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11.1 Introduction

Unsupervised learning such as clustering and information visualization suffers from the
garbage in—garbage out problem. The ultimate goal is to make discoveries in data, that is,
to find new things without speficying them in advance. The problem is that unsupervised
learning cannot distinguish relevant variation from irrelevant variation in data. Structured
noise becomes modeled as well as relevant structure.

Hence, all successful unsupervised learning must have been supervised implicitly or
explicitly, by feature extraction or model selection. Our goal is to automate (part of) this
implicit supervision by learning from a supervising signal. The difference from standard
supervised learning is that the goal is to explore new things in the primary data given the
supervision, whereas in supervised learning the goal is simply to predict the supervisory
signal. The task could be coined supervised unsupervised learning.

Sample applications include exploration of factors leading to bankruptcy, where pri-
mary data are financial indicators and supervisory signal is the bankruptcy risk. Another
is exploration of gene expression, supervised by functional classes of the genes.

For methods that are based on distance computations, the supervision can be conve-
niently incorporated in the distance measure. The idea of deriving information-geometric
metrics to data spaces from paired data has been coined the learning metrics principle.
It is assumed that variation of the primary data x ∈ R

n is important only to the extent
it causes variation in auxiliary data c, the supervisory signal, which is available paired to
the primary data.

In other words, important variation in x is supposed to be revealed locally by variation
in the conditional density p(c|x). The distance d between two close-by data points x and
x+ dx is defined as the difference between the corresponding distributions of c, measured
by the Kullback-Leibler divergence DKL, i.e.

d2
L(x,x + dx) ≡ DKL(p(c|x)‖p(c|x + dx)) = dxTJ(x)dx , (11.1)

where J(x) is the Fisher information matrix. The Riemannian metric depends on x and
hence is more general than a global scaling of the feature space.

The Fisher information matrix has earlier been used to construct metrics to spaces
of probability models (see, e.g., [1]). The novelty here is that the information matrix is
applied in the data space to construct a new metric there. The coordinates of data are
considered as parameters

In practice, the idea can be applied in two ways. One can estimate p(c|x) first and then
plug the new metric, computed from the estimates, into a standard unsupervised method.
Another possibility is to more directly insert the new metric into the cost function of a
suitable method. Examples of these approaches are discussed in more detail below.
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11.2 Learning metrics for information visualization

Explicit estimation of learning metrics by approximations to (11.1) is generally applicable
to explicitly supervise unsupervised metric-based methods. The choice of auxiliary data
determines what is important, without need for hand-tuned feature extraction.

We have so far applied learning metrics to two widely used unsupervised informa-
tion visualization methods: the Self-Organizing Map and Sammon’s mapping, a sample
Multidimensional Scaling (MDS) method.

Computation of approximations to the metric

Globally the learning metric (11.1) becomes minimal path integrals of local distances. The
local distances in turn are based on conditional auxiliary densities p(c|x). For practical
computation, the densities must be estimated and the minimal path integrals approxi-
mated. We have developed several approximations; the choice needs a tradeoff between
computation time and accuracy.

Several semiparametric estimators of the conditional density p(c|x) are available. The
still open theoretical question is how to choose the estimator rigorously.

The simple approximation for the distance between two points x1 and x2 is the local
quadratic form [2]

d2
1(x1,x2) = (x2 − x1)

TJ(x1)(x2 − x1) (11.2)

called the 1-point approximation. An improved version called the T -point approximation
[3] computes the metric at T points between the start and end point, yielding

dT (x1,x2) =
1

T

T−1
∑

i=0

(

rTJ

(

x +
i

T
r

)

r

)1/2

, (11.3)

where r = x2 − x1.
Both approximations assume the minimal path is a line. A further improvement is to

form a graph whose edge weights are pairwise T -point distances between data points and
perform a graph search for the minimal path [4]. This is called the graph approximation; it
allows both linear and piecewise linear paths. Since data points are used as graph vertices,
distances are computed more accurately where the data is dense.

Information visualization methods

The sequential SOM algorithm iterates winner selection and adaptation. In the
learning metric the winner is sought by

w(x(t)) = arg min
i

d2
L(x(t),mi(t)) . (11.4)

where t is the iteration, x(t) is the input and dL can be either the local distance approxima-
tion d1 or the T -point approximation dT . The latter is more accurate, but computationally
heavier.

For the local approximation the adaptation step can be shown to equal the familiar
SOM learning rule,

mi(t + 1) = mi(t) + α(t)hwi(t)(x(t) − mi(t)) , (11.5)

were α(t) is the learning rate and hwi(t) is the neighbourhood function.
In empirical tests the SOM-L with the improved (T -point) distance approximation

significantly outperforms the 1-point SOM-L as well as classical SOM and a supervised
SOM [3, 4].
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Figure 11.1: Sammon’s mapping in learning metrics (right) separates the different letters
of the Letter Recognition data (from UCI Machine Learning Repository) set clearly better
than the Sammon’s mapping in the Euclidean metric (left).

Metric multidimensional scaling methods (MDS) are used for visualizing similari-
ties of data samples based on a pairwise distance matrix. They construct a low-dimensional
representation for the data that aims to preserve the distance matrix.

Sammon’s mapping, as well as the other MDS methods, are based on the pairwise
distance matrix, are ideal candidates for the graph approximation since they are based on
the pairwise distance matrix. The distances need to be computed only once.

The difference to the traditional Sammon’s mapping where the pairwise distance matrix
is computed in the Euclidean metric is illustrated in Figure 11.1 [4]. The class separation
is clearly increased when the learning metrics is used, but the topology of the samples is
still retained.
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11.3 Discriminative Clustering (DC)

The original motivation for discriminative clustering was its asymptotic equivalence to
vector quantization in learning metrics. DC turned out to have other interesting inter-
pretations as well: It extends earlier works on mutual information maximization (IMAX
[5], Information Bottleneck [6]) and connects learning metrics to generative models and
contingency tables.

DC partitions a vectorial data space to a set of connected partitions that are homo-
geneous by distributions of an auxiliary variable or variables present in the data [7]. The
homogeneity criterion of partitions turns out to be equivalent to informativeness of the
partitions of the auxiliary variable(s). Membership of a sample in a partition then tends
to predict the value of the auxiliary variable well, and vice versa. Still, the partitions are
solely defined in terms of the primary data, without reference to the values of auxiliary
data. Hence future data without the associated auxiliary variable can be partitioned. The
relative locality of the clusters in the primary data space makes them useful for exploratory
analysis.

A prototypical application would be segmenting customers of a company in terms
of background information, but by using buying behaviour as the criterion of segment
homogeneity. Buying behaviour guides the segmentation but does not directly define the
segments. Incoming customers without buying history can then be immediately assigned
to the predefined segments. Other applications include, e.g., understanding company
bankruptcy, finding relationships between gene expression databases (Section 10.3), and
guiding text document clustering with classifications of informaticians.

For densities. The original formulation for DC is for probability densities p(c,x) of
auxiliary data c and primary data x. This version is easy to understand, but directly
applicable only for large data/cluster rations.

Partitions of the primary data are restricted to be Voronoi regions, which makes them
connected, relatively local, and therefore easy to interpret. Homogeneity of the auxiliary
data distributions within the clusters is measured by the intra-cluster Kullback-Leibler
divergence

E =

∫

DKL(p(c|x)‖ψj(x)) p(x) dx , (11.6)

which is minimized with respect to the distributions of auxiliary data within clusters,
p(c|Clusterj) ≡ ψj and the Voronoi partitioning defined by the centroid parameters mj

(implicit in assignments j(x)). Minimizing the distortion is equivalent to maximizing the
informativeness of the clusters about the values of the auxiliary variable, in the sense
of mutual information. Gradient algorithms can be applied if the partitions are first
smoothed. An extremely simple on-line learning rule results.

For data sets. The log-likelihood of a piece-wise constant model for the conditional
densities p(c|x) approaches the distortion (11.6) when the size of the data set grows. It is
therefore a good candidate for the cost function of DC for finite data sets [8]. From the
viewpoint of clustering, the distributional prototypes ψ are not interesting and can then be
marginalized out, which leads to a likelihood only depending on the Voronoi partitioning
{mj}:

LDC({mj}) ∝
∑

ij

log Γ(n0
i + nji) −

∑

j

log Γ(N0 + Nj) , (11.7)

where nji denotes the number of samples in the cluster j with the value of auxiliary variable
c = i. The parameters n0

i arise from a Dirichlet prior, and Nj =
∑

i nji, N0 =
∑

i n
0
i .
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Figure 11.2: Discriminative clustering of simple toy data, where only the vertical direction
is indicated to be relevant by auxiliary data associated to the 2D primary data. The pri-
mary data is sampled from the Gaussian distribution (grey shades), while the conditional
distribution of the auxiliary data changes in the vertical direction. The regularized solu-
tion (middle) shares properties of the discriminative solution and the K-means solution
(right).

After the partitions are smoothed the new cost function can be optimized by gradient
algorithms. Direct optimization by simulated annealing is also possible, but a simple
conjugate gradient algorithm with smoothed partitions leads to equally good results and
is faster. In empirical comparisons the marginaled finite-data model has been found to
outperform the simple on-line algorithm resulting from (11.6).

Regularization. Tests indicate that the performance of the purely discriminative DC
algorithms is improved if the cost functions are ‘regularized’ by partially taking into ac-
count the margin distribution p(x) in one way or another (Fig. 11.2). Note that taking it
fully into account would lead to modeling the joint distribution p(c,x), which is different
by its goal and empirically shown to be inferior in the task of DC.

Non-Euclidean spaces. DC has been extended for data on hyperspheres and on dis-
tributional spaces. The latter formulation is applicable to text documents under the usual
‘bags of words’ assumption, where word frequencies are analyzed and the order of words
in the documents is ignored. The method has been applied to scientific texts from the
INSPEC database [9], by using keywords chosen by the document authors as auxiliary
data. Keywords improve feature selection in the full documents and therefore improve
clustering results compared to classic methods.

Connection to learning metrics. For a large number of clusters, DC performs vector
quantization in learning metrics (Section 11.1): The Euclidean distortion of normal vector
quantization becomes replaced with a distortion computed in the Fisher metric (11.1).
The Fisher metric measures changes in the conditional distributions p(c|x) of the auxiliary
variable [10].

The asymptotic connection was utilized in practice by plugging a local approximation
of Fisher metrics to standard K-means clustering [11]. The adaptable metric frees the
Voronoi partitions from being defined in Euclidean metric and allows more optimal shapes.
In tests the resulting algorithms, although computationally heavy, have outperformed the
plain DC.
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Downtown
Sörnäinen

Kulosaari

Matinkylä

Westend

Figure 11.3: The Helsinki capital area segmented into Voronoi regions maximally infor-
mative of demographics. Associative clustering of geographic coordinates and vectorial
sosiodemographic data finds segments for both ‘margin spaces’. In the figure, only one
margin space, the geography, is shown. Demographically distinct and homogeneous re-
gions such as the downtown become clearly separated. Similar clusters become defined to
the high-dimensional sosiodemographic space.

Associative clustering: bidirectional DC

Discriminative clustering quantizes a continuous variable and then maximizes statisti-
cal dependency between two discrete variables: the partitions and the auxiliary variable
guiding the partitioning. Contingency tables are a classic framework for quantifying and
testing such dependencies. In this framework, the cost (11.7) is interpretable as a Bayes
factor between the hypotheses of dependent and independent margins [12].

In DC one margin is fixed. We have called the generalization to two adjustable margins
associative clustering (AC; [13]). Then two vectorial variables are quantized by Voronoi
partitionings, and the partitionings are adjusted to maximize their mutual dependency
in the sense of the Bayes factor. Techniques similar to discriminative clustering can be
applied, including the regularization methods and smoothed partitions. A demonstration
of AC is shown in Figure 11.3.
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11.4 Discriminative components

Unsupervised principal components and factor analyses search for components of data
that can be used for data exploration, visualization and dimensionality reduction.

A classical method for supervising the components is linear discriminant analysis
(LDA). It has been commonly used for two tasks: the more common one is linear clas-
sification (supervised learning), but the components can also be used for exploring and
visualizing class differences. We have generalized LDA for this latter purpose, but search-
ing for linear components that are more generally informative of or relevant to the the
classes of samples. The task of extracting components relevant to auxiliary data could
perhaps be called Relevant Component Analysis.

We search for linear relevant components [14] by optimizing the linear projection y =
f(x) = WTx, where the columns of W are the component directions. The criterion is
simply maximization of the log-likelihood of the auxiliary data given the projection, i.e.,

L =
∑

(x,c)

log p̂(c|f(x)) (11.8)

where c are the auxiliary data and p̂ is an estimator computed after the projection.
The key point in this method is its simplicity. The likelihood is a well-defined, simple

criterion for fitting a projection to finite data, yet it has interesting theoretical connec-
tions and works better than alternative methods in practice. Maximizing the likelihood
is asymptotically equivalent to maximizing the mutual information I(C, f(X)) when con-
sistent estimators p̂ are used. Moreover, maximizing the likelihood is asymptotically ap-
proximately equivalent to minimizing a reconstruction error in learning metrics under
some assumptions, so the components can be considered principal components in learning
metrics.

The method has empirically outperformed classical and recent [16] methods. It has
been applied to bioinformatics (Chapter 10) and assessing convergence of MCMC simula-
tions (below).
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11.5 Visualization of posterior distributions

Probabilistic generative modeling is one of the theoretical foundations of current main-
stream machine learning and data analysis. Bayesian inference is potentially very powerful
but closed-form solutions are seldom available. Inference has to be based on either ap-
proximation methods or simulations with Markov Chain Monte Carlo (MCMC) sampling.

The main practical problem of MCMC is how to assess whether the simulation has
converged. The resulting samples come from the true distribution only after convergence.
It turns out [17] that the main multivariate convergence measure, the multivariate po-
tential scale reduction factor (MPSRF) developed by Brooks and Gelman [18], equals
the cost function of a one-dimensional linear discriminant analysis (LDA), a method that
discriminates between data classes.

MCMC chains have traditionally been visualized by time series plots, marginal his-
tograms or 2-dimensional scatter plots of two variables. The problem with these visual-
izations is that they do not scale up to large models with lots of parameters. As the cost
function of LDA is the equivalent to the MPSRF measure, we can use LDA to reduce the
number of visualizations. A scatter plot of a projection on the two best discriminative
components (see Figure 11.4) is the single best two-dimensional image in the sense of the
MPSRF measure.

Chain 3

Chain 1

Chain 2

Chains 5−10

Chain 4

C
o
m

p
o
n
e
n
t 
2

Component 1

Figure 11.4: Two-dimensional LDA projection of samples from a MCMC simulation that
does not converge. Chains 1-4 have gotten stuck in a degenerate state. The ellipses have
been drawn by hand to mark the chains.

LDA assumes that each class is normally distributed with the same covariance matrix
in each class. This does not hold in general, in particular not before MCMC convergence
for small data. To address the above problem, we suggest to complement LDA-based
analysis with the generalization of LDA introduced in Section 11.4.

Sometimes we are interested in visualizing the posterior distribution for other reasons
than studying convergence of a sampler. We might for example be interested how the
parameters affect the model output. Toward this end, we have proposed [19] a method
that uses the Fisher metric of the model with a non-linear projection method, to create
visualizations of the posterior that reflect the effect parameters have on the output.
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