are in the cell visualizations.

e Pie charts (som_pieplane) are ideal for showing proportional values. The color and
size of pie slices can be altered using different arguments.

e Bar charts (som_barplane) are suitable for showing values in different categories. The
color for each bar and the gap between bars can be specified. You should carefully read
the different annotations on how this function scales the codebook vector values before
visualization in order to avoid misinterpretations. See Section 4.2.7.

e Signal graph (som_plotplane) shows codebook vectors as simple line graphs. The color
of the lines can be specified for each unit separately.

3.5.3 Mesh visualizations

The function som_grid can be used for drawing mesh (grid) style visualizations. The function
is based on the idea that the visualization of a data set simply consists of a set of objects,
each with a unique position, color and shape. See Matlab function scatter. In addition,
connections between objects, for example neighborhood relations, can be shown using lines.
With som grid the user is able to assign arbitrary values to each of these properties. For
example, x-, y-, and z-coordinates, object size and color can each stand for one variable, thus
enabling the simultaneous visualization of five variables. The different options are:

e the position of an object can be 2- or 3-dimensional

e the color of an object can be freely selected from the RGB cube, although typically
indexed color is used

e the shape of an object can be any of the Matlab plot markers (?.?, ’+’, etc.)

e lines between objects can have arbitrary color, width and any of the Matlab line modes,
eg. -’

e in addition to the objects, associated labels can be shown

a surface between map units can be drawn in addition to the mesh grid
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3.5.4 Analysis

For quantitative analysis of the SOM there are at the moment only a few tools. However,
using low level functions, like som neighborhood, som bmus and som unit_dists, it is easy
to implement new analysis functions. Much research is being done in this area, and many
new functions for the analysis will be added to the Toolbox in the future, for example tools
for clustering and analysis of the properties of the clusters. Some such functions are already
part of the contributed code, see Section 4.3.

3.6 Example

Here is a simple example of the usage of the Toolbox to make and visualize a SOM of a data
set. As the example data, the well-known Iris data set is used [2]. This data set consists of
four measurements from 150 Iris flowers: 50 Iris-setosa, 50 Iris-versicolor and 50 Iris-virginica.
The measurements are length and width of sepal and petal leaves.

The data is in an ASCII file (in SOM_PAK format, see Appendix B). It is loaded into
Matlab using som_read data and normalized such that each variable has unit variance.
Before normalization, an initial statistical look of the data set would be in order, for example
using variable-wise histograms (see command plotmatrix). This information would provide
an initial idea of what the data is about, and would indicate how the variables should be
preprocessed. When the data set is ready, a SOM is trained. Since the data set had labels
(the species identifiers), the map is also labelled using som_autolabel.

% make the data

sD = som_read_data(’iris.data’);
sD = som_normalize(sD,’var’);

% make the SOM

sM som_make (sD) ;

sM = som_autolabel(sM,sD, ’vote’);

After this, the SOM is visualized using som_show. The U-matrix is shown along with all
four component planes. Also the labels of each map unit are shown on an empty grid using
som_show_add. The values of components are denormalized so that the values shown on the
colorbar are in the original value range. The visualizations are shown in Figure 7.

% basic visualization
som_show(sM, umat’,’all’, ’comp’,1:4, ’empty’, ’Labels’, norm’,’d’);
som_show_add(’label’,sM, ’subplot’,6);

From the U-matrix it is easy to see that the top three rows of the SOM form a very
clear cluster. By looking at the labels, it is immediately seen that this corresponds to the
Setosa subspecies. The two other subspecies Versicolor and Virginica form the other cluster.
The U-matrix shows no clear separation between them, but from the labels it seems that
they correspond to two different parts of the cluster. From the component planes it can be
seen that the petal length and petal width are very closely related to each other. Also some
correlation exists between them and sepal length. The Setosa subspecies exhibits small petals
and short but wide sepals. The separating factor between Versicolor and Virginica is that
the latter has bigger leaves.

Component planes are very convenient when one has to visualize a lot of information at
once. However, when only a few variables are of interest scatter plots are much more efficient.
Figure 8 shows the PCA-projection of both data and the map grid.

% find PCA-projection of the data
[P4d,V,me] = pcaproj(sD,3);
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% plot the map grid projection with
som_grid(sM,’Coord’ ,pcaproj(sM,V,me), ‘marker’,’none’,...
’Label’,sM.labels,’labelcolor’,’k’);
% plot also the original data with color indicating subspecies
hold on, grid on
colD = [repmat([1 O 0],50,1);
repmat ([0 1 0],50,1);
repmat ([0 0 11,50,1)1;
som_grid(’rect’,[150 1],’Line’,’none’,’Coord’,Pd, >markercolor’,colD)

Figure 9 visualizes all four variables of the SOM plus the subspecies information using
three coordinates, marker size and color.

% denormalize the weight vectors

M = som_denormalize (sM.codebook,sM) ;

% make a cell array of marker types based on subspecies

colM = zeros(length(sM.codebook),3);

un = unique(sD.labels);

for i=1:3, ind = find(strcmp(sM.labels,un(i))); colM(ind,i) = 1; end

% plot the map

som_grid(sM, ’Coord’ ,M(:,2:4),’MarkerSize’, (M(:,1)-4)*5, ’Markercolor’,colM);

% plot the data on top

hold on, grid on

D = som_denormalize(sD.data,sD);

som_grid(’rect’,[150 1],’Coord’,D(:,2:4), ’Marker’,’x’,...
’MarkerSize’,(D(:,1)-4)*5,’Line’, none’, ’Markercolor’,colD);

Figure 10 shows the same information using graphs.

% show the map grid and subspecies information
som_cplane(sM.topol.lattice,sM.topol.msize,colM);

% show the four variables with barcharts

hold on
som_barplane(sM.topol.lattice,sM.topol.msize,M, ’w’, ’unitwise’);
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Figure 7: Visualization of the SOM of Iris data. U-matrix on top left, then component planes,
and map unit labels on bottom right. The six figures are linked by position: in each figure, the
hexagon in a certain position corresponds to the same map unit. In the U-matrix, additional
hexagons exist between all pairs of neighboring map units. For example, the map unit in
top left corner has low values for sepal length, petal length and width, and relatively high
value for sepal width. The label associated with the map unit is ’se’ (Setosa) and from the
U-matrix it can be seen that the unit is very close to its neighbors.

Figure 8: Projection of the Iris data set to the subspace spanned by its three eigenvectors
with greatest eigenvalues. The three subspecies have been plotted using different colors. The
SOM grid has been projected to the same subspace. Neighboring map units are connected
with lines. Labels associated with map units are also shown.

19



Figure 9: The four variables and the subspecies information from the SOM. Three coordinates
and marker size show the four variables. Marker color gives subspecies. The data has been
plotted on top with crosses.

Figure 10: The four variables shown with barcharts in each map unit. In the background,
color indicates the subspecies.
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4 How the SOM Toolbox works

In this section, the structs and functions of the Toolbox are described to give you an idea of
how the Toolbox really works. Additional details about the functions you can find from the
help sections of the functions themselves.

To understand this section, you should have some familiarity with Matlab in general:
what are structs, cells and different variable types. See functions struct, cell and cellstr.
To understand the visualization functions, you have to be familiar with things like object
handles, patch objects, etc. See help graphics. Finally, several abbreviations and standard
variable names used in the functions are listed below:

variable what it is

sD data struct
sM map struct
sTo topology struct
sTr train struct
sN normalization struct
sG grid struct
sS some SOM Toolbox struct
M map codebook
sM. codebook
D data matrix
sD.data
dim input space dimension
dlen the number of data samples
[dlen,dim] = size(sD.data)
msize map size; sidelengths of the map grid

sTo.msize
munits number of map units
munits=prod(msize),
[munits,dim] = size(sM.codebook)
* when size is given, this means any size, e.g. [dlen x *]

4.1 Structs — the backbone of the Toolbox

The Toolbox uses structs to group related information, for example regarding SOMs and
data sets, under a common variable. All structs have one field in common: the .type field
which takes one of values ’>som data’, ’>sommap’, ’som_topol’, >som norm’, ’som_train’
or ’som._grid’ indicating exactly which of the different structs it is.

For the creation of different structs there are special functions: som data_struct,
som.map_struct, som_topol_struct, som_train_struct, som norm_variable and som_grid.
Ultimately, though, all structs are created in function som_set, which is also in most cases
used to change values of the fields of the structs. Of course, the field values could be changed
by assignement, e.g. sD.data = D, but the use of som_set is encouraged since it checks the
validity of the given field values®.

5Except for the grid struct: for it the function som_grid should be used to set the values of the grid struct
since the validity of the field values it checked there.
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4.1.1 Data struct

Data struct groups all information related to one data set. The function som data_struct
is used to create a data struct from a given data matrix.

fieldname type size
.type string (’som_data’)

.name string

.data matrix [dlen x dim]
.labels cell matrix of strings [dlen x *]
.comp_names  cellstr [dim x 1]
.comp_norm cell array of struct arrays [dim x 1]
.label names cellstr [* x 1]

.type field is the struct type identifier. Do not change it.

.name field is just a string that you can use to give an identifier to the particular data
set. It is not used in the functions per se.

.data field is the data matrix, each row is one data vector and each column is one
component. The matrix can have missing values indicated by NaNs.

.labels field contains the labels for each of the vectors. The ith row .labels(i,:)
contains the labels for ith data vector .data(i,:). Note that if some vectors have more
labels than others, the others are given empty labels (??) to pad the .labels array up.

. comp_names field contains the names of the vector components. The default component
names are ’Variable#’ where # is the order number of that component (ie. default value
for variable number 2 is ’Variable2’).

.comp_norm field contains normalization information on each component. Each cell of
. comp norm is a struct array of normalization structs. If no normalizations have been defined
for the particular component, the cell is empty ([]).

.label names is similar to .comp names in that it holds names for different label vari-
ables. The field should only be used if all data vectors have the same number of labels, each
corresponding to a certain symbolic variable.
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4.1.2 Map struct

The map struct includes all information about a SOM. The function som map_struct can be
used to create a map struct. Also, the initialization functions som randinit and som 1ininit
create a default map struct based on the given data struct: in this case the map topology is
determined based on the data and the fields .comp names and .comp norm are copied from
the training data struct into the map struct.

fieldname type size
.type string (’som_map’)

.name string

.codebook matrix [munits x dim]
.topol topology struct

.labels cell matrix of strings [munits x *]
.neigh string

.mask vector [dim x 1]
.trainhist  struct array of train structs [* x 1]
.comp_names cellstr [dim x 1]
.compnorm cell array of struct arrays [dim x 1]

.type field is the struct identifier. Do not change it.

.name field is just a string that you can use to give an identifier to the particular map.
It is not used in the functions per se.

. codebook field is the codebook matrix. Each row .codebook(i,:) corresponds to the
weight vector of one map unit. The order of map units in the codebook corresponds to the
order of elements in a Matlab matrix (the linear index to matrix): the map is gone through
column by column (as opposed to SOM_PAK where the map is gone through row by row).
The codebook matrix must not contain any NaNs.

.topol field is the topology of the map: dimensions, lattice and shape of the map grid.
See topology struct for more detailed information.

.labels field contains the labels for each of the map units. The ith row .labels(i,:)
contains the labels for the ith map unit .codebook(i,:). Note that if some vectors have
more labels than others, the others are given empty labels (’?) to pad the .labels array
up.

.neigh field is the neighborhood function name: ’gaussian’, cutgauss’, ’bubble’ or
’ep’. See Figure 4.

.mask field is the BMU search mask. The greater the mask value, the bigger the com-
ponent’s effect on map organization. Setting mask value to zero removes the effect of that
component on organization.

.trainhist is a struct array of training structs, containing information on initialization
and training, e.g., what was the name of the training data and which initialization/training
algorithm was used. The first training struct contains information on initialization, the others
on actual trainings. If the map has not been initialized, .trainhist is empty ([1). See
training struct for more detailed information.

. comp_names field contains the names of the vector components. The default component
names are ’Variable#’ where # is the order number of that component (ie. default value
for variable number 2 is ’Variable2’).

.comp_norm field contains normalization information on each component. Each cell of
.comp_norm is a struct array of normalization structs. If no normalizations are performed for
the particular component, the cell is empty ([1).
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4.1.3 Topology struct

All information about the map topology is grouped into the topology struct. Topology struct
itself is the .topol field of the map struct. The function som_topol_struct creates a default
topology struct based on given data (ie. it sets .msize to a suitable value, see Section 4.2.1).

fieldname type size
.type string (’ som_topol’)

.msize vector [ x 1], x> 2
.lattice string

.shape string

.type field is the struct identifier. Do not change it.

.msize field gives the map dimensions. The map side lengths are in matrix-notation order,
ie. first y-side, then x-side and then all other dimensions (if any). The map dimensions must
be positive integers.

.lattice field gives the local topology type of the map: hexagonal (*hexa’) or rectan-
gular (*rect’). See Figure 1.

.shape field gives the global topology type of the map: a rectangular sheet (’sheet?),
cylinder (?cyl’) or toroid (’toroid’). See Figure 2.
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4.1.4 Normalization struct

Normalization struct groups the necessary details to perform or inverse a single normalization
operation for a single variable. Normalization structs are found from both map and data
structs from the .comp norm field. This field is a cell array, one cell for each variable. Each
cell is a struct array of normalization structs. Thus, normalizations are defined for each
variable separately and each variable can have as many normalization operations as desired.
The function som norm variable creates and manages the normalization structs themselves,
while functions som normalize and som denormalize manage the normalization operations
of the map and data structs. These are in the .comp norm field, which is a cell array of
normalization struct arrays.

fieldname type size
.type string (’som norm’)
.method  string

.params  varies

.status  string

.type field is the struct identifier. Do not change it.

.method field specifies the normalization operation: *var’, *range’, log’, >logistic?’,
’histD’ or *histC’. For a more detailed description of the operations, see Section 4.2.4.

.params field depends on the individual method: different methods need different kinds
of transformation parameters, which are preserved in this field.

.status field indicates the status of the normalization for the specific data set. Status
can be either uninit’, undone’ or ’done’.
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4.1.5 Training struct

Training struct gathers together information about a specific initialization or training (to
be) performed on a map. The function som train_struct creates a default training struct
based on given map, data and other arguments.

In certain situations some of the fields of the training struct are empty ([1, >’ or NaN)
either because they are obsolute (like .alpha ini in case of batch algorithm) or because
there’s no value to give (like the fields .data name and .time before training).

fieldname type size
.type string (’ som_norm?’)
.algorithm  string

.data_name string

.mask vector [dim x 1]
.neigh string

.radius_ini scalar

.radius fin scalar

.alpha_ini  scalar

.alpha_type string

.trainlen scalar

.time string

.type field is the struct identifier. Do not change it.

.algorithm field specifies which training/initialization algorithm was used. Typically, it
has one of the values *randinit’, >1lininit’, batch’ or ’seq’.

.data_name gives the name of the data used in training. This is either the .name field of
a data struct, or the variable name of a data matrix.

.mask gives the BMU-search mask used in the training.

.neigh gives the neighborhood function used in the training.

.radius_ini is the initial neighborhood function radius used in the training. Similarly
.radius_fin is the final neighborhood radius used in the training. By default radius goes
linearly from .radius ini to .radius fin, although any other progression can be used by
setting the radius values by hand.

.alpha_ini is the initial learning rate at the beginning of the training.

.alpha_type is the learning rate function type. Implemented learning rate functions are
linearly decreasing (? linear’), reciprocally decreasing (’inv’), and exponentially decreasing
(’power?). See Figure 5.

.trainlen is the training length in epochs.

.time is the date and time when the initialization or training took place.
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4.1.6 Grid struct

The som grid visualization function has so many arguments that it was necessary to put
them in a struct of their own. The function som grid is used for both constructing and
visualizing these structs. See Figures 8 and 9 for examples of these visualizations.

Notice that some fields have two or even more alternate value types. Several of the
fields below have values of type “RGB triple” coding colors in RGB format. The triple is
a vector of size [1 x 3] with values between [0, 1] indicating the presence of red, green
and blue components in the color. Alternatively, the color may typically be given as a color
specification string (see plot).

fieldname type size
.type string (’som_grid’)
.lattice string

(sparse) matrix [munits x munits]
.shape string
.msize vector [1x 2]
.coord matrix [munits x 2] or [munits x 3]
.line string
.linecolor string

RGB triple

(sparse) matrix [munits x munits x 3]
.linewidth scalar

(sparse) matrix [munits x munits]
.marker string

char/cell array [munits x 1]
.markersize  scalar

vector [munits x 1]
.markercolor string

RGB triple

RGB triples [munits x 3]
.surf empty

vector [munits x 1]

RGB triples [munits x 3]
.label empty

char array [munits x 1]

cell array [munits x *]
.labelcolor  string

RGB triple
.labelsize scalar

.type field is the struct identifier. Do not change it.

.lattice gives the local topology of the map: which map units are connected to which.
If a string, it is either *rect’ or ’hexa’ and has then same meaning as the .lattice field
of the topology struct. In matrix form, the element (i, j) is 1 if units ¢ and j are connected
to each other, otherwise 0.

.shape field gives the global topology type of the map: a rectangular sheet (’sheet?),
cylinder (*cyl?) or toroid (’toroid’). Together with .msize field and .lattice field (with
value ’rect’ or ’hexa’) it defines which map units are connected to each other, and what
are the default coordinates of map units.
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.msize field gives the map dimensions. The map side lengths are in matrix-notation
order, ie. first y-side, then x-side and then all other dimensions (if any). Of course, the map
dimensions must be positive integers.

.coord field gives coordinates for map units. The coordinates may be either 2- or 3-
dimensional.

.line field gives the linetype used for the connecting lines, e.g. >-?, see plot. A special
value is ’none’ which leaves the lines out.

.linecolor field gives the color of the lines. By default, the same color is used for all
lines. However, if the field is a matrix or cell array of RGB triples, each connection can have
its own color. The colors are positioned in the matrix as in the matrix form of .lattice
field.

.linewidth field gives the width of the lines. Also these can be individually defined for
each connection.

.marker field gives the marker type used for map units. It can be any of the standard
markers (see plot function) or ’none’ in which case the marker is not shown. Each map
unit can have an individual marker by using a cell or char array of the markers as the value
for this field.

.markersize field gives marker size. This can be individually defined for each map unit.

.markercolor field gives the color of markers. Each map unit can have its own color.

.surf field is empty by default. If given a value, a surface is drawn in addition to the
map grid. See function surf. If field value is a vector, indexed colors are used in the surface.
If it is a matrix, the matrix rows should define RGB colors for each of the map units.

.label field is empty by default. If given a value, the strings in the field are plotted in
addition to the map grid. The strings can be given as a char or cell array. With cell array,
multiple strings per map unit can be given.

.labelcolor field gives the color of the labels. All labels have the same color.

.labelsize field gives the font size. All labels have the same size.
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4.2 Functions — the meat

On the skeleton formed by the structs, the functions provide the actual meat of the Toolbox.
Below, a short intro to each function is given. For more information, see the help sections
and the code in the functions themselves.

In many functions optional arguments are given as argument ID, argument value pairs
(argID, value), for example ’msize’,[10 12] to specify the map grid size. This way the
optional arguments may be given in any order, and any of them can left out (to be given
a default value). Of course, this makes function calls slightly longer, but usually the added
flexibility more than makes up for that. Additionally, many values, such as strings ’hexa’
or ’toroid’ and (usually) structs are unambiguous: they can only mean one thing within
the context of the function. In such cases, the argument ID can be omitted.

In function descriptions below, arguments in brackets [] are optional.

4.2.1 Creating and managing structs

The functions som set, som_info, som map_struct, som data struct, som topol_struct
and som train struct are used to create, set values of and display the contents of map,
data, topology and train structs. The four latter functions should be used to create the
structs as they provide default values for all fields of the structs. The function som_set
should be used to set the values of their fields afterwards.

The functions to deal with normalization structs are in Section 4.2.4. The function to
deal with grid struct (ie. som_grid) is presented in Section 4.2.7.

For compatibility with SOM Toolbox version 1, the functions som_vs1to2 and som_vs2tol
convert data structs from version 1 to version 2 and the other way around.

som set(sS, [field, contents, ...]) creates the structs and, except for the grid struct,
checks them to ensure that any values given to the fields of those structs are correct. You
can also use it to check the validity of the structs. In general, though, structs should be
created using functions like som_data_struct.

sD = som_set(’som_data’); % create data struct
sTo = som_set(sTo,’msize’,[10 20]); % set value of a field
som_set (sM) ; % check validity of sM

som_info(sS,[level]) displays information about the Toolbox struct(s) in a user-friendly
manner. The required argument is naturally the struct itself, a struct array or a cell array of
structs. The level of detail displayed can be varied with the optional second argument. The
number of different levels varies between 1-4.

som_info(sD,4); % display complete info on the data struct

som _map_struct(dim, [[argID,] value, ...]) creates a map struct, described in the pre-
vious section. The only required argument is the map dimension. Most of the other fields of
the map struct can be given values using optional arguments of the function. If they are left
unspecified, default values are used.

% create map struct for 10-dimensional data

sM = som_map_struct(10);

% create map struct and specify the mask to use
sM = som_map_struct(4,’mask’,[1 1 0 1]);
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som _data_struct(D, [argID, value, ...]) creates a data struct described in the previous
section. The required argument is the data matrix (the .data field). Most of the other fields
of the data struct can be given values using optional arguments of the function. If they are
left unspecified, default values are used.

% create data struct from the data matrix

sD = som_data_struct(D);

% create data struct and specify component names to use
sD = som_data_struct(D,’comp_names’,{’1’,72°,°3°});

som _topol struct([[argID,] value, ...]) is used to create a topology struct. It tries to
give sensible values for the map topology (ie. map size). Unless otherwise specified, a 2-
dimensional ’sheet’ map with ’hexa’ lattice is used. If data matrix D or the number of
data samples dlen is given, the function tries to determine a sensible map grid size. For
the total number of map units, a heuristic formula of m = 54/n is used. The ratio of the
sidelengths is based on the ratio between two biggest eigenvalues of the covariance matrix
of the given data, and the actual sidelengths are then set so that their product is as close
to the desired munits as possible. The desired number of map units can also be given as an
argument.

% create topology struct

sTo = som_topol_struct(’msize’,[10 10],’rect’);

% select default topology based on the data

sTo = som_topol_struct(’data’,D);

% as above, but a preferred number of map units is given
sTo = som_topol_struct(’data’,D, ’munits’,200);

som _train_struct([[argID,] value, ...]) is used to set or fill out sensible values for the
fields of a training struct: the training parameters. Often the parameters depend on the
properties of the map and the training data. These are given as optional arguments to the
function. Also a partially filled training struct can be given, in which case only its empty
fields (field value is [] or ’’ or NaN) are supplimented with default values.

Parameter condition default value
.algorithm not initialized som_lininit
initialized som _batchtrain
.alpha_type always ’inv’
.neigh always ’gaussian’
.alpha_ini  finetuning phase 0.05
otherwise 0.5
.radius_ini has been initialized randomly = max(msize)/4
has been initialized linearly max(msize) /4
has been trained orT
.radius fin rough training phase max(1,0¢/4)
otherwise 1
.trainlen rough training phase 10m/n
finetuning phase 40m/n
otherwise 50m/n

som_train_struct(sM,sD);

sTr
sTr = som_train_struct(sTr);
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som _vs1to2(sS) allows conversion of Toolbox version 1 structs to Toolbox version 2. There
are quite a lot of changes between the versions, especially in the map struct, and this function
makes it easy to update the structs, see Appendix A.

sM2 = som_vs1to2(sM1); % convert version 1 map struct to version 2

som_vs2tol(sS) allows conversion of structs from Toolbox version 2 to Toolbox version 1.
There are quite a lot of changes between the versions, especially in the map struct. This func-
tion makes it possible to use the old functions with new structs, see Appendix A. Note that
part of the information is lost in the conversion. Especially, training history is lost, and the
normalization is, except in the simplest cases (like all have ’range’ or ’var’ normalization)
also lost.

sM1 = som_vs2tol(sM2); /% convert version 2 map struct to version 1

4.2.2 Map grid and neighborhood functions

Functions som_unit_coords, som unit_dists, som unit neighs, som neighborhood and
som_connection are very fundamental functions that define the topology of the map grid.
They are primarly used by the training and visualization functions. A beginning user of the
Toolbox has little use for them, but an advanced user making new analysis, visualization or
training tools will probably find them useful.

In the functions below, the required argument topol can be either a map struct, a
topology struct or a vector giving the map grid size (sTo.msize). In the last case, also the
lattice and shape should be specified.

som_unit_coords(topol, [lattice], [shape]) calculates the map grid coordinates of the
units of a SOM based on the given topology. The coordinates are such that they can be
used to position map units in space. In case of ’sheet’ shape they can be (and are) used
to measure interunit distances. For this reason, in case of *hexa’ lattice, the x-coordinates
of every other row are shifted by +0.5, and the y-coordinates are multiplied by +/0.75.
This is done to make distances of a unit to all its six neighbors equal. See also function
som_vis_coords.

Uc = som_unit_coords(sM); % map unit coordinates on the grid

som _unit_dists(topol,[lattice],[shape]) calculates the distances between the units of a
SOM with given topology. In case of ’sheet’ shape, the distances are simply calculated
as Euclidian distance between map unit coordinates given by som_unit_coords. In case
of ’cyl’ and ’toroid’ shapes, the distances are taken as minimum of several distances
measured when the map grid is shifted in different positions, see Figure 11. This function is
utilized by the training algorithms when they need to evaluate the neighborhood function.

Ud = som_unit_dists(sM); % distances between map units

som_unit_neighs(topol,[lattice],[shape]) returns a sparse connection matrix indicating
for each map unit which map units are its immediate neighbors (1-neighborhood). The matrix
has value 1 for the neighbors and 0 for all others (including the unit itself).

Nel = som_unit_neighs(sM); % neighboring map units
find(Ne1(1,:)) % find neighbors of map unit 1
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Figure 11: How distances between map units 1 and 4 are measured in case of different map
shapes: ’sheet’ on the left, >cyl’ in the middle and *toroid’ on the right. In the two latter
cases, the coordinates of map units are first calculated as in the case of *sheet’ shape. Then
the map grid is shifted to different positions and the minimum of these distances is taken.

som _neighborhood(Nel,[n]) calculates the n-neighborhoods upto given maximum n for
each map unit, see Figure 1. The first argument is the output of som unit neighs function:
a connection matrix giving the units in 1-neighborhood of each unit. The neighborhoods are
defined as shortest-path distances between map units. Due to recursive calculation procedure,
the function is pretty slow especially with large n.

% neighbors upto 3-neighborhood

Ne = som_neighborhood(Nel,3);

% find map units within 3-neighborhood of map unit 1
find(Ne(1,:)<=3)

som _connection(topol) returns a (sparse) matrix indicating which map units are con-
nected to which. This function is used by the visualization functions. Does basically the
same as som unit neighs, but faster. This is because the algorithm to derive the connec-
tions is based on indices rather than on calculation of distances between all map units. The
connections are defined only in the upper triangular part to save some memory.

Nel = som_connection(sM); % neighboring map units

som_vis_coords(lattice,msize) returns the coordinates of the map units as used in the
visualizations. This function is used by the visualization functions. It is similar to
som_unit_coords except that it is implemented more efficiently and the coordinates are
slightly different (and that it only supports ’sheet’ shape).

For ’rect’ lattice, the coordinates of the map units and their subscript indices on the
map grid are the same®. In ’hexa’ lattice the z-coordinate of the nodes on even numbered
rows (ie. y-coordinate is even) is incremented by 0.5. The hexagons are thus not unilateral
but “a bit too tall”. In visualization this is taken care of by changing the axis ratios to
compensate for it. The motivation for using these coordinates instead of the proper ones
(as calculated in som unit_coords) is purely simplicity. For example, if you want to plot
something on top of the third unit of the first column, the coordinates are (1,3) instead of
(0,1.7321).

SExcept that they are swapped: subscript indeces (1,2) correspond to coordinates (2,1). This swapping is
simply due to the change in notation: in matrix subscript indices the vertical position is given first and then
the horizontal position, and in coordinate notation the other way around.
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Co = som_vis_coords(’hexa’,[10 6]); % unit coordinates in visualization

4.2.3 Initialization and training functions

The function som_make is the basic function to use when creating and training a SOM. It is
a convenient tool that combines the tasks of creating, initializing and training a SOM in two
phases — rough training and finetuning — based on given training data. Using som_make
saves you a lot of typing.

Apart from collecting training parameters and managing the order of operations, som make
itself does little. For initalization and training it actually calls functions som lininit,
som randinit, som seqtrain, som batchtrain and som sompaktrain, which do the actual
work. Of course, if you want to have tighter control over the training procedure, you can use
these functions directly.

Each of the five initialization and training functions adds an entry to the .trainhist
field of the map struct so that it is possible to check out later what has been done to the
map. Saving this information is important because the default training parameters, provided
by som_train struct, depend on previous trainings (or lack of them).

som_make(D, [[argID,] value, ...]) creates, initilizes and trains a SOM from the given
data using default parameters. Default size and shape come from som_topol_struct function
and default training parameters from som train struct function. The optional arguments
are used to modify these default values. The training is accomplished in two phases: >rough’
and ’finetune’ phase.

% create and train SOM with default parameters

sM = som_make(sD);

% create and train SOM, the desired number of map units is about 200
sM = som_make(sD, ’munits’,200) ;

som lininit(D,[[argID,] value, ...]) (creates and) initializes a SOM linearly. The initial-
ization is made by first calculating the eigenvalues and eigenvectors of the given data. Then,
the map weight vectors are initialized along the mdim greatest eigenvectors of the covariance
matrix of the training data, where mdim is the dimension of the map grid, typically 2.

sM = som_lininit(sD); % create and initialize a map
sM = som_lininit(sD,’msize’,[4 9]); % the same, but the map size is given
sM = som_lininit(sD,sM); % initialize the given map

som _randinit(D,[[argID,] value, ...]) initializes a SOM with random values. For each
component z;, the values of map weight vectors are uniformly distributed in the range of
[min(a;), max(z;)]-

sM = som_randinit(sD); % create and initialize a map
sM = som_randinit(sD,’msize’,[4 9]); ) the same, but the map size is given
sM = som_randinit(sD,sM); % initialize the given map

som_batchtrain(sM, D, [[argID,] value, ...]) trains the SOM with the given data using
the batch training algorithm. Using optional arguments the training parameters can be
specified, otherwise default values are used (see function som_train struct).

% train SOM with default parameters

sM = som_batchtrain(sM,sD);

% train SOM so that neighborhood radius goes from 4 to 1
sM = som_batchtrain(sM,sD, ’radius’,[4 1]);
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som _seqtrain(sM, D, [[argID,] value, ...]) trains the SOM with the given data using
the sequential training algorithm. Using optional arguments the training parameters can be
specified, otherwise default values are used (see function som_train_struct).

% train SOM with default parameters

sM = som_seqtrain(sM,sD);

% train SOM so that neighborhood radius goes from 4 to 1
sM = som_seqtrain(sM,sD, ’radius’,[4 1]);

som_sompaktrain(sM, D, [[argID,] value, ...]) trains the SOM with the given data
using the SOM_PAK implementation of the sequential training algorithm. This function
simply writes data and initial codebook into a temporary file, calls the program vsom of the
SOM_PAK package and reads the trained map. As with som_batchtrain and som_seqtrain,
default training parameters from som train_struct are used unless they are specified using
the optional arguments. Notice that the program vsom must be in the search path in the
shell. Alternatively, the path can be put to global variable SOM_PAKDIR. See also Section 4.3.7.

% train SOM with default parameters

sM = som_sompaktrain(sM,sD) ;

% train SOM so that neighborhood radius goes from 4 to 1
sM = som_sompaktrain(sM,sD, ’radius’,[4 1]);

4.2.4 Normalization functions

Normalizing the variables is important so that none of them has an overwhelming influence
on the training result. Normalization is performed on a data set or data struct. When a SOM
is trained, the normalization information is copied to the map struct. Saving this information
is essential in order to be able to denormalize the values, or to repeat the normalization to
other data sets.

The functions that manage normalization operations of map and data structs are
somnormalize and som_denormalize. Both functions use som_norm_variable to do the
actual normalizations. The basic user should have little need to use som norm variable
directly, unless there is really a need to denormalize or normalize a single variable.

som _normalize(sS,[method],[comps]) is used to (initialize and) add, redo and apply
normalizations on data/map structs and data sets. The performed normalizations are added
to the .comp norm fields of data/map struct. The function actually uses function

som norm variable to handle the normalization operations, and only handles the data struct
specific stuff itself.

% normalize all variables of data

sD = som_normalize(sD,’log’);

% normalize only variables 1 and 3

sD = som_normalize(sD,’log’,[1,3]);

% redo normalizations after possible denormalizations

sD = som_normalize(sD);

% repeat the normalization in sD on a new data matrix Dn
Dn = som_normalize(Dn,sD);

som_denormalize(sS,[[argID,] value, ...]) is used to undo normalizations. For a data
or map struct, all normalizations in the .comp norm field are undone and, thus, the values
in the original data context are returned. Note that the operations are only undone —
not removed — unless you give the ’remove’ argument. The function actually uses function
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som_norm_variable to handle the normalization operations, and only handles the data struct
specific stuff itself.

sD = som_denormalize(sD); % denormalize all variables
sD = som_denormalize(sD,[1,3]); % denormalize only variables 1 and 3
D = som_denormalize(D,sD); % denormalize data matrix D

sD = som_denormalize(sD,’remove’); % remove normalizations

som _norm_variable(x, method, operation) is used to initialize, apply and undo nor-
malizations on scalar variables. It is the low-level function that upper-level functions
somnormalize and som_denormalize utilize to actually do or undo the normalizations.

%

initialize a normalization

[dummy,sN] = som_norm_variable(x1,’log’,’init’);

%

initialize and do normalization

[x1new,sN] = som_norm_variable(x1,’log’,’do’);

%

repeat the same normalization to x2

x2new = som_norm_variable(x2,sN,’do’);

The five implemented normalization methods are:

e ’var’ normalizes the variance of the variable to unity, and its mean to zero. This is a
simple linear transformation: ' = (z — £)/0,, where Z is the mean of the variable =
and o, is its standard deviation. The transformation parameters in .params field are
the mean and standard deviation of the variable.

e ’range’ scales the variable values between [0,1] with a simple linear transformation:
z' = (z—min(z))/(max(z) —min(z)). The transformation parameters are the minimum
value and range (max(z) — min(x)) of the variable. Note that if the transformation is
applied to new data with values outside the original minima and maxima, the trans-
formed values will be also outside the [0,1] range.

e ’log’ is a logarithmic transformation. This is useful if the values of the variable are
exponentially distributed with a lot of small values, and increasingly smaller number
of big values. This transformation is a good way to get more resolution to the low
end of that vector component. What is actually done is a non-linear transformation:
z' = In(z — min(z) + 1), where In is the natural logarithm. The resulting values will
be non-negative. Beware, though: if the transformation is applied to a new data set
with values below min(z) —1, the results will be complex numbers. The transformation
parameter is the minimum value min(z), so if you know its true value beforehand, you
might want to set the parameter by hand.

e ’logistic’ or softmax normalization. This normalization ensures that all values, from
— inf to inf are within the range [0,1]. The transformation is more or less linear in the
middle range (around mean value), and has a smooth nonlinearity at both ends which
ensures that all values are within the range. The data is first scaled as in variance
normalization: & = (z — &)/0,. Then the logistic function is applied: ' = 1/(1+e~%).
The transformation parameters are the mean value Z and standard deviation o, of the
original values z, just like in the ’var’ normalization.

e ’histD’ is discrete histogram equalization. Orders the values and replaces each value
by its ordinal number. Finally, scales the values linearly so that they are between [0,1].
Useful for both discrete and continuous variables, but as the transformation parameters
are all unique values of the initialization data set, it may use considerable amounts of
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memory. If the variable can get more than a few values (say, 20), it might be better to
use *histC’ method below. Another important note is that this method is not exactly
revertible if it is applied to values which are not part of the original value set.

e ’histC’ is continuous histogram equalization. Actually, this is a partially linear trans-
formation which tries to do something like histogram equalization. The value range is
divided to a number of bins such that the number of values in each bin is (almost)
the same. The values are transformed linearly in each bin. For example, values in bin
number 3 are scaled between [3,4]. Finally, all values are linearly scaled between [0,1].
The number of bins is the square root of the number of unique values in the initializa-
tion set, rounded up. The resulting histogram equalization is not as good as the one
that *histD’ makes, but the benefit is that it is exactly revertible, even outside the
original value range.

4.2.5 File read and write functions

The functions som read data, som write data, som read _cod and som write_cod are pri-
marily provided for compatibility with SOM_PAK. However, especially som read data has
more use, since it is relatively easy to export data from other programs, for example MS-
Excel, to an ASCII format that som_read_data can read.

In general, if you need to save your data or maps from Matlab workspace, use Matlab’s
basic functions save and load.

som read_data(filename, [dim], [missing]) reads data from an ASCII file. The file
must be in SOM_PAK format (with a few exceptions, see Appendix B).

% read ASCII data file

sD = som_read_data(’process.data’);

% give also the vector dimension

sD = som_read_data(’process.data’,10);
% give missing value identifier (’x’)
sD = som_read_data(’process.data’,’x’);

som_write_data(data,filename,[missing]) writes data into ASCII data file in SOM_PAK
format (see Appendix B). Since the format does not support information on normalizations,
that information is lost, as well as the data name. The component names are written on
a comment line which begins with *#n ’ and label names on a comment line beginning
with *#1 ’. Any spaces (> ’) in the component names are replaced with underscores (> _?).
This function is only offered for compatibility with SOM_PAK. In general, when saving data
in files, use save filename.mat sD. This is faster and retains all information of the data
struct.

% write ASCII data file in SOM_PAK formta
som_write_data(sD, ’process.data’);

% give missing value identifier (’x’)
som_write_data(sD, ’process.data’,’x’);

som _read_cod(filename) reads a SOM codebook from an ASCII file. The file must be in
SOM_PAK format (with a few exceptions, see Appendix B).

sD = som_read_cod(’process.cod’); % read ASCII SOM (codebook) file
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som_write_cod(sM,filename) writes a SOM codebook into an ASCII file in SOM_PAK
format (see Appendix B). Since the format does not support information on normalizations,
training history or mask, that information is lost, as well as the map name. Shapes other
than ’sheet’ and neighborhoods other than ’bubble’ and ’gaussian’ as well as higher
than 2-dimensional map grids are not supported at all. The component names are written
on a comment line which begins with *#n ’. Any spaces (> ’) in the component names
are replaced with underscores (?_?). This function is only offered for compatibility with
SOM_PAK. In general, when saving maps in files, use save filename.mat sM. This is faster
and retains all information of the map struct.

% write ASCII SOM (codebook) file in SOM_PAK format
som_write_cod(sM, ’process.cod’);

4.2.6 Label functions

Handling labels is not quite as straightforward as handling the numerical matrices is. For
this reason, a special function som_label has been made to easily insert and remove labels
from map and data structs. The function som autolabel is a more sophisticated tool using
which labels from one data or map struct can be transferred to another data or map struct.

som _label(sTo, mode, inds, [labels]) can be used to give and remove labels in map and
data structs. Of course the same operation could be done by hand, but this function offers
an alternative and hopefully slightly user-friendlier way to do it.

% give units 1 and 10 label ’x’

sM = som_label(sM, ’add’, [1; 10], ’x’);

% clear all labels from the data

sD = som_label(sD, ’clear’, ’all’);

% prune empty labels out of all map units

sM = som_label(sM, ’prune’, ’all’);

% replace existing labels in data vectors 1-10 with ’topten’
sD = som_label(sD, ’replace’, [1:10]’, ’topten’);
% the same done with two function calls

sD = som_label(sD, ’clear’, [1:10]°);

sD = som_label(sD, ’add’, [1:10]’, ’topten’);

som_autolabel(sTo, sFrom, [mode], [inds]) automatically labels given map or data
struct based on an already labelled data or map struct. Basically, for each vector in sFrom
the best match is found from among the vectors in sTo, and the labels in sFrom are added
to the corresponding vector in sTo. The actual labels to add are selected based on the mode:

’add’ all labels from sFrom are added to sTo — even if
there would be multiple instances of the same label
’add1’ as ’add’, but only one instance of each label is kept
’freq’ only one instance of each label is kept and ’ (#) >, where
# is the frequency of the label, is added to the end of
the label. Labels are ordered according to frequency.
’vote’ only the label with most instances is added. In case of
a draw, the first encountered label is used.

Note that these operations do not effect the old labels of sTo: they are left as they were.

% label map based on the data using ’add’ mode
sM = som_autolabel(sM,sD);
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% label data based on map

sD = som_autolabel(sD,sM);

% label map using the 5th column of labels in the data and ’vote’ mode
sM = som_autolabel (sM,sD, ’vote’,[5]);

4.2.7 Visualization functions
The visualization functions in the Toolbox can basically be divided to three groups:

e The som_show family (som_show, som_show_add, som_show_clear and som_recolorbar
and some functions in the contributed code) which are high-level tools for making cell-
style visualizations. The som_show function sets several tags in the figures, and the
other functions utilize heavily these tags. These functions are very SOM-specific.

o Generic functions: som_cplane, som_barplane, som_pieplane,som plotplane and
som_grid. These functions can be easily used for purposes other than just visualizing a
SOM. For example, the function som_pieplane can be used for visualizing n different
sized pie charts in arbitrary locations with any data.

e Low-level “internal” subfunctions used by the functions above.

All functions use the same coordinate system for the positions of map units (unless the
coordinates are explicitly set as is possible in the case of generic functions). The coordinate
system insures that if two visualizations of the map of same size are drawn on the same
figure they will match.

som_barplane(’hexa’, [10 5] ,rand(50,4));
hold on;

som_cplane(’hexa’,[10 5], ’none’);
som_grid(’hexa’, [10 5])

For example, som_grid can be used for plotting labels on top a visualization made using
som_cplane. The coordinates are specified by function som vis_coords. Most visualizations
have been implemented so that after processing the input — data, coordinates, colors and
other parameters — the visualization can be executed with a single patch command. This
makes drawing for example multiple pie charts, bar charts or signal charts much faster since
the overhead created by loops or axis generation is avoided.

som _show (sM, [[argID,] value, ...]) is the basic visualization function of the Toolbox. It
is used to show component planes, U-matrices as well as empty planes and fixed-color planes.
It has several auxiliary functions (e.g. som_show_add, som_show_clear and som_recolorbar
listed below) which utilize the tags in the figure set by the som_show function. The function
has a number of arguments which can be used to control type and order of the different
visualizations and additional information printed on the figure. For an example see Figure 7.

% basic usage
som_show(sM) ;
% different planes
som_show(sM, comp’,[1 3 2 6],’umat’,{[1 2],°1,2 only’},...
’empty’, ’Empty plane’,’color’,rand(prod(sM.topol.msize),3));
% additional options
som_show(sM, size’,0.8, ’bar’, ’horiz’,’edge’, ’off’,’footnote’,’’);
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som_show_add(mode, D, [[argID,] value, ...]) adds hits, labels and trajectories on a
figure created with som_show. The first argument defines what kind of markers to add and
the second arguments gives the markers or their places. The optional arguments are used
to further modify the markers, for example their color, size and type. There are four basic
modes: ’label’ to display labels, *hit’ to display hit histograms, *traj’ to display line
trajectories and ’comet’ to display comet-like trajectories.

% basic usage

som_show_add(’label’,sM);

som_show_add(’hit’,som_hits(sM,sD));

som_show_add(’traj’,som_bmus(sM,sD));

som_show_add (’comet’,som_bmus (sM,sD));

% additional options

som_show_add(’comet’,som_bmus(sM,sD), ’markersize’, [15 10],...
’markercolor’,’w’,’edgecolor’,’k’,’subplot’,4);

som_show_clear([type],[p]) clears hits, labels or trajectories created by som_show_add.
The type of markers to remove and the subplots from which to remove them can be specified
with the optional arguments.

som_show_clear; % clear all markers

som_recolorbar([p], [ticks], [scaling], [labels]) refreshes the colorbars in the figure
created by som_show. Refreshing is necessary if you have changed the colormap (see colormap
command). Using optional arguments, the properties of the colormaps — tick placements,
tick labels and whether normalized or denormalized values are shown — can be controlled.

% refresh colorbar

colormap(jet) ;

som_recolorbar;

% set colorbar ticks

colormap(jet(3));

som_recolorbar(2, ’border’, ’denormalized’,{{’min’ ’medl’ ’med2’ °’max’}});

som _cplane(lattice, msize, color, [s], [pos]) is the basic building block of any sheet
shaped component plane or U-matrix style visuzalization. It draws the unit edges and sets
colors for units. The unit markers may be located according to the standard ’hexa’ or
’rect’ lattice topologies. The units may also be given an arbitrary form instead of hexagon
or rectagle and/or arbitrary positions (except in U-matrix visualization). Unit coloring may
be done using fixed RGB colors or indexed colors or the units may be drawn as transparent.
Se Figures 7 and 10.

% basic component plane
som_cplane(sM.topol.lattice,sM.topol.msize,sM.codebook(:,1));
% U-matrix

u=som_umat (sM) ;

h=som_cplane([sM.topol.lattice ’U’], sM.topol.msize, u(:));
% turn off edgecolor

set (h, ’edgecolor’, ’none’) ;

% show value with size instead of the color

m = sM.codebook(:,1); m = m—min(m); m = m/max(m) ;
som_cplane(sM.topol.lattice,sM.topol.msize,’w’,sqrt(m));
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som _grid(sS,[[argID,] value, ...]) is the basic function for showing mesh style visualiza-
tions. The units may be drawn using different markers and colors, in different sizes and in
different locations in 2D or 3D. However, the topological neighborhood is limited to be 2-
dimensional. The connections between these units may be drawn using lines having different
thicknesses and colors. By default, the connections are defined in function som_connection,
but they may also be defined by the user. Labels may be plotted on the units. It is possible
also to draw a surface between the units. The surface coloring is either indexed (one value
per unit) or fixed RGB (a [1 x 3] RGB triple per unit). This function is very versatile. See
Figures 8 and 9 for examples of these visualizations.

% plot SOM map grid

som_grid(sM) ;

% plot SOM map grid in alternate coordinates

som_grid(sM, ’coord’,sM.codebook(:,[1 2 3]));

% plot one component plane as a surface

S = som_grid(sM, ’surf’,sM.codebook(:,4), ’marker’,’none’,’line’, ’none’);
% change the coordinates

S = som_grid(S,’coord’,sM.codebook(:,[1 2 31));

% plot labels on top of som_cplane visualization
som_cplane(sM.topol.lattice,sM.topol.msize, ’none’); hold on
som_grid(sM, ’Label’,sM.labels, ’Labelcolor’,’b’);

som _barplane(lattice, msize, data, [color], [scaling], [gap], [pos]) can be used to
show a bar chart in the place of each map unit. It can be used, for example, to show the
prototype vectors. The appearence of the bar chart can be modified: the color of the bar for
each variable, the gap between bars and the scaling of maximum and minumum values may
be set. There are three different ways in which the bars in each unit can be scaled:

e ’nomne’: the bars representing variables in each unit are drawn using the data without
any scaling: the upper edge of the unit (in ’rect’ lattice) corresponds to value +0.625
and lower edge to value -0.625. Values that exceed these limits will cause the bars to
range outside the unit limits.

e ’varwise’: each variable is first scaled so that its maximum absolute value is one. The
bars in each unit show now the value of each variable in that unit in relation to the
overall maximum value of that variable.

e ’unitwise’: variable values are scaled in each unit separately so that the heights of
the bars show their magnitude relative to each other. This is sensible if the variables
are directly comparable with each other.

The base line (zero level) in each unit is set according to the data (codebook) values. If the
variable has a negative value the bar is drawn downward from this reference level and for
positive values the bars will be drawn upward, respectively. The location of the zero level
depends on the varible values in the unit and on the scaling mode. For example, if all values
are negative, the line will be on the upper edge of the unit and if all values are positive it
will be on the lower edge.

% basic usage
som_barplane(sM.topol.lattice,sM.topol.msize,sM.codebook) ;

% more options

som_barplane(’hexa’,[5 5],randn(25,10),jet(10), ’unitwise’,0);

% change the coordinates of map units

som_barplane(’none’ ,rand(25,2)*10,randn(25,10) , jet (10) , unitwise’,0) ;
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som _pieplane(lattice, msize, data, [color], [s], [pos]) can be used to show a pie chart
in the place of each map unit. This is very similar to som barplane except that the optional
arguments are slightly different. Argument s can be used to give individual size to each pie
chart. An additional constraint is that negative values are not allowed in the data.

% basic usage
som_pieplane(sM.topol.lattice,sM.topol.msize,sM.codebook) ;
% more options

som_pieplane(’hexa’,[5 5],rand(25,5),jet(5),rand(25,1));

% change the coordinates of map units
som_pieplane(’rect’,rand(25,2)*10,rand(25,5));

som _plotplane(lattice, msize, data, [color], [scaling], [pos]) can be used to show a
plot chart in the place of each map unit. This is also very similar to som_barplane.

% basic usage
som_plotplane(sM.topol.lattice,sM.topol.msize,sM.codebook) ;

% more options

som_plotplane (’hexa’, [6 5],rand(25,5),jet(25));

% worms on vacation!
h=som_plotplane(’rect’,rand(40,2)*10,randn(40,6),[0.8 0.4 0.31);
set (h,’Linewidth’,5)

In addition, there are some very low-level functions used by the visualization functions.
To indicate this, the command names start with vis_ instead of the usual som_. There is no
reason why the user could not use these if he/she finds them useful, but they are often doing
something very specific and their documentation is not as detailed as that of the user level
functions. The functions are:

e vis_patch: gives the patch vertex coordinates for creating rectangles and hexagons in
the visualizations.

¢ vis_som_show_data: is an integral part of all functions that are related to som_show.
It reads the information stored to the UserData field of the figure, and checks if the
figure really is a valid som_show figure. It also returns the handles to the subplots in
the original order.

e vis_valuetype: This function makes type checks in visualization routines. It serves
two purposes. The first purpose is to make validity checks for error handling, so that
more informative error messages can be returned to the user than the reports of the
syntax failures somewhere in the code during running. The second purpose is to help
programming the overloaded functions in visualizations (different operations based on
the input argument type).

¢ vis_PlaneAxisProperties: Subfunction for visualizations (som_cplane, som barplane,
som plotplane,som pieplane and som grid). Sets the axis scalings and other axis
properties that are common for these functions.

e vis_footnote: sets the movable text to the som_show figure.

o vis_footnoteButtonDownFcn: a subfunction for vis_footnote.
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4.2.8 Miscalleous functions

som_bmus(sMap, sData, [which], [mask]) returns the indeces and corresponding quan-
tization errors (Euclidian distances) of the vectors in the first argument, that were closest to
(best matched) the vectors in the second argument. Also other than best match, for example
second and third best match, can be returned. Note that the mask, if given or present in
either of the given structs, is used to weight the distances, and thus the quantization errors
are actually weighted distances. This function is typically used to find BMUs from a map
for the vectors in a given data set.

% find the BMU in sM for each vector in sD

bmus = som_bmus(sM,sD);

% find the second- and third-best matching units in sM for D,
% as well as the corresponding quantization errors
[bmus,qerrs] = som_bmus(sM,D,[2,3]);

% find BMUs from sM for vectors in D, using the given mask
bmus = som_bmus(sM,D,1,[1 1 0 0 1]);

som_hits(sM, sD, [mode]) calculates the number of “hits” in each map unit, ie. a data
histogram. The function uses som_bmus to find the BMUs, and calculates the number of times
each map unit was the BMU. Also fuzzy responses can be calculated.

% data histogram

hits = som_hits(sM,D);

% fuzzy response of data sample
resp = som_hits(sM,D(1,:), fuzzy’);

som _quality(sM, D) provides two measures for the quality of the map. The measures
are data-dependent: they measure the map in terms of the given data (typically the training
data). The function returns two measures: average quantization error and topographic error.

e Average quantization error is simply the average distance (weighted with the mask)
from each data vector to its BMU.

e Topographic error gives the percentage of data vectors for which the BMU and the
second-BMU are not neighboring map units [11].

[qe,te]l = som_quality(sM,sD); % error measures for sM, given sD

som_umat(sMap, [[argID,] value, ...]) returns the unified distance matrix (U-matrix)
of the given SOM. The U-matrix is an important visualization method [20]. U-matrix gives
the distances between neighboring map units. For example, in the case of [1 x 5] -sized map
[m;, my, m3, my, m;], the U-matrix is a [1 x 9] vector [u1,u12, Uz, Uas, Us, Us4, Ud, Uss, Us),
where u;; = ||lm; — my|| is the distance between two neighboring map units and w; is
a unit-specific value, for example mean distance from that unit to all neighboring units:
u3 = (u23 + ug4)/2. The SOM grid can be at most 2-dimensional.

% typically, the function is used simply like this

U = som_umat (sM);

% below, the unit-specific value is ’max’, and a mask is specified
U = som_umat(sM,’max’,’mask’,[1 1 0 1]);

% to get unit-specific values only

Um = U(1:2:end,1:2:end);
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4.3 Contributed functions

The contributed functions differ from the basic SOM Toolbox functions in that they are not
copyrighted by the SOM Toolbox team, and are typically less well documented than the
basic package. Although the contributed functions are not essential, many of them are very
handy in practice.

The list below is by no means conclusive as new functions will be added from time to
time. You are also welcome to make contributions to the package. Just send your functions
and/or questions about this to the email address given at the beginning of this report, or
visit our website and read the guidelines there.

4.3.1 Demos

It is a good idea to start using the Toolbox by going through these demos. They introduce
the SOM algorithm and the SOM Toolbox to you, and you can refer to them later to see
how some utterly cool visualization was done.

e som_demol: SOM Toolbox demo 1 — basic properties
¢ som_demo2: SOM Toolbox demo 2 — basic usage
e som_demo3: SOM Toolbox demo 3 — visualization

e som_demo4: SOM Toolbox demo 4 — data analysis

4.3.2 Clustering functions

The SOM algorithm is only one way to segment/cluster the data. It has many variants, and
there are a lot of completely different clustering algorithms. Below are some implemented
algorithms. The neat thing about Matlab is that the functions are easy to modify.

e som _prototrain: a simple version of sequential training algorithm which is easy to
modify

¢ kmeans: k-means algorithm [6]. Note that if you set the final neighborhood radius to
zero during training a SOM, the final energy function equals that of the k-means.

e kmeans_clusters: try and evaluate several k-means partitionings

¢ neural gas: neural gas vector quantization algorithm [16]

4.3.3 Modeling functions

Although the SOM is not specifically meant for modeling, it is very easy to build local and
nearest-neighbor models on top of the SOM. Below are some functions which can be used
for modeling.

e lvql: LVQ1 classification algorithm [12]
o 1lvg3: LVQ3 classification algorithm [12]
e knn: k-NN classification algorithm, see e.g. [3]

e som supervised: supervised SOM algorithm [12]
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e som _estimate_gmm: create Gaussian mixture model on top of SOM [1]
e som _probability_gmm: evaluate the Gaussian mixture model created with
som_estimate_gmm
4.3.4 Projection functions

Vector projection algorithms find low-dimensional coordinates for a set of high-dimensional
vectors such that the “shape” of the data cloud is preserved as well as possible. Vector pro-
jection is typically used for dimensionality reduction and to make visualization of originally
high-dimensional data sets possible.

e pcaproj:principal component projection algorithm
e cca: Curvilinear Component Analysis (CCA) projection algorithm [5]

e sammon: Sammon’s mapping projection algorithm [19]

4.3.5 Auxiliary visualization functions

The functions below are auxiliary visualization tools. Rather than make actual visualizations,
most of them produce powerful visualization elements, like color codings, to be used with the
actual visualization functions. There are also some GUIs which help in utilizing the standard
visualizations.

e som _colorcode: create color coding for map/2D data

e som _normcolor: calculates fixed RGB colors that are similar to indexed colors with
the specified colormap. The function is offered because some visualization functions (as
som_grid) can’t use colormap based indexed colors if the underlying Matlab function
(e.g. plot) do not use them.

¢ som_clustercolor: color coding which depends on clustering structure
e som _select: GUI for manual selection of map units
e som _trajectory: launches a GUI for presenting comet-trajectories

e vis_trajgui: the actual GUI started by som trajectory

4.3.6 Graphical user interface functions

While Matlab offers possibilities to create quite powerful graphical user interfaces (GUIs),
only a couple have yet been implemented for the Toolbox. This is primarily because the
authors themselves use almost exclusively the commands themselves, as this is quicker and
more flexible.

¢ som_gui: SOM initialization and training GUI

e preprocess: data set preprocessing tool GUI
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4.3.7 SOM_PAK interface

These tools can be used to call SOM_PAK programs from the Matlab. They essentially gather
the parameters, convert them, save the data and map, run the programs in shell, and read
the answers back to Matlab. To work, the SOM_PAK functions need to be on the search
path in the shell. Alternatively, the path can be put to global variable SOM_PAKDIR. See also
function som_sompaktrain.

sompak_gui: GUI for using SOM_PAK from Matlab

sompak_init, sompak _init_gui: call SOM_PAK’s initialization programs from Mat-
lab (command-line and GUI)

sompak_sammon, sompak sammeon _gui: call SOM_PAK’s sammon program from
Matlab (command-line and GUT)

sompak_train, sompak_train_gui: call SOM_PAK’s training program from Matlab
(command-line and GUI)

sompak_rb_control: an auxiliary function for sompak *_gui functions
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5 Performance

5.1 Computational complexity

As C-code, one epoch of sequential training algorithm can be implemented as:

for (j=0; j<mn; j++) { /* go through the data */
bmu=-1; min=1000000; /* or some other big enough number */
for (i=0; i<m; i++) { /* find the BMU */
dist=0;

for (k=0; k<d; k++) { diff = X[j][k] - M[i] [k]; dist += diff*diff; }
if (dist<min) { min=dist; bmu=i; }

}

for (i=0; i<m; i++) { /* update */
h = alpha*exp(U(bmu,i)/r);
for (k=0; k<d; k++) M[il[k] -= hx(M[i] [k] - X[j][k]);

}

}

where X[j] [k] is the kth component of jth data sample, M[i] [k] is the kth component of
map unit ¢ and U is a table of squared map grid distances between map units calculated
beforehand. Gaussian neighborhood function is assumed here and the radius r corresponds
to —2r(t)? in Figure 4. Correspondingly, one epoch of batch training algorithm is:

for (i=0; i<m; i++) { vn[i] = 0; for (k=0; k<d; k++) S[il[k] = 0; } /* initialize */

for (j=0; j<n; j++) { /* go through the data */
bmu=-1; min=1000000; /* or some other big enough number */
for (i=0; i<m; i++) { /* find the BMU */
dist=0;

for (k=0; k<d; k++) { diff = X[j][k] - M[i]l[k]; dist += diff*diff; }
if (dist<min) { min=dist; bmu=i; vn[bmul]++; }
}
for (k=0; k<d; k++) S[bmu] [k] += X[jl[k]; /* Voronoi region sum */
}
for (i=0; i<m; i++) for (k=0; k<d; k++) M[i]l[k] = 0; /* initialize */
for (i1=0; iil<m; il++) { /* update */
htot = 0;
for (i2=0; i2<m; i2++) {
h = exp(ULi1]1[i2]/x);
for (k=0; k<d; k++) M[i1][k] += h*S[i2] [k];
htot += h¥vn[i2];
}
for (k=0; k<d; k++) M[i1][k] /= htot;
}

There are 6nmd-+2nm floating point operations (additions, substractions, multiplications,
divisions or exponents) in the sequential algorithm and 3nmd + (2d + 5)m? + (n + m)d
operations in the batch training algorithm. Thus, the computational complexity of one epoch
of sequential training is about O(nmd) and, if n > m, the computational complexity of batch
training is half of the sequential one.

In the Toolbox, things are a bit different from the above C-code. For example, as discussed
in Section 2 the distance metric is slightly different from Euclidian, see Eq. 2. This increases
computational complexity somewhat, but the algorithm still remains essentially O(nmd) in
complexity.
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If default parameter values listed in Section 4.2.1 are used, one can also calculate the
complexity of the whole training process in the Toolbox. The number of map units m is
proportional to 1/n and the number of epochs is proportional to m/n. Thus the total com-
plexity is O(nd) making SOM applicable also to relatively large data sets, although training
huge maps is time-consuming. Of course, in some cases the number of map units needs to
be selected differently, e.g. m = 0.1n in which case the complexity is O(n?d).

There are also some faster variants of the SOM [13, 9]. These are basically based on
speeding up the winner search from O(md) to O(log(m)d) by investigating only a small
number of map units.

The memory consumption depends on whether the interunit distances (the matrix U
above) in the output space are calculated beforehand or not. If they are, the memory con-
sumption scales quadratively with the number of map units. If not, the consumption scales
linearly, but 6m additional floating point operations per training step are needed (assuming
a 2-dimensional map grid is used). Note that the memory requirements due to the training
data have been ignored. While just one training sample is needed at a time, in practice as
much of the data as possible is usually kept in the main memory to reduce the overhead due
to disc-access (or some other mass storage device) time.

5.2 Test set-up

While insightful, these estimates give no indication of the actual training times involved. To
get an idea of this some performance tests were made. The purpose was only to evaluate the
computational load of the algorithms. No attempt was made to compare the quality of the
resulting mappings, primarily because there is no uniformly recognized “correct” method to
evaluate it.

The tests were run in a machine with 3 GBs of memory and 16 250 MHz R10000 64-bit
CPUs (one of which was used by the test process) running IRIX 6.5 operating system. The
Matlab version was 5.3. The different parameters of the test (data size, training length, etc.)
are listed in Table 1. The test parameters included different data set and map sizes and
three training functions: som_batchtrain, som_seqtrain and vsom, the last of which was a
C-program of the SOM_PAK package used through som_sompaktrain. The training length,
10 epochs, is fairly standard, although with very large data sets it is perhaps excessive.

The computing times measured for vsom do not include the time needed for writing and
reading the files from Matlab. This took between 0.2 and 50 seconds, depending primarily
on the size of the data set. Especially with large maps, this is irrelevantly small time when
compared with overall training time. However, the measured times do contain the time used
by vsom itself for file I/O. Thus, there is some small overhead in the computing times for
vsom with respect to computing times of som batchtrain and som seqtrain.

5.3 Results

Figure 12 shows the test results. Some typical results are listed in Table 2. For a data of
size [3000 x 30] and 300 map units, the training times for ’gaussian’ neighborhood were
8, 77 and 43 seconds, for som batchtrain, som seqtrain and vsom, respectively. For the
largest investigated case with data of size [30000 x 100] and 1000 map units the times
were 8 minutes, 2.2 hours and 47 minutes, respectively.

The som batchtrain is almost always considerably faster (and som_seqtrain slower)
than the others: upto 20 times faster than som seqtrain and upto 11 times faster than
vsom, with mean values being 11 and 4. The only case where this is not so is when the
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number of map units greatly exceeds the number of data samples n < m (top right corner
of Figure 12) — a very unlikely case in practice.

Figure 13 shows some typical computing times as a function of the number of data
samples, map units and data dimension. Computing time scales almost linearly with respect
to dimension and number of data samples (on this parameter range), but grows faster with
the number of map units.

5.4 Additional tests

Neighborhood function. Since ’gaussian’ neighborhood function is computationally
quite heavy, some tests were performed with the *bubble’ neighborhood function. In Matlab,
the change did not produce any improvements. However, in vsom the effect was significant:
changing to *bubble’ neighborhood dropped the training time by about 30% on the average.

Precompiled code. One of the weak points of Matlab is that loops are relatively slow
when compared with precompiled code (like C-programs). Matlab has a compiler (mcc by
MathWorks) which we used to precompile the training functions to so-called mex-files (short
for Matlab executable). However, it appears that this is really beneficial only if there are
a lot of loops in the function: we observed some benefits with respect to som_seqtrain (in
the order of 20%; the longer the training, the greater the benefit) but none with respect to
som_batchtrain. The C-code that the compiler produces does not seem to be very optimized,
though. We believe that the computing times could be dropped more if the algorithm were
handcoded.

Workstation. Some tests were also performed in a workstation with a single 350 MHz
Pentium IT CPU and 256 MBs of memory. The tests were performed both in Linux and
Windows NT operating systems. The relative computation times for IRIX, Linux and Win-
dows respectively were

e 1:5:2.5 for som_batchtrain
e 1:3.3:2.7 for som _seqtrain
e 1:1.7:4 for vsom

In effect, IRIX was fastest, and Windows was faster than Linux, except in the case of vsom. Of
course, these results reflect differences between underlying hardware, operating system and

Table 1: Performance test parameters.

parameter different values used in the test
data dimension 10, 30, 50, 100
data length 300, 1000, 3000, 10000, 30000
number of map units 30, 100, 300, 1000
training function som_batchtrain
som_seqtrain
vsom
neighborhood function ’gaussian’
training length 10 epochs
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Figure 12: Computing time (in seconds) as a function of data dimension. Both axis are
logarithmic. The subplot titles n;m show the number of data samples (n) and map units
(m). Times for batch training algorithm are shown with circles and solid line, times for
sequential training with squares and dashed line, and times for vsom with crosses and dotted
line.

optimization of the Matlab itself in different platforms and it is impossible to say how much
each factor affected the results. The lower amount of memory in the workstation certainly
had an effect with large data and map sizes. Since the performace of vsom in Linux was
not effected by this, with large maps vsom was approximately as fast or even faster than
som_batchtrain. The slowness of vsom in Windows may own something to the fact that the
Windows version of vsom was compiled back in 1996, while the Unix versions were compiled
just recently.

Version 1. To see how much progress has been done in SOM Toolbox development, some
test runs were also made with the corresponding functions in version 1. The batch algorithm
in version 2 is 70% faster and sequential algorithm about 800% faster than in version 1. The
bigger the map and data sizes, the bigger the difference. In addition to the increase in speed,
the memory consumption of som_seqtrain and especially som batchtrain is only fractions
of what it was before.
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Table 2: Some computing times (10 epochs of training).

data map units som_batchtrain som_seqtrain vsom
[300 x 30] 100 04s 4.0 s 14 s
[1000 x 30] 100 1.0 13 s 3.6 s
[3000 x 30] 100 26s 40 s 11s
[10000 x 30] 100 8.6 s 2.3 min 44 s
[3000 x 10] 300 54s 43 s 20 s
[3000 x 30] 300 7.7s 1.3 min 41 s
[3000 x 50] 300 9.8 s 1.8 min 47 s
[3000 x 100] 300 16 s 3.8 min 1.8 min
[30000 x 30] 30 14 s 4.4 min 1.3 min
[30000 x 30] 100 26 s 6.7 min 2.7 min
[30000 x 30] 300 1.1 min 13 min 5.4 min
[30000 x 30] 1000 4.5 min 34 min 22 min

5.5 Memory

The major deficiency of the Toolbox, and especially of batch training algorithm, is the
expenditure of memory. A rough estimate of the amount of memory used by som batchtrain
is given by: 8 x (5md + 4nd + 3m?) bytes, where m is the number of map units, n is the
number of data samples and d is the input space dimension. Especially the last term limits
the usability of the Toolbox considerably. Consider a relatively small data set [3000 x 10]
and 300 map units. The amount of memory required is still moderate, in the order of 3 MBs.
However, increasing the map size to 3000 map units, the memory requirement is almost 220
MBs, 99% of which comes from the last term of the equation. The sequential algorithm is
less extreme requiring only one half or one third of this.

5.6 Applicability

Applicability of the Toolbox in a given data mining task depends strongly on the charac-
teristics of the problem. In general the Toolbox is intended for analysis of single table data
with numerical (continuous or discrete) variables.

The maximum number of samples that the Toolbox can comfortably handle depends on
the available hardware, but for example with Pentium II processor and about 128 MBs of
memory handling data upto size 10000 samples is easy and even fast (batch training takes
less than 1 minute). After 30000 samples, memory starts to become a problem. In our own
work, sample sizes upto half a million samples have been handled. Here, it is assumed that
the number of variables is moderate, say less than a few hundred.

A more strict limitation is the number of map units. The computational load grows per-
haps quadratively with the number of map units (see Figure 13), as do memory requirements.
As a general guideline, the Toolbox can comfortably handle maps with less than 1000 units.

In case memory becomes a real problem, it might be advisable to use SOM_PAK. Tt is
slower than batch training (but faster than sequential training), but it uses memory much
more conservatively, and can use buffered data.
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Figure 13: Computing time of som batchtrain (in seconds) as a function of data dimension
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units, dimension 50). The dashed line is a line fitted to the data using five first samples.
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6 Conclusion

In this report, the SOM Toolbox version 2 for Matlab 5 has been introduced. Matlab as a
computing environment is extremely versatile but for this reason also requires high degree
of user interaction.

The SOM is an excellent tool in the visualization of high dimensional data. As such it
is most suitable for data understanding phase of the knowledge discovery process, although
it can be used for data preparation, modeling and classification as well. The data model
is a single table with numerical variables. The Toolbox is easily applicable to small data
sets (under 10000 records) but can also be applied in case of medium sized data sets (upto
1000000 records). An important limiting factor is, however, the map size. The Toolbox is
mainly suitable for training maps with 1000 map units or less. If this kind of parameter
values are used, especially the batch training algorithm is very efficient, being considerably
faster than vsom, a commonly used implementation of sequential SOM algorithm in C-code.

In future work, our research will concentrate on the quantitative analysis of SOM map-
pings, especially analysis of clusters and their properties. New functions and graphical user
interface tools will be added to the Toolbox to increase its usefulness in data mining. Also
outside contributions to the Toolbox are welcome. It is our hope that the SOM Toolbox pro-
motes the utilization of SOM algorithm — in research as well as in industry — by making
its best features more readily accessible.
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A Changes with respect to version 1

Version 2 of SOM Toolbox is considerably different from version 1. The major changes are
in structs, preprocessing and visualization. Then there are a number of minor changes in the
way the functions work, and also in the names of the functions. In addition, there are a lot
of new auxiliary functions.

A.1 Changes in structs

The most essential changes are in the structs. Therefore, two functions have been provided
som_vs2tol and som_vs1to2 which can be used to convert between version 1 and 2 structs.

Map struct The changes in the map struct are:

e the shape of .codebook matrix has been changed from [ydim x xdim x ... zdim x
dim] to [munits x dim]. The change is the same as the one performed by the reshape
function.

e the shape of .labels cell array has been changed correspondingly. It is no longer a cell
array of cell strings of size [ydim x xdim x ... zdim] but a cell array of strings of
size [munits x ml] where ml is the maximum number of labels in a single map unit.

e the topology information (fields .msize, .lattice and .shape) have been moved
from the map struct to a separate topology struct (see below). The map struct has a
field .topol which contains this struct.

e fields .init_type, .train_type and .dataname have been removed, and the field
.train_sequence has been changed to field .trainhist which contains an array of
training structs (see below).

e field .normalization field has been replaced with .comp norm which contains a cell
array of length dim, one for each variable. Each cell contains a struct array of normal-
ization structs (see below).

Data struct The changes in the map struct are:

e field .normalization field has been replaced with .comp norm which contains a cell
array of length dim, one for each variable. Each cell contains a struct array of normal-
ization structs (see below).

Topology struct This is a new struct, which contains the fields .msize, .lattice and
.shape previously part of map struct. There’s also a change in the values that the .shape
field can get. The value ’rect’ referring to the shape of the map has been changed to
’sheet’.

Training struct There are a number of changes in the contents of this struct. Field
.dataname from map struct has been brought here, and fields .neigh and .mask have
been copied here (also from map struct). Field .qerror has been dropped out.

Normalization struct The normalization struct now has normalization information for
only one variable (as opposed to version 1, when it had information on all variables). For
further information see notes on preprocessing below.
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A.2 Preprocessing

The functions involved with preprocessing have completely changed. Instead of

som normalize data and som_denormalize data, the functions are som normalize,
som_denormalize and som_norm variable. The functions som normalize and
som_denormalize envelope the operations of adding and removing normalization operations
to data and map structs, and call som_ norm variable to do the actual work.

Function som norm variable performs normalization operations for a single variable at a
time. The possible actions are >init’, ’do’ and ’undo’, and the possible normalization oper-
ations are ’var’, range’, >log’, ’logistic’, *histD’ and *histC’. Of these ’var’ equals
’som_var norm’, ’range’ equals ’som 1in norm’ and ’histD’ equals ’som hist norm’ of
version 1. Normalization of vectors to unit length (’som_unit norm’) is not implemented in
version 2. New normalization operations in version 2 are ’log’ and ’histC’. The normal-
ization operations are detailed in Section 4.2.4.

56



A.3 Function names

There are a number of changes in the function names. The table below lists all such 1st version
functions in alphabetical order. On the right is the corresponding 2nd version function. In
some cases the corresponding function is missing.

Version 1 function

Version 2 function

som_addhits
som_addlabels
som_addtraj

som_cca

som_clear
som_create

som_demo
som_denormalize_data
som_doit
som_figuredata
som_init

som_train

som normalize_data
som_pca
som_manualclassify
som_name

som_plane
som_plane3
som_planeH
som_planeL
som_planeT
som_planeU
som_profile
som_projection
som_sammon
som_showgrid
som_showtitle
som_showtitleButtonDownFcn
som_trainops
som_unit_distances
som_unit neighborhood
somui_it

somui_vis
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som_show_add
som_show_add
som_show_add

cca

som_show_clear
som_map._struct

run the demos directly
som_denormalize
vis_som_show_data
som_make

som_make

som normalize
pcaproj

som_select

som_set

som_cplane
som_cplane

som_grid
som_show_add
som_cplane
som_plotplane

run the projections directly
sammon

som_grid
som_footnote
som_footnoteButtonDownFcn
som_unit_dists
som_neighborhood
som_gui



B File formats

B.1 Data file format (.data)
The first line contains the input space dimension and nothing else. For example:

6

Alternatively, the first line can be omitted. In that case, the input dimension can be given
as an explicit argument to function som_read data, or if that is not done, the function tries
to determine the input dimension from the first data lines encountered.

After the first line come data lines, comment lines or empty lines. Each data line contains
one data vector and its labels. From the beginning of the line, first are values of the vector
components separated by whitespaces, then labels, again separated by whitespaces. If there
are missing values in the vector, they should be indicated with a specific string given as an
argument to som_read data. By default the string is *NaN’. For example:

10 15 NaN 1e-6 45 -12 labell label2 longer_label

Comment lines start with *#’. Comment lines as well as empty lines are ignored, except
if the comment line starts with #n ’> or *#1 ’. In the former case the line should contain
names of the vector components separated by whitespaces. In the latter case, the names of
labels are given. For example:

#n power CUI moment energy residual output

Example data file:

--—=>8---->8--—->8---->8---->8---->8--—-—-
3

#n height weight fingers

#1 nimi

## height in cm, weight in kg

170 50 10 Mika

175 68 10 Toni

160 45 9 Yksi Puuttuu

NaN 89 10
--—=->8---->8---->8--—->8---->8-—-->8-——-

B.2 Map file format (.cod)

The first line must contain the input space dimension, lattice type (’rect’ or *hexa’), map
grid size in x-direction, map grid size in y-direction, and neighborhood function (’bubble’
or ’gaussian’), in that order. For example:

6 rect 10 8 bubble

The following lines are data lines, comment lines or empty lines. Each data line contains
the weight vector of one map unit and its labels. From the beginning of the line, first are
values of the vector components separated by whitespaces, then labels, again separated by
whitespaces. The data lines must not contain any missing components. For example:

10 15 13.4 1e-6 45 -12 labell label2 longer_label
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The order of map units in the file are one row at a time from right to left, from the top
to the bottom of the map (x-direction first, then y-direction, note that this is opposite order
from the one the map units are in the . codebook field of map struct). Naturally, the number
of data lines should be equal to the product of map grid sizes on the first line.

Comment lines start with *#’. Comment lines as well as empty lines are ignored, except
if the comment line starts with *#n ’. In that case the line should contain names of the
vector components separated by whitespaces.

Example codebook file:

-—==>8---->8---->8--—->8-——->8-—-->8-——-
3 rect 1 2 gaussian
#n height weight fingers
## height in cm, weight in kg

167 59.2038 9.6888 Mika Toni
169.5 6.7962e+1 9.8112
-—==>8-—-->8---->8--—->8-—-—->8-—-->8-——-

B.3 Deviation from SOM_PAK format

Although the file formats are very close to those used in SOM_PAK, they are not entirely
the same.

¢ SOM_PAK file format features that are not supported include:

— data file *weight’ identifier

— map file *fixed’ identifier
Both ’weight’ and ’fixed’ are treated as labels if encountered.
e The Toolbox has special meaning for comment lines starting with *#n ’ or *#1 °.

e To make data reading faster, there’s a small kludge. When reading in the data files,
the maximum value Matlab is able to deal with (realmax) should not appear in the
input file. This is because function sscanf is not able to read NaNs: they are in the
reading phase converted to the value of realmax with precision of 100 digits.
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