Contents
- 1. Mathematical Preliminaries 1
- 1.1 Mathematical Concepts and Notations 2
- Vector Space Concepts 2
- Matrix Notations 8
- Eigenvectors and Eigenvalues of Matrices 11
- Further Properties of Matrices 13
- On Matrix Differential Calculus 15
- 1.2 Distance Measures for Patterns 17
- Measures of Similarity and Distance in Vector Spaces 17
- Measures of Similarity and Distance Between Symbol Strings 21
- Averages over Nonvectorial Variables 28
- 1.3 Statistical Pattern Analysis 29
- Basic Probabilistic Concepts 29
- Projection Methods 34
- Supervised Classification 39
- Unsupervised Classification 44
- 1.4 The Subspace Methods of Classification 46
- The Basic Subspace Method 46
- Adaptation of a Model Subspace to Input Subspace 49
- The Learning Subspace Method (LSM) 53
- 1.5 Vector Quantization 59
- Definitions 59
- Derivation of the VQ Algorithm 60
- Point Density in VQ 62
- 1.6 Dynamically Expanding Context 64
- Setting Up the Problem 66
- Automatic Determination of Context-Independent Productions 66
- Conflict Bit 67
- Construction of Memory for the Context-Dependent Productions 68
- The Algorithm for the Correction of New Strings 68
- Estimation Procedure for Unsuccessful Searches 69
- Practical Experiments 69
- 2. Neural Modeling 71
- 2.1 Models, Paradigms, and Methods 71
- 2.2 A History of Some Main Ideas in Neural Modeling 72
- 2.3 Issues on Artificial Intelligence 75
- 2.4 On the Complexity of Biological Nervous Systems 76
- 2.5 What the Brain Circuits Are Not 78
- 2.6 Relation Between Biological and Artificial Neural Networks 79
- 2.7 What Functions of the Brain Are Usually Modeled? 81
- 2.8 When Do We Have to Use Neural Computing? 81
- 2.9 Transformation, Relaxation, and Decoder 82
- 2.10 Categories of ANNs 85
- 2.11 A Simple Nonlinear Dynamic Model of the Neuron 87
- 2.12 Three Phases of Development of Neural Models 89
- 2.13 Learning Laws 91
- Hebb's Law 91
- The Riccati-Type Learning Law 92
- The PCA-Type Learning Law 95
- 2.14 Some Really Hard Problems 96
- 2.15 Brain Maps 99
- 3. The Basic SOM 105
- 3.1 A Qualitative Introduction to the SOM 106
- 3.2 The Original Incremental SOM Algorithm 109
- 3.3 The ``Dot-Product SOM" 115
- 3.4 Other Preliminary Demonstrations of Topology-Preserving Mappings 116
- Ordering of Reference Vectors in the Input Space 116
- Demonstrations of Ordering of Responses in the Output Space 120
- 3.5 Basic Mathematical Approaches to Self-Organization 127
- One-Dimensional Case 128
- Constructive Proof of Ordering of Another One-dimensional SOM 132
- 3.6 The Batch Map 138
- 3.7 Initialization of the SOM Algorithms 142
- 3.8 On the ``Optimal" Learning-Rate Factor 143
- 3.9 Effect of the Form of the Neighborhood Function 145
- 3.10 Does the SOM Algorithm Ensue from a Distortion Measure? 146
- 3.11 An Attempt to Optimize the SOM 148
- 3.12 Point Density of the Model Vectors 152
- Earlier Studies 152
- Numerical Check of Point Densities in a Finite One-Dimensional SOM 153
- 3.13 Practical Advice for the Construction of Good Maps 159
- 3.14 Examples of Data Analyses Implemented by the SOM 161
- Attribute Maps with Full Data Matrix 161
- Case Example of Attribute Maps Based on Incomplete Data Matrices (Missing
Data): "Poverty Map" 165
- 3.15 Using Gray Levels to Indicate Clusters in the SOM 165
- 3.16 Interpretation of the SOM Mapping 166
- ``Local Principal Components'' 166
- Contribution of a Variable to Cluster Structures 169
- 3.17 Speedup of SOM Computation 170
- Shortcut Winner Search 170
- Increasing the Number of Units in the SOM 172
- Smoothing 175
- Combination of Smoothing, Lattice Growing, and SOM Algorithm 176
- 4.Physiological Interpretation of SOM 177
- 4.1 Conditions for Abstract Feature Maps in the Brain 177
- 4.2 Two Different Lateral Control Mechanisms 178
- The WTA Function, Based on Lateral Activity Control 179
- Lateral Control of Plasticity 184
- 4.3 Learning Equation 185
- 4.4 System Models of SOM and Their Simulations 185
- 4.5 Recapitulation of the Features of the Physiological SOM Model 188
- 4.6 Similarities Between the Brain Maps and Simulated Feature Maps 188
- Magnification 189
- Imperfect Maps 189
- Overlapping Maps 189
- 5. Variants of SOM 191
- 5.1 Overview of Ideas to Modify the Basic SOM 191
- 5.2 Adaptive Tensorial Weights 194
- 5.3 Tree-Structured SOM in Searching 197
- 5.4 Different Definitions of the Neighborhood 198
- 5.5 Neighborhoods in the Signal Space 200
- 5.6 Dynamical Elements Added to the SOM 204
- 5.7 The SOM for Symbol Strings 205
- Initialization of the SOM for Strings 205
- The Batch Map for Strings 206
- Tie-Break Rules 206
- A Simple Example: The SOM of Phonemic Transcriptions 207
- 5.8 Operator Maps 207
- 5.9 Evolutionary-Learning SOM 211
- Evolutionary-Learning Filters 211
- Self-Organization According to a Fitness Function 212
- 5.10 Supervised SOM 215
- 5.11 The Adaptive-Subspace SOM (ASSOM) 216
- The Problem of Invariant Features 216
- Relation Between Invariant Features and Linear Subspaces 218
- The ASSOM Algorithm 222
- Derivation of the ASSOM Algorithm by Stochastic Approximation 226
- ASSOM Experiments 228
- 5.12 Feedback-Controlled Adaptive-Subspace SOM (FASSOM) 242
- 6. Learning Vector Quantization 245
- 6.1 Optimal Decision 245
- 6.2 The LVQ1 246
- 6.3 The Optimized-Learning-Rate LVQ1 (OLVQ1) 250
- 6.4 The Batch-LVQ1 251
- 6.5 The Batch-LVQ1 for Symbol Strings 252
- 6.6 The LVQ2 (LVQ2.1) 252
- 6.7 The LVQ3 253
- 6.8 Differences Between LVQ1, LVQ2 and LVQ3 254
- 6.9 General Considerations 254
- 6.10 The Hypermap-Type LVQ 256
- 6.11 The ``LVQ-SOM'' 261
- 7. Applications 263
- 7.1 Preprocessing of Optic Patterns 264
- Blurring 265
- Expansion in Terms of Global Features 266
- Spectral Analysis 266
- Expansion in Terms of Local Features (Wavelets) 267
- Recapitulation of Features of Optic Patterns 267
- 7.2 Acoustic Preprocessing 268
- 7.3 Process and Machine Monitoring 269
- Selection of Input Variables and Their Scaling 269
- Analysis of Large Systems 270
- 7.4 Diagnosis of Speech Voicing 274
- 7.5 Transcription of Continuous Speech 274
- 7.6 Texture Analysis 280
- 7.7 Contextual Maps 281
- Artifically Generated Clauses 283
- Natural Text 285
- 7.8 Organization of Large Document Files 286
- Statistical Models of Documents 286
- Construction of Very Large WEBSOM Maps by the Projection Method 292
- The WEBSOM of All Electronic Patent Abstracts 296
- 7.9 Robot-Arm Control 299
- Simultaneous Learning of Input and Output Parameters 299
- Another Simple Robot-Arm Control 303
- 7.10 Telecommunications 304
- Adaptive Detector for Quantized Signals 304
- Channel Equalization in the Adaptive QAM 305
- Error-Tolerant Transmission of Images by a Pair of SOMs 306
- 7.11 The SOM as an Estimator 308
- Symmetric (Autoassociative) Mapping 308
- Asymmetric (Heteroassociative) Mapping 309
- 8. Software Tools for SOM 311
- 8.1 Necessary Requirements 311
- 8.2 Desirable Auxiliary Features 313
- 8.3 SOM Program Packages 315
- SOM_PAK 315
- SOM Toolbox 317
- Nenet (Neural Networks Tool) 318
- Viscovery SOMine 318
- 8.4 Examples of the Use of SOM_PAK 319
- File Formats 319
- Description of the Programs in SOM_PAK 322
- A Typical Training Sequence 326
- 8.5 Neural-Networks Software with the SOM Option 327
- 9.Hardware for SOM 329
- 9.1 An Analog Classifier Circuit 329
- 9.2 Fast Digital Classifier Circuits 332
- 9.3 SIMD Implementation of SOM 337
- 9.4 Transputer Implementation of SOM 339
- 9.5 Systolic-Array Implementation of SOM 341
- 9.6 The COKOS Chip 342
- 9.7 The TInMANN Chip 342
- 9.8 NBISOM_25 Chip 344
- 10.An Overview of SOM Literature 347
- 10.1 Books and Review Articles 347
- 10.2 Early Works on Competitive Learning 348
- 10.3 Status of the Mathematical Analyses 349
- Zero-Order Topology (Classical VQ) Results. 349
- Alternative Topological Mappings 350
- Alternative Architectures 350
- Functional Variants 351
- Theory of the Basic SOM 352
- 10.4 The Learning Vector Quantization 358
- 10.5 Diverse Applications of SOM 358
- Machine Vision and Image Analysis 358
- Optical Character and Script Reading 360
- Speech Analysis and Recognition 360
- Acoustic and Musical Studies 361
- Signal Processing and Radar Measurements 362
- Telecommunications 362
- Industrial and Other Real-World Measurements 362
- Process Control 363
- Robotics 364
- Electronic-Circuit Design 364
- Physics 364
- Chemistry 365
- Biomedical Applications Without Image Processing 365
- Neurophysiological Research 366
- Data Processing and Analysis 366
- Linguistic and AI Problems 367
- Mathematical and Other Theoretical Problems 368
- 10.6 Applications of LVQ 369
- 10.7 Survey of SOM and LVQ Implementations 370
- 11.Glossary of "Neural" Terms 373
- References 403
- Index 487
Go back to the book
http://www.cis.hut.fi/research/som-research/book/toc.shtml
webmaster@mail.cis.hut.fi
Monday, 29-Jan-2001 16:54:47 EET
|