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Tilastollinen kielimalli on oleellinen osa nykyaikaista puheentunnistusjärjestelmää,
jossa sen tehtävä on pisteyttää sanahypoteesit kielellisen informaation perusteella.
Lukuisia kielimalleja on esitetty kirjallisuudessa. Parhaat tulokset on saavutettu
käyttämällä eri kielimalleja yhdessä. Useita menetelmiä kielimallien yhdistelyyn
on esitetty, mutta kattavaa tutkimusta eri menetelmistä ei ole esitetty.

Tässä työssä tutkitaan kirjallisuudessa esitettyjä yhdistämismenetelmiä. Li-
säksi työssä esitetään uusi menetelmä, joka perustuu uskottavuustiheysfunktion
estimointiin histogrammien avulla. Teoreettisen tarkastelun lisäksi neljää yhdistä-
mismenetelmää arvioidaan puheentunnistuskokeilla sekä kielimallin hyvyyttä ku-
vaavilla perplexity-kokeilla. Aineistona käytetään suomenkielisiä uutisartikkeleita.
Yhdisteltävinä kielimalleina toimii neljä kielimallia, jotka esitellään työssä.

Perplexity-kokeissa kaikilla yhdistämismenetelmillä saavutettiin kielimalleis-
ta riippuen tilastollisesti merkittävää parannusta vertailukohtana toimineeseen 4-
grammi-malliin. Paras tulos, 46 % parannus 4-grammimalliin verrattuna, saatiin
yhdistämällä useita malleja uudella bin-estimointi-menetelmällä. Puheentunnis-
tuskokeissa saavutettiin parhaimmillaan 4 % parannus sanavirheessä ja 7 % pa-
rannus äännevirheessä.

Avainsanat: kielenmallinnus, puheentunnistus, yhdistämismenetelmät, kielimal-
lien yhdistäminen
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Statistical language models have a vital part in contemporary speech recognition
systems, where the purpose of the language model is to score the word hypoth-
esises based on the linguistical knowledge. A lot of language models have been
presented in the literature. The best results have been achieved when different lan-
guage models have been used together. Several combination methods have been
presented, but a thorough investigation of the methods has not been done.

In this work, combination methods that have been used with language models
are studied. Also, a new approach based on likelihood density function estima-
tion using histograms is presented. In addition to theoretical consideration, four
combination methods are evaluated in speech recognition experiments and per-
plexity calculations that measure the quality of the language models. The test
data consist of Finnish news articles. Four language models, that are presented in
the work, work as the component models.

In the perplexity experiments, all combination methods produced statistically
significant improvement compared to the 4-gram model that worked as a baseline.
The best result, 46 % improvement to the 4-gram model, was achieved when com-
bining several language models together by using the new bin estimation method.
In the speech recognition experiments, 4 % reduction to the word error and 7 %
reduction to the phoneme error was achieved.

Keywords: language modeling, speech recognition, combination methods, com-
bining language models
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Symbols and abbreviations

c(X) Number of occurrences of X
E[X] Expectation of X
P (X) Probability of X
p(X) Likelihood of X
V Vocabulary
wji Word sequence wi, wi+1, ..., wj

LSA Latent semantic analysis
ME Maximum entropy
ML Maximum likelihood
OOV Out-of-vocabulary
PHER Phoneme error rate
WER Word error rate
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Chapter 1

Introduction

1.1 Introduction

Language modeling has a vital part in contemporary speech recognition systems and
many other areas of language technology including character recognition, machine
translation, and spelling correction. The target of the language modeling is to capture
linguistical or statistical information of the language and present it in a useful form.

Language modeling can be divided into linguistical and statistical language model-
ing. The linguistical approach is more intuitive as it gives an answer to the question,
whether a sentence or a word sequence is legitimate or not. For automatic speech
recognition this is however insufficient. Statistical language modeling focuses on col-
lecting information of statistical relationships between words. In speech recognition,
the statistical approach is more useful, as the language model is needed to determine
the probability of how likely it is a word or a word sequence to occur given the word
history.

The most popular language modeling paradigm is the family of n-gram models.
Though simple, n-gram models have proven to be powerful and hard to outper-
form. Lot of work has been done in developing models that would better utilize
syntactic or semantic structure of the language. In literature, language models that
model different aspects of language have successfully been combined together. A lot
of methods for combining language models together have been presented. However,
a thorough investigation of different combination methods has not been done.

The purpose of this work is to study different methods that have been used in combin-
ing language models. The objective is to compare the pros and cons of the methods
and to form a picture in which techniques are applicable in different situations. Also
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CHAPTER 1. INTRODUCTION

a new approach based on multivariate function estimation is presented for combining
language models.

In the experimental phase of the work, four combination methods, linear interpola-
tion, log-linear interpolation, unigram rescaling, and the new bin estimation method,
are used in combining four language models. The experiments are run on Finnish
news data and the methods are evaluated using both perplexity experiments and
speech recognition tests. Most of the experiments are reproductions of works pre-
sented in the literature. However, the Finnish language and the use of morpheme-like
sub-word units as the basic units bring in a fresh aspect.

The organization of the work is following. In the second part of the introduction
(section 1.2) special properties of the Finnish language are considered from the point
of view of language modeling and speech recognition. In chapter 2 the language
models that are used in the experiments are represented. In chapter 3 the combina-
tion methods that are used in the language modeling are discussed. In chapter 4 the
experimental setup is explained and the results are analyzed. In the last chapter (5)
the final conclusions are summed up.

1.2 Properties of Finnish language

Finnish language has properties that make it more challenging target for language
modeling and speech recognition than for example English. Finnish has a big num-
ber of inflectional forms resulting in a big number of affixes that can be combined
successively, and also the word stems may be affected. This means that the total
number of possible words is enormous and traditional vocabulary based approaches
can not be used in continuous speech recognition. Even calculating only the base
forms, Finnish has quite a large vocabulary further emphasizing the problem.

Great deal of speech recognition research is done for English. Many of the developed
methods are universal and widely used for other languages, too. However, many
languages have features that produce problems that do not occur in English.

In Finnish, long and short phonemes are distinguished. Pylkkönen (2004) has stud-
ied modeling of the phone duration in the hidden Markov model framework and
shows that the duration modeling improves the speech recognition results for Finnish.
Phone durations do not, however, affect language modeling and the subject is not
considered in this work.

Because information about the relations of the sentence constituents is given in in-
flectional affixes, the word order in a sentence is quite relaxed. This may also degrade
the performance of the n-gram models that rely on the word order.
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CHAPTER 1. INTRODUCTION

From the point of view of statistical language modeling, the curse of dimensionality
caused by the large vocabulary and inflection is even worse problem in Finnish than
in many other languages. Some approaches to alleviate the problem have been sug-
gested. A natural approach is to use base forms of words. The problem with the base
forms is that the probability estimates must be determined for the inflected forms,
too. Base forms have been used for example in capturing the semantic content of
documents by Kurimo and Lagus (2002).

Another approach is to make use of the morphological structure of words (Geutner,
1995), (Schultz et al., 1999). Words can be decomposed to morphemes that are
considered to be the smallest meaning-bearing units of language. Creutz and Lagus
(2002) have presented two algorithms for automatically deriving morpheme-like units,
’morphs’, that try to approximate the natural morphemes. These morphs have been
used in automatic speech recognition by Siivola et al. (2003) resulting significantly
better performance than by using whole words or syllables. This approach is also
used in this work. The automatically derived morpheme-like units are learned from
the training data and used as the basic units in all language models.
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Chapter 2

Language models

2.1 N-gram models

N-gram models are the most important language models and standard components
in contemporary speech recognition systems. N-gram model is a simple but efficient
predictor for the following word given the immediately preceding words. The term
n-gram means a word sequence of length n. The n-gram models are simple Markov
models that make the assumption that the probability of the following word depends
only on the n − 1 preceding words. N-gram models are trained with a text corpus
and the probability is estimated using the maximum likelihood estimate

P (wi|wi−1
i−n+1) =

c(wii−n+1)

c(wi−1
i−n+1)

(2.1)

where wi−1
i−n+1 refers to word sequence wi−1wi−2 . . . wi−n+1 and c(wii−n+1) is the num-

ber of times the word sequence wii−n+1 occurs in the data. The simplest n-gram
model, having n = 1, is just the word probability regardless of the context. When
the value of n is increased, longer word history is taken into account and better
discrimination between words can be made. However, the complexity of the model
grows exponentially as the function of the order n. Thus, the greater order the more
data is needed to train the model and more memory is needed to store the model.
These reasons limit the model order. Typically the models used in speech recognition
systems are of order 2 to 5.

Higher order n-grams make better discrimination between words, while lower order
n-grams are more robustly trained with less training data. To take advantage of the
both, several n-gram models of different orders are trained and combined together
and used as a single model. Usually the combining is done using backoff (Katz, 1987)
or linear interpolation. Also maximum entropy modeling has been used by Rosenfeld
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CHAPTER 2. LANGUAGE MODELS

(1994). Usually the term n-gram model is used to refer to a compound model built
from the models of order 1 to n.

Smoothing

With a vocabulary of size |V|, the number of possible n-grams is |V|n. The typical
size of the vocabulary is tens of thousands of words. When n > 1 the number of
the n-grams becomes large. Of course, most of these are extremely rear. However,
training a model that has such amount of parameters with data of any practical
size is prone to overfitting. Maximum likelihood estimate gives systematically too
large probabilities for events that have been seen in the training data and too small
probabilities, i.e. zero, for unseen ones. In speech recognition, a word having a
zero probability will automatically produce an error. In perplexity calculations the
zero probability makes the perplexity to go infinite. Thus, for every word in the
vocabulary we want a probability greater than zero in every context. This is done
so that for each word that has been seen in the data, the probability is lowered
from its ML-estimate and the probability mass is distributed to the unseen words.
The procedure is called smoothing since the resulting distribution is more uniform
or smoother than the original distribution.

Several methods have been proposed to carry out the smoothing of the probability
distributions. These include Good-Turing discounting (Good, 1953), Katz smooth-
ing (Katz, 1987), Witten-Bell discounting (Witten and Bell, 1991), and Kneser-Ney
smoothing (Kneser and Ney, 1995). Smoothing has remarkable effect on the per-
formance of the model. The experiments of Chen and Goodman (1998) show that
Kneser-Ney and its modification outperform other smoothing methods. The Kneser-
Ney smoothing is also used with the n-gram models used in this work. In this section,
the main ideas of smoothing are presented. For more information about smoothing
methods, see the extensive study of Chen and Goodman (1998).

Smoothing methods consider three things: discounting, construction of the lower
order distributions, and combination of the different order n-grams. In discounting,
the count of how many times an event is observed in the data is modified. For the
events that are seen in the data, the count is lowered from the observed count. The
combination of the different order n-gram models is usually done using backoff or
linear interpolation. In most smoothing methods the lower order distributions are
constructed from the discounted counts like the highest order distribution. In the
Kneser-Ney smoothing the lower order distributions are calculated in a different way
based on the number of different contexts the particular word occurs after.
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CHAPTER 2. LANGUAGE MODELS

Most existing smoothing algorithms can be described with recursive equation

psmooth(wi|wi−1
i−n+1) =

{
α(wi|wi−1

i−n+1) if c(wii−n+1) > 0

γ(wi−1
i−n+1)psmooth(wi|wi−1

i−n+2) if c(wii−n+1) = 0
(2.2)

where α(w|h) is the distribution calculated from the discounted counts, γwi−1
i−n+1

is
a backoff term that is chosen to make the conditional probabilities sum to one, and
c(wii−n+1) is the count how many times word sequence wii−n+1 has occurred in the
training data. If an n-gram has a nonzero count then the distribution α(wi|wi−1

i−n+1)

is used. Otherwise, we backoff to the lower-order distribution psmooth(wi|wi−1
i−n+2).

Chen and Goodman (1998) call methods that fall directly into this framework as
backoff models. (Chen and Goodman, 1998)

Instead of using backoff, lower order n-grams can be combined with higher order
n-grams using linear interpolation:

psmooth(wi|wi−1
i−n+1) = λ0pML(wi) +

n−1∑

j=1

λjpML(wi|wi−1
i−j ) (2.3)

where λj ∈ [0, 1] and
∑n−1

j=0 λj = 1. Sometimes this is further interpolated with the
uniform distribution

puniform(wi) =
1

|V| (2.4)

where |V| is the size of the vocabulary. Using the recursive notation as in equation
2.2 the interpolated models can be described by equation

psmooth(wi|wi−1
i−n+1) = λn−1pML(wi|wi−1

i−n+1) + (1− λn−2)psmooth(wi|wi−1
i−n+2) (2.5)

This can be rewritten as

psmooth(wi|wi−1
i−n+1) = α′(wi|wi−1

i−n+1) + γwi−1
i−n+1

psmooth(wi|wi−1
i−n+2) (2.6)

where
α′(wi|wi−1

i−n+1) = λn−1pML(wi|wi−1
i−n+1) (2.7)

and
γwi−1

i−n+1
= 1− λn−1. (2.8)

By taking

α(wi|wi−1
i−n+1) = α′(wi|wi−1

i−n+1) + γwi−1
i−n+1

psmooth(wi|wi−1
i−n+2), (2.9)

it is seen that also these models can be presented by equation 2.2. Chen and Good-
man (1998) call this kind of models as interpolated models. They show that interpo-
lated models generally perform better than backoff models.

An essential part in the smoothing methods is the discounting. Instead of the count
of how many times an n-gram has been observed in the data, a modified value is
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CHAPTER 2. LANGUAGE MODELS

used. The purpose of the discounting is to shift probability mass from the observed
events to the unseen events. A lot of discounting methods have been presented in the
literature. Here two most important ones, Good-Turing and absolute discounting,
are described.

Good-Turing discounting (Good, 1953) is central to many smoothing techniques. The
Good-Turing discounting means that for any n-gram that occurs r times, modified
count r∗ is used, calculated as

r∗ = (r + 1)
nr+1

nr
(2.10)

where nr is the number of n-grams that occur exactly r times in the training data.
This is converted to a probability by normalizing. For an n-gram wk+n−1

k with r
counts

PGood−Turing(w
k+n−1
k ) =

r∗∑∞
r=0 nrr

∗ (2.11)

Rewriting the denominator as

∞∑

r=0

nrr
∗ =

∞∑

r=0

(r + 1)nr+1 =

∞∑

r=1

rnr (2.12)

we see that the denominator is the original number of counts in the distribution.
(Chen and Goodman, 1998)

In the absolute discounting (Ney et al., 1994) a fixed count D ≤ 1 is subtracted from
each nonzero count. Ney et al. (1994) suggest setting D through deleted estimation
on the training data arriving at the estimate

D =
y1

y1 + 2y2
(2.13)

where y1 and y2 are the total number of n-grams with exactly one and two counts.
Chen and Goodman (1998) suggest using different discounting terms D1, D2, and
D3+ for cases where the n-gram has occurred 1, 2, or three or more times. In practice,
the discounting constants are usually optimized on held out data.

Kneser-Ney smoothing

Kneser-Ney smoothing (Kneser and Ney, 1995) takes advantage of the absolute dis-
counting. In addition, the lower order distributions are built in a novel manner,
while in other smoothing methods the discounted lower order distributions are used
as such. The lower order n-gram information is useful mainly in cases where the
higher order information is missing or estimated only from few counts. So the lower
order distributions should be optimized for the use in these cases.
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CHAPTER 2. LANGUAGE MODELS

Kneser-Ney smoothed backoff model is described by equation

PKN (wi|wi−1
i−n+1) =





max{c(wii−n+1)−D,0}∑
wi
c(wii−n+1)

if c(wii−n+1) > 0

γ(wi−1
i−n+1)PKN (wi|wi−1

i−n+2) if c(wii−n+1) = 0
(2.14)

where c(wi−1
i−n+1) is the number of times the word sequence wi−1

i−n+1 has occurred in
the data, D is a constant determined by equation 2.13 or optimized on the data, and
γ(wi−1

i−n+1) is the backoff term that is chosen to make the probabilities to sum up
to one. In Kneser-Ney smoothing the lower order distribution is chosen so that the
marginals of the smoothed higher order distribution will match the marginals of the
training data

∑

wi−n+1∈V
pKN(wii−n+1) =

c(wii−n+2)∑
wi
c(wii−n+2)

(2.15)

The left hand side of the equation is the marginal probability for wii−n+2 given the
smoothed (n− 1)-gram distribution pKN . The right-hand side of the equation is the
observed frequency of wi to occur after word sequence wi−1

i−n+2 in the data. Kneser
and Ney (1995) show that this leads to expression

pKN(wi|wi−1
i−n+2) =

N1+(•wii−n+2)

N1+(•wi−1
i−n+2•)

(2.16)

where
N1+(•wii−n+2) = |{wi−n+1 : c(wii−n+1) > 0}| and (2.17)

N1+(•wi−1
i−n+2•) = |{(wi−n+1, wi) : c(wii−n+1) > 0}| =

∑

wi

N1+(•wii−n+2). (2.18)

In words, N1+(•wii−n+2) refers to the number of different words that precede the
(n− 1)-gram wii−n+2. For the derivation, see (Kneser and Ney, 1995) or (Chen and
Goodman, 1998). This means that the lower order distribution is built from the num-
ber of different contexts the word or the word sequence occurs in the data. Goodman
(2000) gives a theoretical justification for building the lower order distributions so
that they satisfy the equation 2.15

Variations

Since their introduce a lot of variations have been suggested to the basic n-gram
paradigm. As one moves towards higher order n-grams, the chance of having seen
the exact context in the training data becomes very small. Instead, contexts where
most of the words are same may have been seen. To utilise this this observation,
skipping models have been used by Rosenfeld (1994), Huang et al. (1993), Ney et al.
(1994), Martin et al. (1999), Siu and Ostendorf (2000). In skipping models, one or
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CHAPTER 2. LANGUAGE MODELS

more words in the context are skipped. For example, a model is created to estimate
probability P (wi|wi−1wi−3wi−4) or P (wi|wi−2wi−3wi−4). (Goodman, 2001)

Another more commonly used approach to ease the problem of data sparsity is word
clustering. Word clustering can be used with many kind of language models, not only
n-gram models, and the basis on how the clustering is done varies by the purpose.
With n-gram models the purpose of clustering is to group words that occur in similar
contexts together. For example, we may have seen the sentence ”A man bought some
bread”. If we have managed to cluster words bread and cake to the same cluster, we
might be able to give the sentence ”A man bought some cake” high probability even
if the word cake had never occurred in the particular context. Different clustering
may be used for words in the context and words to be predicted. Besides improving
perplexity, clustering may also help to compress the language model. (Goodman,
2001)

Though simple, n-gram models have shown to be efficient and hard to beat. Usually
new language models that are introduced incorporate also an n-gram model in it.
The reasons for the use of the n-gram model are its efficiency and simplicity and
good performance.

2.2 Modeling long range dependencies

The n-gram models have some well known drawbacks. While the n-gram models are
good in capturing the local dependence of words, they do not take any long range
information like semantic relationships of the words into account. In language, the
vocabulary may vary strongly depending on the subject and the situation. While
the n-gram models are good in capturing the local dependencies of words, they fail
to model long range dependencies, like topical coherence, between the words.

Several approaches have been proposed to utilise long span information in language
modeling. The most simple method is cache model, first presented by Kuhn and
de Mori (1990), that raises the probability of the words that have occurred in the
history. Generalisation to this are trigger models (Rosenfeld, 1994) in which an
occurrence of a word raises also the probabilities of some other words that occur
often in the same context.

In mixture models (Iyer and Ostendorf, 1999) the text is segmented into units that
can be sentences, paragraphs, or articles. Similar units are clustered together and
for each cluster a separate n-gram model is trained. The probability of a word is
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CHAPTER 2. LANGUAGE MODELS

then calculated as a weighted sum of each model as

P (wi|h) =
K∑

k=1

λkPk(wi|h). (2.19)

where again λk ∈ [0, 1],
∑K

k=1 λk = 1, and Pk is the probability estimate given by
the k’th model. Different similarity measures can be used for clustering. Iyer and
Ostendorf use a measure based on the number of content words in common between
the two clusters. Regardless of the exact form of the similarity measure, the clusters
are assumed to be homogeneous in some sense, and better models are expected to
be trained for these coherent clusters.

Kurimo and Lagus (2002) use self organizing map in clustering documents based
on their word distributions. Specific bigram models are built for each cluster as in
mixture models. Chen et al. (1998b) propose several methods for topic adaptation
using unnormalized exponential models, while Martin et al. (1997) use variable length
n-grams to achieve topic dependency.

In this work, three models that try to catch long range dependencies are used: cache
model, LSA model, and topic model. A bigram cache model stores all words and
bigrams that have been encountered in the document so far. A model based on
latent semantic analysis (Bellegarda, 2000), referred here as the LSA model, models
the semantic relations between words based on their co-occurrences in the documents.
The third model is the topic-based language model presented by Gildea and Hofmann
(1999). In the following chapters, these models are represented in the form they are
used in this work.

2.3 Cache model

A word that has occurred in the past is much more likely to re-occur in the near
future than would be expected from its global frequency. A simple way to utilize this
phenomenon in language modeling is to keep track of the words that have occurred
and to raise their probability estimates in the future. This kind of models are known
as cache models, first introduced by Kuhn and de Mori (1990) and Jelinek et al.
(1991)

A simple approach to implement a cache model is to store the words that have been
covered so far to the cache and keep count of their occurrences. A generalization to
this is to store n-grams with n > 1 in addition to the unigrams. An ordinary n-gram
model is constructed from the content of the cache, and the probability is determined
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CHAPTER 2. LANGUAGE MODELS

as

Punicache(wi) =
1

i− 1

i−1∑

j=1

I(wj = wi) (2.20)

where I(x) is an indicator function which is 1 if x is true and 0 otherwise. The
generalization to higher order n-grams is presented as

Pngram cache(wi|wi−1
1 ) =

∑i−n
j=1 I(wj+n−1

j = wii−n+1)
∑i−n

j=1 I(wj+n−2
j = wi−1

i−n+1)
(2.21)

The different order n-grams can be combined using backoff or linear interpolation.
We choose to use the interpolation, because backoff would need recalculation of the
backoff weights each time a word is appended to the cache. As the cache model is
constructed based on very little data, the higher order n-grams are very unreliable and
the lower order information is more useful than in normal n-gram models. To make
the best use of the different order n-grams, the interpolation weights are adjusted
depending on the frequency of the context. The context means here the n−1 previous
words where n is the order of the highest order n-gram used in the cache model. If the
context has occurred several times in the history, more weight is given to the higher
order n-gram, and if the context has not occurred before, the cache probability is
purely determined by the unigram frequencies. Adjusting the interpolation weights
based on the frequency of the context has been studied by Jelinek and Mercer (1980).

In this work, a bigram cache is used, i.e. unigrams and bigrams are stored into
the cache. The probability is determined as a weighted sum of unigram and bigram
probabilities as P (wi|wi−1) = βPuni(wi)+(1−β)Pbi(wi|wi−1) where the interpolation
weight β is adjusted by formula

β(wi−1) = max{β0(1− c(wi−1)

a
), b} (2.22)

where constants β0, a, and b, for which 0 ≤ β0 ≤ 1, a > 0, and 0 ≤ b ≤ 1, are
optimised on the development data. Term a determines the sharpness of the slope
and term b sets a minimum value under which the weight of the unigram cache will
not fall.

Discounting could be used as is normally done with the n-grams models. This is
however irrelevant, specially when not using the backoff method, since the purpose
of the cache is just to boost the probabilities of the words that have occurred in
the near history, and not to try to construct a language model for all words. Cache
model is always used together with other models like an n-gram model.

Clarkson and Robinson (1997) has shown that the probability of a word to reoccur
decreases as a function of the distance to the previous occurrence. One way to take
advantage of this information is to limit the cache size. Clarkson used successfully
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a model where the probability estimate of a word was exponentially decreasing as a
function of the distance to the last occurrence of the word. If the data in use has
been segmented to topically homogeneous documents it may also be useful to clear
the cache between the documents.

The trigger model presented by Rosenfeld (1994) can be considered as a general-
ization to the cache model. In trigger model an occurrence of a word increases the
probabilities of also some other words than just the word itself. Rosenfeld uses max-
imum entropy framework in combining the trigger information to the n-gram model.

Three-value cache

It is not clear what is the optimal way to formulate the cache model and how to turn
the information in the cache model into a probability estimate. The cache model
presented above is a rather heuristic way of boosting the probabilities of the recently
occurred words. In this subsection I will present another formulation of the cache
model that we call three-value cache. The structure of the model is similar to the
model presented above but the difference is in how the output is defined. The three-
value cache gives as the output one of the three values: 0, 1, and 2. The output
is

0 if the word is not in the cache
1 if the word is in the cache but not with the current bigram context
2 if the word is in the cache with the current bigram context.

The output is no longer a probability estimate, but the task of transforming the
output to a proper probability estimate is left for the user. Obviously, information
of the frequency of the cached words is lost this way. What we expect to benefit
from this is that now we can explicitly make distinction between the three cases
enumerated in the definition. The bin estimation method that is presented in chapter
3.5 is well suited for utilizing the cache information of this form. We will see that this
formulation facilitates remarkable reduction in the number of parameters used in the
bin estimation method. In chapter 4 both formulations are used in the experiments
to compare their performance.

2.4 Latent semantic analysis

One proposed approach to utilize the knowledge about longer distance dependencies
between the words is the latent semantic analysis (LSA). LSA is a paradigm that
extracts salient relationships between words based on the information about which
words tend to occur in the same context. (Bellegarda et al., 1996), (Bellegarda,
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1997), (Coccaro and Jurafsky, 1998)

Mathematically the relevant part of the LSA is the singular value decomposition
(SVD) that is used to reduce the dimensionality of the word-document co-occurrence
matrix thus producing a compact representation of the relationships between words
and documents. The use of SVD for information retrieval purposes was introduced
in 90’s as latent semantic indexing (LSI) by Deerwester et al. (1990).

LSA begins with a word-document co-occurrence matrix W where element Wi,j is
the number of times word wi occurs in document dj normalized by the document
length. Not all words are semantically equally important. Many common words, like
and, or, and is, can occur in any semantic context and do not carry much information
about the content. Usually the matrix elements Wi,j are weighted by the semantical
importance of the word wi. How to measure semantical importance is not trivial and
several formulations have been suggested by the information retrieval community.
Bellegarda (2000) uses normalized word entropy calculated by equation

εi = − 1

logN

N∑

j=1

ci,j
ti

log
ci,j
ti
, (2.23)

where ci,j is the number of times word wi occurs in document dj, ti =
∑

j ci,j is the
total number of times word wi occurs in the whole data, and N is the number of the
documents.

A simpler weighting function, which is also used in this work, is the document fre-
quency defined as

εi =
log qi
logN

, (2.24)

where qi is the number of documents the word wi occurs in and N is the total number
of documents.

Using the weighting for words, the element Wi,j is presented as

Wi,j = (1− εi)
ci,j
nj

(2.25)

where nj is the total number of words present in document dj and εi is calculated
using 2.23 or 2.24.

The i’th row of the matrix W can be interpreted as a feature vector of word wi and
correspondingly, the j’th column as a feature vector of document dj . This feature
presentation is, however, impractical since the dimension of the both vectors is very
high, and most of the elements are zero. (Bellegarda, 2000)

Singular value decomposition (SVD) is a method from linear algebra that can be
used to reduce the dimensionality of a matrix. SVD is closely related to eigenvector
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decomposition and factor analysis. SVD gives a decomposition of M ×N -matrix W
to three matrices U , S, and V as follows:

W ≈ Ŵ = USV T (2.26)

where
U M ×R left singular matrix with row vectors ui, i ∈ [1, ...,M ]
S R×R diagonal matrix with singular values in descending order
V N ×R right singular matrix with row vectors vj, j ∈ [1, ..., N ]
R ≤ min(M,N).
In the case R = M = N , W = Ŵ . In our purpose, however, R� min(M,N).

Both left and right singular matrices U and V are column-orthonormal, i.e., U TU =
V TV = IR. This means that the column vectors of U and V both define an or-
thonormal basis for the space of dimension R spanned by the row vectors of matrices
U and V , correspondingly.

SVD has profitable properties that make it appealing in reducing the dimension of
the co-occurrence matrix W . It can be shown that matrix Ŵ is the best rank-R
approximation to the co-occurrence matrix W for any unitarily invariant norm. The
column vectors of matrices U and V span the new feature space S of dimension R.
In this feature space, word wi is presented as uiS and document dj as vjS, where ui
and vj are the i’th and the j’th row vectors of matrices U and V , correspondingly.
This means that the words and the documents are presented as linear combinations
of latent features that arise from the SVD mechanism. The features are such that
they minimally span the words in the vocabulary V and the documents in the corpus
T .

SVD provides us a vector presentation that depicts the semantic information of
the words and the documents. The semantic relation between a word and a doc-
ument can be measured by their distance in the space S using some suitable dis-
tance measure. The element Wi,j of the co-occurrence matrix W depicts the ex-
tent to which word wi and document dj co-occur in the training data. Note that
W = USV T = US1/2S1/2V T . So the cell (i, j) of the matrix W can be obtained as
a dot product of the i’th row of US1/2 and the j’th row of V S1/2, written as uiS1/2

and vjS1/2. Giving this reasoning, Bellegarda suggests the dot product

K(wi, dj) = cos(uiS
1/2, djS

1/2) =
uiSd

T
j

||uiS1/2|| ||djS1/2|| (2.27)

as a natural “closeness” measure between words and documents. Value K(wi, dj) = 1
means that word wi is strongly related to the document dj , while K(wi, dj) << 1
means that the word is not related to the topic of the document. Rigorously, 2.27
is not a proper distance measure as it gives also negative values and the distance of
a vector to itself is not zero. A proper distance measure can be derived from it, for
example, by taking arcus cosine of K(wi, dj) defined in equation 2.27. In this work,
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the values are simply shifted and scaled to range [0, 1], and the distance measure is
defined as

K(wi, dj) =
1

2
(1 +

uiSd
T
j

||uiS1/2|| ||djS1/2|| ) (2.28)

During testing, the history vector d̃ is constructed from the words that have been
seen in the document so far. The history vector is the weighted average of the word
feature vectors where the words are weighted using equation 2.23 or 2.24. The history
vector is calculated using the update rule

d̃k =
1

nk
[(nk − 1)dk−1 + (1− εi)ui]. (2.29)

presented by Bellegarda (2000). Bellegarda uses also exponential decay to progres-
sively discount the older utterances. The modified formula is

d̃k =
1

nk
[λ(nk − 1)dk−1 + (1− εi)ui], (2.30)

where 0 < λ ≤ 1. In this work the documents are considered homogeneous and λ is
set to one.

Having defined the distance measure K and the history vector d̃, the last step is
to transform the distance measure K(w, d̃) to a proper probability estimate P (w|d̃).
Various formulations have been suggested. Coccaro and Jurafsky (1998) used formu-
lation

P (wi|d̃) =
(cos(wi, d̃)−minj cos(wj , d̃))γ∑
j cos(wi, d̃)−minj cos(wi, d̃)

, (2.31)

where the exponent γ is used to expand the dynamic range of the distribution.
Bellegarda (2000) used some kind of multivariate distribution estimation. In this
work a simplified version of 2.31 is used:

P (wi|d̃) =
K(wi, d̃)γ∑
jK(wj , d̃)γ

(2.32)

where the exponent γ is optimized on the training data. The dynamic range of the dot
product 2.27 is narrow what for the exponent γ is used to give better differentiation
between words.

LSA is a versatile framework and its range of use is not limited to what has been
presented here. SVD gives a compact feature presentation for words and documents.
Bellegarda utilizes this aspect in clustering words and documents to semantically
motivated clusters. Using both word and document clustering in smoothing the
probability distributions, Bellegarda achieved 53 % perplexity reduction to the bi-
gram baseline while without clustering the reduction was 32 %. With trigrams the
perplexity reductions were 33 % and 19 %, correspondingly.
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2.5 Topic model

Gildea and Hofmann (1999) proposed a topic model that presents topic information
as latent variables. The word probability is given as

P (w|h) =

T∑

t=1

P (w|t)P (t|h). (2.33)

Here t is a latent variable that is supposed to refer to different topics. P (w|t) is the
topic-specific probability distribution and P (t|h) is the mixing weight that depends
on the history. From 2.33 we see that the topic information affects only the unigram
probabilities. However, this is not a principled limitation of the model.

Topic Decomposition

The topics are learned automatically from the data using an EM-algorithm and no
hand-labeled topic information is used. However, the number of the topic variables
must be decided. The data is seen as unigrams and the higher order structures are
not considered by the model. So the data can be expressed as a word-document
matrix W where the element W (i, j) denotes how many times word wi occurs in
document dj . The job is to find distributions P (w|t) and P (t|d) that maximize the
log-probability of the training data

l(Θ;W ) =
∑

<w,d>

W (w, d) log
∑

t

P (w|t)P (t|d). (2.34)

Here Θ refers the to the model parameters t ∈ {1, . . . T}.

In the training phase, the parameters P (w|t) and P (t|d) are initialized randomly.
The EM-algorithm involves two steps that are repeated. In the E-step, the posterior
probabilities of the latent variables P (t|w, d) are calculated using the model param-
eters P (w|t) and P (t|d). In the M-step, the parameters P (t|d) are re-estimated.

In the E-step the probability that a particular word w in the document d was gener-
ated by the topic factor t is calculated. For the r’th iteration Bayes’ rule yields

P (r)(t|w, d) =
P (r−1)(w|t)P (r−1)(t|d)

∑T
t′=1 P

(r−1)(w|t′)P (r−1)(t′|d)
. (2.35)

In the M-step the model parameters are recalculated given the values for the latent
variables P (r)(t|w, d) that were calculated in the previous E-step:

P (r)(w|t) =

∑
d n(w, d)P (r)(t|w, d)∑

w′
∑

d n(w′, d)P (r)(t|w′, d)
, (2.36)

21



CHAPTER 2. LANGUAGE MODELS

P (r)(t|d) =

∑
w n(w, d)P (r)(t|w, d)∑

t′
∑

w n(w, d)P (r)(t′|w, d)
. (2.37)

In the original paper (Gildea and Hofmann, 1999), a modified version of E-step was
used to prevent overfitting.

Using the model

In testing, the job is to estimate the mixing portions P (t|h) as the current document
is revealed. P (t|h) can be determined by keeping the probabilities P (w|t) fixed while
estimating P (t|h) and iterating 2.35 and 2.37 over the words seen in the current
document so far. Doing the full EM calculation each time would be time consuming.
Instead, an online approximation is used to calculate P (t|h):

P (t|hi) =
1

i+ 1

P (wi|t)P (t|hi−1)∑
t′ P (wi|t′)P (t′|hi−1)

+
i

i+ 1
P (t|hi−1), (2.38)

P (t|h1) = P (t) =

∑
w,d n(w, d)P (t|d)∑

w,d n(w, d)
. (2.39)

Gildea and Hofmann state that using full EM iterations gave only negligible improve-
ment with higher computational cost. Once the topic mixing weights P (t|h) have
been determined, word probabilities can be calculated using the formula 2.33.

2.6 Morph based language models

The large number of words caused by inflection produces severe problems in lan-
guage modeling. Any vocabulary of practical size cannot cover adequately all words,
and the out-of-vocabulary-rate will be intolerably high. Also, the large vocabulary
worsens the problem of data sparsity. The larger the vocabulary, the more data
is needed to train the language model properly and the resulting language models
will be larger. To overcome these problems, Creutz and Lagus (2002) presented two
algorithms to automatically split words into smaller units “morphs” that approxi-
mate the natural morphemes. Using the morphs, the size of the vocabulary can be
reduced dramatically. Now different inflectional forms of the same word need not
to be included in the dictionary, since the words are presented as concatenations
of the morphs. For example, the Finnish word autonkuljettajallekin is divided to
morphemes as auto|n|kuljetta|ja|lle|kin. Siivola et al. (2003) have used morphs in
automatic speech recognition and show that using morphs as the basic language
model units yields superior performance compared to using words or syllables.
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In this work, the morphs are learned from the training data by the algorithm pre-
sented by Creutz and Lagus (2002). The algorithm tries to construct a model that
minimizes the description length of the data. This means that both the lexicon, i.e.
the set of morphs, and the data, presented as the morphs, should be as compact as
possible. For the detailed description of the algorithm, see (Creutz and Lagus, 2002).

The morphs are used as basic units in all language models in this work. Here the
corpus was preprocessed so that the words that occurred only once were removed.
Rest of the words were included to the corpus only once. So instead of minimizing
the description length of the data, the description length of the vocabulary was
minimized, since this yields smaller lexicon which tends to produce better results in
speech recognition.

A problem that arises in speech recognition when using sub-word units instead of
whole words is that we no longer know where the previous word ends and the next
one begins. In most cases, continuous speech does not give any acoustical information
about the word boundaries. So the word boundaries have to be determined by the
language model. In the training data the word boundaries are marked with symbol
<w> and treated as normal morphs. During recognition, for each hypothesis also
another hypothesis, where a word boundary is added to the end, is created.

2.7 Handling OOV words

Any vocabulary of practical size does not contain all words with different word forms.
Thus it is possible that the test data contain words that are not in the vocabulary.
The language model would give zero probability to such words making the perplexity
go infinite. In practice, OOV words are skipped and the perplexity is calculated only
over the words that exist in the vocabulary. Having a small vocabulary yields low
perplexities as the probability mass is shared only to a small number of words, but
the OOV rate grows high. Thus, the perplexity value alone does not determine the
quality of the language model but traditionally the perplexity value and the portion
of OOV words (OOV rate) in the test data are both given.

Sometimes the problem of OOV words is solved so that all OOV words are mapped
to a single symbol “<unk>”. A probability for the <unk> symbol is then estimated
as for any other word. However, if the vocabulary is chosen to contain all the words
in the training data, then the probability for the <unk> symbol can not be estimated
this way. In that case, an arbitrary probability value is assigned to <unk> (Clarkson
and Robinson, 1997).

Another solution for determining probability estimates for the unseen words is arises
from the use of the sub-word units. Words that are not in the vocabulary are split into
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smaller units that exist in the vocabulary. This way, to any word can be calculated a
probability, regardless of whether it has been seen in the training data. This means
that we have virtually an unlimited vocabulary. This approach is used also in this
work.

2.8 Evaluating the language models

The quality of a language model is best evaluated by measuring the performance of
the target system that it is used in. In speech recognition this means measuring the
word or phoneme error rate in speech recognition experiments. However, running a
lot of speech recognition tests is time consuming. Optimizing a possibly large set of
language model parameters would also need a large amount of speech data which is
not always available. Thus, we need faster ways to evaluate language models.

The most common measure for evaluating language models is perplexity (ppl) cal-
culated over a text, defined as

ppl = N

√√√√
N∏

i=1

1

P (wi|wi−1
1 )

(2.40)

where N is the number of the words in the data. Perplexity measures how well
the model predicts the given word sequence. For example, perplexity of a model
that gives the same probability for each word equals to the number of words in the
vocabulary. So the perplexity can be figured as being approximately the number of
equally probable words that the model has to choose from. The better the language
model the lower the perplexity. Perplexity value 1 means that the model predicts
the following word with certainty.

It is known that perplexity does not predict word error rate in speech recognition
systems very well and several alternatives have been suggested. Bahl et al. (1989)
claim that recognition errors are strongly correlated with low-probability language
model predictions and suggest using the percentage of the text that was predicted
with low probability. Chen et al. (1998a) show that perplexity is a good predictor of
the word error rate for conventional n-gram models that have been trained with data
from the same domain as the data that the tests are run with. They also present
two measures that outperform the perplexity on other than n-gram models. M-ref
tries to extend the perplexity by relaxing the assumption that the function between
the perplexity and the word-error rate is linear. The other measure imitates the
word error calculation by artificially generated speech recognition lattices. Clarkson
and Robinson (1997) show that a combination of the log probability and the entropy
leads to a measure that correlates with word-error rate better than the perplexity.
For more information on different measures for language model quality, see Chen
et al. (1998a).
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In this work, perplexity is used to measure the language model quality. Despite
of its drawbacks, perplexity is the most commonly used measure. So the results
are more easily compared with other researchers’ work. The language models and
the parameters used in the combination methods are optimized to minimize the
perplexity over the training data and the development data, correspondingly. All
results are given as perplexities or relative perplexity reductions compared to the
baseline.

Usually the language model perplexity is calculated over words as defined in equation
(2.40). When using morphs or other sub-word units instead of whole words this has
to be taken into account, and the measure is re-written as

ppl = N

√√√√
L∏

i=1

1

P (wi|wi−1
1 )

(2.41)

where N is the number of words as in equation (2.40) and L is the number of tokens,
i.e. morphs + word boundaries. This way the perplexity is independent of the choice
of the morph set. The absolute perplexity values are actually not very interesting
since in addition to the language model, they depend also on the test data. In this
work we are more interested in the relative perplexity reductions compared to a
well-reasoned baseline.
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Chapter 3

Combination methods

The major target of this thesis work is to study methods for combining different
language models together. In this chapter, five methods that are used in the literature
are described. In addition, a new approach based on histogram estimation of the
likelihood density function is introduced.

The five discussed combination methods are backoff, linear interpolation, log-linear
interpolation, unigram rescaling, and maximum entropy modeling. In the backoff
method the models are sorted and the best model is used whenever possible. In the
linear interpolation the probability is calculated as a weighted sum of the compo-
nent probabilities. In the log-linear interpolation the component values are scaled
with suitable exponent values and multiplied together, and in the unigram rescaling
method the product is in addition divided by the unigram probability.

The backoff and the linear interpolation are more or less heuristic methods as it is
not straightforward to give a probabilistic interpretation to them. Bellegarda (2000)
shows that the unigram rescaling can be derived for combining the LSA and the n-
gram model together under relatively mild assumptions. The log-linear interpolation
can be seen as a special case of the unigram rescaling when uniform prior distribution
is used. In the bin estimation method the likelihood for a word to occur given the
component probabilities is estimated using histograms. All these methods are blind
in the sense that they only take the output values of the models as inputs and do
not utilize any context information. A completely different approach is taken in
the maximum entropy modeling where a single model is created to incorporate the
different information sources using the maximum entropy principle.
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3.1 Backoff

Backoff is a simple but efficient combination method originally proposed by Katz
(1987) for combining different order n-gram models together. In backoff method,
The language models are ordered from the most specific to the most general model.
For n-gram models the highest order n-gram model is naturally the most specific
model and the unigram model is the most general model. The specific model uses
more information than the general model and thus the specific model is used whenever
possible. If the probability for an event is missing from the specific (higher order)
model we back off to the more general (lower order) model. The backoff model is
defined recursively as:

P (wi|h) =

{
PQ(wi|h), if PQ(wi|h) > 0
BhPQ−1(wi|h), if PQ(wi|h) = 0

(3.1)

where PQ(wi|h) is the probability estimate of the order Qmodel and Bh is the backoff
weight that is calculated for each context h to make the conditional probabilities to
sum up to 1.

When using the backoff method, some discounting method must be used to shift
some of the probability mass to the unseen events1. Otherwise there would be no
probability mass left for the words that are not present in the higher order model
and thus the lower order n-gram would be used only in the case that the context h
was not present in the higher order model.

Backoff method has the advantage that it can be stored compactly and the proba-
bilities can be calculated efficiently. Backoff method does not actually combine the
information sources but rather chooses one among them. The lower order models
make no contribution to the probability estimate if the event is present in the higher
order model. As the higher order model suffers more from the data sparsity, it might
be useful to use also the lower order model even though the probability in the higher
order model was available. Another drawback in the backoff method is that it ex-
hibits a discontinuity around the point where the backoff decision is made. Chen and
Goodman (1998) have shown that n-gram models consistently work better when the
combination is done using linear interpolation than when using backoff.

Ordering the models according to their generality is straightforward with normal
n-gram models but when more complex models, e.g. cluster or skipping models, are
used, the correct order may not be trivial and the best backoff path has to be defined
experimentally. Kirchhoff et al. (2002) have used the backoff method with factorial
models where the number of possible backoff paths is huge. To find the optimal
backoff path they have used genetic algorithms. They also presented a generalization
to the backoff scheme using multiple backoff paths where the backing off can be done

1see section 2.1
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using several paths at the same time. As the linear interpolation tends to outperform
the backoff method with standard n-gram models it would be interesting to know
whether the linear interpolation could be used also with the factorial models and
how would the results compare to the reported ones.

The backoff method is not used in the experiments in this work. The major reason
for this is that the probability distributions of the long-range models change each
time a word is added to the history. This means that the backoff weights would
have to be re-calculated after each word. When combining the 4-gram with the topic
or the LSA model, the most natural order for the models would be 4-gram, 3-gram,
2-gram, topic/LSA, (and 1-gram). This would mean that the topic or the LSA model
would be used only in the case that the bigram context was not present in the n-
gram model. The proportion of such cases is quite small which might reduce the
effect of the model. For the cache model the best ordering is not as obvious. Using
the backoff method with the cache model would mean that some sort of discounting
would be needed to shift some probability mass from the cached words to the unseen
words to prevent zero probabilities. All this intricacy makes the backoff method
an unattractive choice with the cache model. The purpose of the cache is to boost
the probabilities of the occurred words rather than to create a complete language
model. So it is not likely to be useful alone but should always be used together with
some other model. As the backoff method does not actually combine the models but
chooses one of them, the backoff method is not likely to work well with the cache
model.

3.2 Linear interpolation

A simple and widely used combination method is linear interpolation. The linear
interpolation means taking a weighted sum of the components as

P (wi) =
K∑

k=1

λkPk(wi), (3.2)

where Pk’s are the component probability estimates for the word wi and λk’s are the
interpolation weights satisfying the constraints 0 <= λk <= 1 and

∑K
k=1 λk = 1.

The interpolation weights are optimized on the held-out data.

An advantage of the linear interpolation is that it is simple and fast to calculate.
If the inputs are probability estimates, also the output is a probability estimate.
Linear interpolation is also guaranteed not to give a worse estimate than the worst
of its components. In practice, if the test data is similar enough to the data that the
weights were optimized on, the linear interpolation performs at least as well as the
best component model.
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Linear interpolation can be interpreted as a weighted average of all models. Though
the linear interpolation is simple, it is hard to give a probabilistic justification to it,
but the method is rather heuristic way of combining the language models. In practice,
the linear interpolation has been found to work well in many cases. For example,
Goodman (2000) has used linear interpolation in combining several language models
together obtaining remarkable perplexity reduction over the single models.

A generalization to the basic idea is to use variable interpolation weights (Jelinek and
Mercer, 1980), (Rosenfeld, 1994). The weights could be adjusted on runtime based
on, for example, the estimation how reliable each model is in the current context.
Kalai et al. (1999) have used three methods for determining the interpolation weights
on-line achieving notably better perplexity results than using static interpolation
weights when using inhomogeneous data.

In this work, static interpolation weights are used. The linear interpolation method
is used in combining each of the topic, LSA, and the cache model with the 4-gram
model. The topic model tries to reveal the underlying word distribution that is
affected by the current topic. Remember, that in the standard interpolated n-gram
model the unigram probability is taken into account by interpolating it with the
higher order n-grams. Thus it seems reasonable to assume that interpolating the topic
dependent unigram probability of the topic model with the n-gram model should
improve the result. On the other hand, the word distribution of the topic model is
much more uniform than the distribution of the n-gram model. Interpolating the n-
gram model with the topic model will cause distribution smoothing compared to the
plain n-gram distribution thus weakening the discriminative capability of the model.
So it is likely that the optimal interpolation weight of the topic model will be quite
low which is also the contribution of the model in that case. Similar consideration
applies also to the LSA model. The cache model is quite different from the topic
and the LSA model. One interpretation of interpolation of the n-gram and the cache
model is that a part of the probability mass is reserved for the cache model to boost
the probabilities of the words that have been seen in the history.

3.3 Log-linear interpolation

Another simple combination method is log-linear interpolation, defined by equation

p(wi) ∼
K∏

k=1

Pk(wi)
λk (3.3)

where λk’s are scaling parameters that adjust the contribution of each component
model. Instead of summing the probabilities as in linear interpolation, the proba-
bilities are multiplied together. This corresponds to linear interpolation done in the
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logarithmic scale, where comes the name for the method. If λk = 0 then Pk(wi)λk is
one for all words wi ∈ V, and so the k’th model does not affect the total probability
at all.

The motivation behind the log-linear interpolation lies in the better interaction of
the components compared to the linear interpolation. When both components are
large, the result is larger than either of its components. Respectively, when both
components are small, the result is smaller than its components. This can be justified
by an example. Let us assume that we have a trigram model that gives a relatively
large value for a certain word. We have also a topic-based unigram model that gives
the word a raised probability compared to its global frequency, but lower than the
probability determined by the trigram model. Now it seems reasonable to assume
that the true probability of the word is higher than the probability given by the
trigram model.

A special case of the log-linear interpolation is the geometric mean, when
∑

k λk = 1
and 0 <= λk <= 1. However, we are not obliged to set such constraints to λ’s.

A drawback in the log-linear interpolation is that the output is no longer a probability
estimate as the sum of the values over all words is not necessarily one. Thus the result
must be normalized by equation

P (wi) =
p(wi)∑N
i=1 p(wi)

(3.4)

Normalization requires calculating the probabilities for all words in the vocabulary
and is thus computationally expensive. However, in speech recognition system the
constraint that a pure probability model is needed may possibly be loosened. What
we need is a number that describes the relative likelihood of a word so that it is
comparable with other words also in different contexts. The effect of omitting the
normalization in speech recognition is discussed in chapter 4.5.

3.4 Unigram rescaling

The unigram rescaling method is expressed by formula

p(wi|h) ∼ P1(wi|h)P2(wi|h)

P (wi)
(3.5)

where P1 and P2 are the component model probabilities and P (wi) is the normal un-
igram probability. Gildea and Hofmann (1999) presented the method for integrating
the topic model with the n-gram model and showed that it outperformed the linear
and the log-linear interpolation. Bellegarda (2000) used the method in combining the
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LSA model with the n-gram model and showed that the formula 3.5 can be derived
for the LSA model and the n-gram model under relatively mild assumptions. The
derivation is repeated here. The derivation starts from the overall language model
probability

P (wi|hN+L
i−1 ) = P (wi|hNi−1, h

L
i−1) (3.6)

where hNi−1 means the n-gram context wi−1
i−n+1,h

L
i−1 means the history seen by the

LSA-model, and hN+L
i−1 means the integration of the two. The expression can be

rewritten as

P (wi|hN+L
i−1 ) =

P (wi, h
L
i−1|hNi−1)∑

wj∈V P (wj , hLi−1|hNi−1)
(3.7)

where V refers to the vocabulary. The numerator in equation 3.7 can be expanded
and rearranged to

P (wi, h
L
i−1|hNi−1) = P (wi|hNi−1)P (hLi−1|wi, hNi−1) = P (wi|wi−1

i−n+1)P (d̃i−1|wi−1
i−n+1)

(3.8)
where d̃i−1 refers to the document constructed based on the revealed history hLi−1 as is
explained in sections 2.4 and 2.5. Now the assumption is made that the probability
of the document history given the current word is not affected by the immediate
context preceding it.

P (d̃i−1|wi−1
i−n+1) ≈ P (d̃i−1|wi) (3.9)

According to Bellegarda, if the document history is long enough, the semantic an-
choring should be sufficiently strong and the assumption should hold. Thus the
integrated probability becomes

P (wi|hN+L
i−1 ) =

P (wi|hNi−1)P (d̃i−1|wi)∑
wj∈V P (wj |wi−1

i−n+1)P (d̃i−1|wj)
. (3.10)

Using Bayes’ rule

P (d̃i−1|wi) =
P (wi|d̃i−1)P (d̃i−1)

P (wi)
(3.11)

and reducing P (d̃i−1) from the equation we get

P (wi|hN+L
i−1 ) =

P (wi|wi−1
i−n+1)P (wi|d̃i−1)

P (wi)

∑
wj∈V P (wj |wi−1

i−n+1)
P (wj |d̃i−1)
P (wj)

(3.12)

where P (wi) is the normal unigram probability of the word wi. (Bellegarda, 2000)

The term P (d̃i−1|wi) in 3.10 can be viewed as a prior probability on the current
document history. So 3.10 translates the classical Bayesian estimation of the n-gram
probability using a prior distribution obtained from LSA. (Bellegarda, 2000)
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In practice, the expression 3.12 is often modified so that scaling factors are used to
adjust the contribution of each model (Bellegarda, 2000)

P (wi|hN+L
i−1 ) =

P (wi|wi−1
i−n+1)λN P (wi|d̃i−1)λT

P (wi)λuni

∑
wj∈ P (wj |wi−1

i−n+1)λN
P (wj |d̃i−1)λT

P (wj)λuni

(3.13)

where λ’s are optimized on the development data.

Equation 3.12 was derived for the integration of n-gram and LSA models. The
derivation is applicable with similar assumptions also for the topic model 2.5. The
unigram rescaling method can be given an intuitive interpretation. The n-gram
probability is modified by the topic model factor

P (wi|d̃i−1)

P (wi)
(3.14)

The topic model factor 3.14 is greater than one, if the word has a raised probability
given the history, and less than one if the word has a lowered probability, compared
to the global probability P (wi).

3.5 Bin estimation method

In this section, a new approach based on multivariate likelihood density estimation is
introduced for combining language models. The derivation is given here for the case of
two models. To generalize the approach to any number of models is straightforward.

The idea in the method is to determine the probability for a word given the estimates
from the component models. To do this, the input space spanned by the component
model outputs is divided to bins, and the likelihood value is estimated for each bin.
Inside the bin the likelihood is assumed constant. The more dense grid the better
this assumption holds. In the following, the formula for the likelihood is derived and
an estimator for estimating the likelihood from data is presented.

Let us assume that we have two models MA and MB that produce probability es-
timates fA(wi|h) and fB(wi|h) for any word wi ∈ V. Now we want to know what
is the likelihood for word wi to occur in context h when the models give estimates
fA(wi|h) = a and fB(wi|h) = b. If the distributions are assumed to be continuous we
have to consider short intervals a ≤ fA < a+ε and b ≤ fB < b+ε to avoid zero prob-
abilities. This means that we divide the two dimensional probability space fA × fB
to rectangular bins that are denoted as Br = {(x1, x2) | a1

r ≤ x1 < a2
r , b

1
r ≤ x2 < b2r}.

So what we are interested in, is the likelihood

p(w = wi | fA(wi|h), fB(wi|h)) ≈ p(w = wi | (fA(wi|h), fB(wi|h)) ∈ Br) =: pBr .
(3.15)
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p
fB

fA

Figure 3.1: Mapping from probability space to likelihood

where bin Br is the bin for which (fA(wi|h), fB(wi|h)) ∈ Br.

The task is to estimate the likelihood defined by equation 3.15 for each bin from the
data. The training data is simply a sequence of words, which can also be presented
in form

(w1, h1), (w2, h2) . . . (wL, hL) (3.16)

where hk refers to the sequence of all preceding words hk = w1w2...wk−1. To be able
to estimate (3.15) we need to calculate fA(wj |hk) and fB(wj |hk) for all words wj in
the vocabulary in addition to the ’correct’ one that actually occurs in the data. Let
us use notation

xjk := (fA(wj |hk), fB(wj |hk)) (3.17)

to refer to the values from models MA and MB for word wj given the context hk.
Note that here the index j determines the word whereas the index k refers to the
position in the training data. Further, we define sequence

fk ∈ [1, 2, ..., N ], k ∈ [1, 2..., L] (3.18)

to refer to the index of the k’th word in the training data. Using this notation, the
training data can be presented as sequence (wf1 , h1), (wf2 , h2), ...(wfL , hL).

To estimate the likelihood defined in (3.15) we use estimator

p̂L =

∑L
k=1 I(xfkk ∈ Br)∑L

k=1

∑N
j=1 I(xjk ∈ Br)

(3.19)

The likelihood is estimated independently for each bin. Next it will be shown that
under some assumptions the estimator converges to the likelihood (3.15) that we
want to estimate. The estimator, defined in equation 3.19, can be rewritten as

p̂L =

∑L
k=1 I(xfkk ∈ Br)∑L

k=1

∑N
j=1 I(xjk ∈ Br)

=

NL(w = wi, (fA(wj |hk), fB(wj |hk)) ∈ Br)
NL((fA(wj |hk), fB(wj |hk)) ∈ Br)

(3.20)
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Let us assume that the elements in the sequence 3.17 are independent. Let us further
assume that there is a constant p′Br so that when L→∞ then 3.20 converges to it.
Then, according to the frequentistic interpretation of probability,

lim
L→∞

NL(w = wi, (fA(wj |hk), fB(wj |hk)) ∈ Br)
NL((fA(wj |hk), fB(wj |hk)) ∈ Br)

= p′Br = (3.21)

pBr = p(w = wi | (fA(wi|h), fB(wi|h)) ∈ Br) (3.22)

and so we have shown that the estimator converges to the likelihood. The indepen-
dence assumption of the elements in sequence 3.17 does not strictly hold. If we know
the probability estimate fA(wj |hk) then we know that fA(wt|hk) ≤ 1 − fA(wj |hk)
for all words wt, t 6= j. However, when the size of the vocabulary is large, the
independence should be a good approximation.

Equation (3.15) determines the likelihood for word wi to occur given the model
values. To transform this to a probability estimate the likelihood value has to be
normalised so that probabilities for all words in a given context sum up to one. The
normalisation is calculated by equation

P (w = wi|(fA(wi|h), fB(wi|h))) =
pBi∑

j:wj∈V pBj
, (3.23)

where Bi is the bin for which (fA(wi|h), fB(wi|h)) ∈ Bi, and Bj is the bin for which
(fA(wj |h), fB(wj |h)) ∈ Bj.

Now we have derived the likelihood for word wi to occur given the context and the
models. This is done by splitting the space defined by the model values (fA, fB) to
rectangular segments, call them bins, and doing the approximation that the likelihood
is constant in each bin. We have defined an estimator to estimate the likelihood from
data, and we have showed that under some assumptions the estimator converges to
the likelihood we want to estimate.

It is worth to note that nothing is assumed about the relationship of the models
MA and MB . Particularly, they are not assumed to be independent. Further, the
models MA and MB need not to be probability models and their outputs do not
have to belong between one and zero but any range of values is possible. Actually, in
this case the assumption that xjk’s, j ∈ [1, ..., N ] are independent is better justified.
The property, that the model values need not to be probability estimates, may be
useful in cases where it is uncertain how to transform the output of a model to a
probability estimate. This property is utilized with the three-value cache model and
also with the LSA model whose output is not a proper probability estimate since the
normalization is omitted to save computation time.

In the training phase, the likelihood (3.15) is estimated for each bin. In the test
phase, the model values fA(wi|h) and fB(wi|h) are calculated and the corresponding
bin Br for which (fA(wi|h), fB(wi|h)) ∈ Br is chosen to determine the likelihood.
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Likelihoods for all other words are determined similarly, and the probability estimate
is achieved doing the normalization by equation (3.23). In speech recognition, the
normalization step is omitted to save computation time. The effect of this approxi-
mation is discussed in section 4.5.

Grid selection

The splitting of the input space into bins and using a constant likelihood value inside
a bin introduces some quantization error. Tightening the grid would decrease the
error but at the same time it would make the likelihood estimates in each bin more
inaccurate as less data is left for each bin. Finding the optimal division means
minimizing the error produced by these two error sources. Generally, there is no
reason to be restricted on rectangular bins, and for example Gaussian mixtures could
be used. In this work, however, a rather simple way for determining the grid is
used. For more information on determining the division the reader is referred to see
literature on estimation theory, e.g. (Silverman, 1986).

In this work, the division was determined independently for each dimension. The
division was done as follows.

1. Probability values for all words in the development set are collected.

2. The division is chosen so that equivalent amount of the collected samples is
assigned to each block. This may not be strictly possible as the probability
estimators are not continuous in practice. This does not guarantee that equal
amount of samples is assigned to each bin in the resulting multidimensional
grid since the models are most likely not independent.

3. The block corresponding to the lowest probabilities is divided to four blocks.
Most of the words wjk, for which j 6= fk, get low probability estimates. So the
total number of samples that fall into the low probability blocks is large and
more dense grid can be used for the low probabilities. However, this depends
on the model.

For all models, splitting the range [0, 1] to 53 values was found to work well. The
only exception is the three-value-cache. The three-value-cache has only three possible
output values, which allows more dense division to be done for the 4-gram model.
When combining the three-value-cache and the 4-gram model, the axis corresponding
to the 4-gram values was divided to 250 parts.

A question that also arises from limited data is what to do with bins that have
no data at all. Some positive number must be assigned to such bins, too. Some
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heuristics can be used to estimate the value for such bins. For example, the value
can be interpolated from the neighboring bins. This should not be a big matter since
the model value pairs falling into such bins are rare concluding from their infrequency
in the development data.

The major drawback of the method is that it needs quite a large amount of data to
properly estimate the likelihood function, especially with several models and a dense
grid. As the method has not been used before, we do not know how sensitive the
method is for the choice of the grid.

3.6 Maximum entropy

All methods described above are blind methods in the sense that they do not use any
information about the models that are to be combined. The outputs of each model
are calculated independently and then the values are put into a formula to yield the
combined probability estimate. A totally different approach arises from information
theory. Maximum entropy (ME) method is based on the approach first proposed by
Jaines (1957).

In ME approach, a single model is built so that it incorporates the information of the
component models and assumes nothing more. In ME approach, language models,
generally information sources, set constraints that the model has to satisfy. From all
models that satisfy the constraints, the one which has the largest entropy is chosen.

How the constraints are presented in the maximum entropy approach is easiest to
understand by an example. A bigram model says that the probability for a word
given the previous word is P (wi|wi−1) = awi,wi−1 . In maximum entropy approach,
we loosen the requirement that the constraint P (wi|wi−1) = awi,wi−1 has to hold in
every case. We accept that there may be also other things that affect the probability
than just the previous word. Instead, we require that the constraint has to hold on
average

E
h ends in wi−1

[P (wi|wi−1)] = awi,wi−1 . (3.24)

In language modeling, we are usually interested in conditional probabilities P (w|h),
like above. In this section, the main ideas of the ME modeling are represented for
joint probabilities p(w, h), and in the end it is shown how to calculate the conditional
probabilities.

Any subset Ak of the event space S can be specified by an index function or feature
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function gk(s):

gk(s) =

{
1 if s ∈ Ak
0 otherwise

(3.25)

Using the feature function, the constraint

E
s∈Ak

[P (s)] = ak (3.26)

can be written as ∑

s∈S
p(s)gk(s) = ak. (3.27)

In fact, the function gk need not to be a binary function but any real-valued function
defined on S will do. This means that any kind of information source can be brought
into the ME model.

Constraints from any information source are given in the form of equation 3.27. The
constraints define a linear family of probability distributions

P = {p :
∑

s∈S
p(s)gk(s) = ak, 1 ≤ k ≤ K} (3.28)

Now our job is to find the distribution that maximizes the entropy

H(p) = −
∑

s∈S
p(s) log p(s) (3.29)

from the linear family P defined in equation 3.28. Maximizing the entropy is equiv-
alent to minimizing the I-divergence

D(p||q) =
∑

s∈S
p(s) log

p(s)

q(s)
(3.30)

between p and the uniform distribution q(s) = 1
|S| ,∀s. In this sense, the maximum

entropy distribution is the smoothest distribution satisfying the given constraints.

Jaines (1957) and Csiszàr (1975) have shown that if the constraints are consistent, a
unique ME solution is guaranteed to exist, and to be of the form:

p(s) =
K∏

k=1

α
gk(s)
k (3.31)

The maximum entropy distribution can be found using the generalized iterative scal-
ing (GIS) algorithm presented by Darroch and Ratcliff (1972).
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Generalized iterative scaling

Generalized iterative scaling (GIS) algorithm seeks iteratively the probability distri-
bution of exponential form

p(s) =
K∏

k=1

α
gk(s)
k , (3.32)

which satisfies linear constraints of the form 3.27. The i’th iteration of the algorithm
goes as follows:

1. Compute the expectations ãk of the gk’s under the current probability distri-
bution p(i):

ã
(i)
k =

∑

s∈S
p(i)(s)gk(s) (3.33)

2. Update the parameters αk

α
(i+1)
k = α

(i)
k

ak

ã
(i)
k

(3.34)

3. Define the new probability distribution based on the new α’s:

p(i+1)(s) =
∏

k

α
(i+1)gk(s)
k (3.35)

If there is a solution to the set of constraints, the GIS algorithm is guaranteed
to converge to the maximum entropy solution (Darroch and Ratcliff, 1972). GIS
has, however, some practical problems. First, the convergence is quite slow for
large models. Furthermore, intermediate values of model parameters may overflow
or underflow the range of double precision before convergence. Della Pietra et al.
(1997) have proposed the improved iterative scaling (IIS) algorithm to overcome these
computational problems. However, ME is related to the maximum likelihood and
more efficient optimization algorithms can be used in finding the model parameters.
This is discussed more later in this chapter after the calculation of the conditional
probabilities has been explained.

Conditional probabilities

In language modeling, we are usually interested in conditional probabilities p(w|h)
rather than joint probabilities p(h,w). The conditional probability is written as

p(y|x) =
1

z(h)

K∏

k=1

αgk(h,w), z(h) =
∑

w∈W

K∏

k=1

αgk(h,w) (3.36)
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To train the model parameter α’s by GIS, in each iteration we need to compute the
expectations of all features gk under the probability distribution p(i), as

p[gk] =
∑

<h,w>

p(h,w)gk(h,w) =
∑

<h,w>

gk(h,w)p(h)p(w|h), for k = 1, . . . K, (3.37)

For each feature gk, we must find all <h,w>’s for which gk is active. If any of the
feature functions is real-valued and depends on the whole history, whose length is
not bounded, then the number of possible histories is infinite. Even if the length
of the history was bounded, the number of possible histories could be too large for
enumerating them all.

A simple trigram model has |V|2 different histories, where |V| is the size of the
vocabulary. Features corresponding to the unigram probability constraints are active
for all histories and thus have |V|2 terms in the summation. This means that only
for unigram features the number of calculations is ∼ |V|3 for each iteration which is
quite intractable. (Wu, 2002)

Berger et al. (1996) suggest using empirical distribution p̃(h) obtained from training
data as the marginal distribution in the calculation of the expectations 3.37 instead
of the marginal distribution p(h). Equation 3.37 is thus approximated by

p[gk] =
∑

h,w

p(h,w)gk(h,w) ≈
∑

h,w

p̃(h)p(w|h), for k = 1, . . . ,K (3.38)

Now the training time is always limited by the length of the training data and the
computational load reduces to a fraction, since most of the trigram contexts, for
example, are never seen in the training data.

Feature selection for n-grams and cache

Next it will be described how to construct a ME model that incorporates infor-
mation from n-gram models and a cache model. Each n-gram probability estimate
P (wi|wi−1

i−n+1) = awii−n+1
induces to the model a constraint

E[P (wi|wi−1
i−n+1)] = awii−n+1

. (3.39)

where awii−n+1
is, for example, the maximum likelihood estimate of the n-gram prob-

ability P (wi|wi−1
i−n+1) in the training data. To write the constraint 3.39 in form 3.27

we have to define a feature function gi so that gi(h,w) is 1 when w = wi and history
h ends in word sequence wi−1

i−n+1, and 0 otherwise. For unigram probability P (wi)
the constraint is presented as

gwi(w, h) :=

{
1 if w = wi,
0 otherwise

(3.40)
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Using 3.40, the constraint 3.39 can be written as

E<h,w>[P (wi|h)] = E<h,w>[gwi(h,w)P (w|h)] =
∑

<h,w>

gwi(h,w)P (w|h)P (h) = awi .

(3.41)
For a bigram constraint, the feature function is defined as

g{wi,wj}(h,w) :=

{
1 if w = wi and h ends in wj
0 otherwise

(3.42)

For trigrams, the feature function is

g{wi,wj ,wk}(h,w) :=

{
1 if w = wi and h ends in sequence wjwk
0 otherwise

(3.43)

Similarly, the constraints corresponding to n-grams of arbitrary order can be repre-
sented following the notation above.

Integrating a bigram cache model into the ME model requires two sets of constraints.
The unigram cache constraints can be presented as

gcache_wi(h,w) :=

{
1 if w = wi and w ∈ h
0 otherwise

(3.44)

and the bigram cache constraints are presented as

gcache_{wi,wj}(h,w) :=

{
1 if w = wi, h ends in wj , and {wjwi} ∈ h
0 otherwise

(3.45)

This implementation does not take into account how many times the word has oc-
cured in the history. So the presented formulation corresponds to the three-value
cache model described in section 2.3.

Relation to maximum likelihood

The problem of finding the model p∗ ∈ P that maximises the entropy has a dual prob-
lem of finding the model qΘ(w|h) that maximises the likelihood of the training data
(Berger et al., 1996). So the problem can be viewed as a traditional unconstrained
optimisation problem where we maximise the log likelihood

L(Θ) =
∑

w,h

qΘ(h,w) log qΘ(w|h) (3.46)

where

qΘ(w|h) =

∏K
k=1 α

gk(h,w)
k∑

w∈V
∏K
k=1 α

gk(h,w)
k

(3.47)
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and the summation is calculated over the training data. As explained before, an
empirical distribution can be used for the marginal probability qΘ(h,w). Now any
optimization method such as gradient methods can be used to solve the problem.
Malouf (2002) has compared different algorithms for estimating the parameters for
the conditional ME models and observed that conjugate gradient methods and vari-
able metric methods are remarkably faster than GIS or IIS.

Even though the ME model produces the smoothest possible distribution that satis-
fies the given constraints, it is still prone to overfitting. The ME model constructed
from the n-gram constraints has the same number of parameters as the corresponding
n-gram model. Also, if no discounting is done to the feature expectations, the ME
model is going to learn over-estimated probabilities just like the traditional n-gram
models. Chen and Rosenfeld (2000) have compared different smoothing methods
for ME models and report that a method based on Gaussian prior performed well
in the task. They found that the ME model constructed using the Gaussian prior
outperformed the traditional Kneser-Ney smoothed n-gram model.
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Chapter 4

Experiments

Two sets of experiments are run in this work. First, the language model combinations
are evaluated by calculating the perplexity over the test data. Second, the combina-
tions are used in the speech recognition experiments. In both experiments the data
is Finnish news articles. However, the speech data is from different time period than
the text data that is used in training the language models and optimizing the combi-
nation methods. For this reason the language model perplexities are also calculated
for the transcription of the data used in the speech recognition experiments.

All long-scale models, i.e. topic model, LSA model, and cache model, are combined
with the 4-gram model one at time. The evaluated combination methods are lin-
ear interpolation, log-linear interpolation, unigram rescaling, and the bin estimation
method. All combination methods are applied to combine each long-scale model
with the 4-gram model. The only exception is the cache model. The cache model
gives a zero probability for all words that have not occurred in the observed history.
This is not a problem when the cache model is combined with the n-gram model by
linear interpolation since the resulting probability is always greater than zero. When
the cache model is combined using log-linear interpolation or unigram rescaling, the
resulting probability will be zero for all words that have not been seen in the his-
tory. This could be avoided, for example, by giving a nonzero probability for the
words that are not in the cache. In this work, this is not done and the log-linear
interpolation and the unigram rescaling are not used with the cache model.

In addition to the two model combinations, some experiments are also run with
three and four model combinations. When the number of models is raised, the
number of possible combinations becomes large. Many of the combinations can
be discarded based on the results of the two model combinations. Only the most
appealing combinations are evaluated of which the best performing ones are presented
here.
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The bin estimation method is easily generalized to the case of more than two models.
However, the number of bins, i.e. free parameters, grows rapidly when more models
are brought in. Here the bin estimation method is used to combine the 4-gram model,
the topic model, and the three-value-cache model together. The three-value-cache is
used instead of the regular cache model to keep the number of the bins tolerable. The
combination has still three times more bins than the two model combinations. To
compensate this, three times more data is used to train the combination parameters
in this particular case. So this experiment is not strictly comparable to the other
experiments. However, the other studied combination methods might not benefit
from increasing the amount of training data since they have only few parameters
that will probably achieve the optimal values or close enough with less data.

Speech recognition tests are run with the same model combinations as the perplexity
experiments. The speech data is stylistically very similar to the data used in training
the language models. However, the news articles of the speech data are from different
years than the training data. This may cause some performance reduction as the
long range models are presumably effective in predicting the content words. To see
how well the language models and the combination methods work with the speech
data, perplexity experiments are run also for the transcription of the speech data.

4.1 Speech recognition system

The speech recognition system used in this work has been developed in the laboratory
of computer and information science in HUT. A short description of the system is
given below. For the detailed description of the system, see (Hirsimäki, 2002) and
(Pylkkönen, 2004).

The speech recognition system consists of feature extraction, acoustic model, lexical
model, language model, and decoder. Feature extraction transforms speech signal
to a number sequence that contains relevant information respect to speech recogni-
tion. Speech signal is sampled at 16 kHz frequency and 16 mel frequency cepstral
coefficients (MFCC), 16 delta coefficients and the power are extracted at each time.

The prevailing acoustic modeling paradigm in speech recognition has been for many
decades the hidden Markov model (HMM). It is a simple model that allows the search
of the best matching path to be done efficiently. In the HMM framework, acoustic
models are created for each phoneme. For a phoneme, several models can be created
for different acoustic contexts. Typically, triphones are used in contemporary speech
recognition systems. This means that different models are used depending on the
phoneme right before and right after the current one. Because of coarticulation,
also longer phoneme contexts can have significant effect on the pronunciation of the
phoneme and separate models could be created depending on the longer phonetic
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context. However, when longer context is taken into account the number of models
grows enormously, and huge amounts of data would be needed to train such models.
For this reason, triphones are a common choice, and even then, some clustering has
to be done to reduce the number of models.

Each model consists of a number of HMM states. Typically three states are used
to model the beginning, the middle, and the end part of the phoneme. Each HMM
state emits a feature vector with a certain probability. These probability distributions
are usually modeled by Gaussian mixtures. In the training phase, parameters and
weights for the Gaussian densities, and probabilities for the state transitions inside
a model are optimized. In recognition, the word sequences that acoustically match
best to the speech signal are found using the Viterby search.

Lexical model defines the vocabulary of lexical units, i.e. words, word sequences,
or sub-word units, that the recognizer is able to recognize. Further, it describes
how the words are constructed from the phonemes. In Finnish, building the lexicon
is straightforward as the letters are uniquely mapped to phonemes with only few
exceptions.

In the center of the speech recognition system is the decoder. The decoder takes care
of the Viterby search and the language model computation, and combines these two.
Architectures used in the speech recognition systems differ, for example, in how the
language model is incorporated. In some architectures, the language model can be
used already during the Viterby search. Such a solution, however, restricts the form
of the language model. Our decoder is architecturally a stack decoder. The decoder
stores the best hypothesises in stacks, so that for each time frame there is a separate
stack. The hypothesises in a stack are expanded by words that have found to best
match the speech by Viterby search. A new hypothesis is inserted to the stack that
belongs to the most probable ending frame for the word. (Hirsimäki, 2002)

An advantage in the stack decoder is that it suites well for long-range language
models. The recognized word history is maintained in a tree structure, so that each
hypothesis has a uniquely defined word history. This allows us to easily integrate
the examined long-range language models into the system. The state of the language
model, i.e. the representation of the recognized word history, is stored together with
the hypothesis. When the hypothesis is expanded with a new word, the state is
updated and stored with the new hypothesis. The only modification made to the
decoder in this work was the handling of the language model state.
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4.2 Data

A text corpus of Finnish news articles from STT (Finnish National News Agency) is
used for training and evaluating the language models and the combination methods.
The text corpus comprises about 16.4 million words in 91 000 articles that are divided
to 8 categories. The average document length is 180 words.

The text corpus is divided to three parts. 14 million words in 88674 documents are
used for training the models (training set), 165 000 words in 1029 documents are
used for optimizing the combination method parameters (development set) and 200
000 words in 1312 documents are reserved for the perplexity tests (test set). The
rest of the data was left out for future purposes.

Speech recognition experiments are run with read STT news articles from years 1988-
1992. The speech data consist of 288 articles of about one minute length. 3.7 hours
is used in training the acoustic models, 30 minutes is used in tuning the combination
method parameters and the language model scaling factor that adjusts the balance
between the language model and the acoustic model, and 40 minutes is used for
the tests. The speech data is provided by Inger Ekman and the department of
Information studies at the University of Tampere.

Usually the data used for optimizing the combination parameters is some held out
data that has not been used in training the models. A question that arises is whether
the same training data could be used for training both the language models and the
combination methods. With methods that have few parameters this is not an issue
since the optimal parameters can be reliably determined with a small amount of data.
The bin estimation method may need significantly more training data and thus the
possibility to use the same data for both cases might be valuable. However, this is
not studied in this work, and separate data sets are used for the training.

4.3 Training of the combination methods

For the perplexity experiments, all the interpolation and scaling weights in linear
interpolation, log-linear interpolation, and unigram rescaling methods were optimized
on the development data using Powell algorithm. The bin estimation method differs
from the others in that it does not have interpolation or scaling weights but a number
of bins for which the likelihood value is estimated.

In this work, 253x3 grid was used for the combination of the 4-gram model and
the three-value-cache model. For all other two model combinations 53x53 grid was
used. The grid was formed for each combination pair separately using the algorithm
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presented in section 3.5. The likelihood values for each bin were estimated from the
development data, and gentle filtering in two dimensions was applied for smoothing
the values.

When combining the LSA model and the 4-gram model the unnormalized LSA out-
comes were used as inputs for the bin-method. In the case of the topic model, the
outcomes that were divided by the unigram probability of the particular word were
used. This choice was made based on the preliminary experiments that showed that
for the topic model the scaling by the unigram probability had remarkable effect to
the results while for the LSA model this was not so important. When combining
the cache model and the 4-gram model together using the bin-method, two different
cache formulations were used as was described in section 2.3.

The preliminary experiments on the development set of the speech data showed that
the parameters optimized on the text data did not work in speech recognition. So
the combination method parameters were adjusted based on the development set
of the speech data. Thorough parameter optimization on the speech data was not
possible due to the small amount of data and because running a large number of
speech recognition experiments would have been too time consuming. So a set of
parameters that seemed to work fine was used. The bin estimation method has
much more parameters than the other evaluated combination methods what for its
parameters are not as easily adjusted for the new test data. For this reason, the
parameters of the bin estimation method were not adjusted but used as they were
learned from the text data. Due to the unreliable estimation of the parameters,
the speech recognition results should be taken rather as suggestive than complete
comparison of the methods.

4.4 Results

Perplexity results

The results of the perplexity experiments for the two model combinations are given
in table 4.1. The relative perplexity reductions compared to the plain 4-gram model
are presented in figure 4.1. The linear interpolation did not improve the result with
the topic model but otherwise all combination methods yielded significant perplexity
reduction over the plain 4-gram model that works here as a baseline. For all two-
model combinations, the best performing method was the bin-method. The second
best method, when applicable, was the unigram rescaling performing slightly worse
than the bin-method. Notably worse was the log-linear interpolation achieving still
13 % improvement over the baseline. In all cases, the linear interpolation was the
worst method producing only slight improvement over the baseline with the LSA
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model and no improvement with the topic model. However, with the cache model
the linear interpolation performed well producing nearly 25 % improvement. Also
in this case, the bin estimation method was better achieving almost 32 % perplexity
reduction. The simple 3-value cache model, combined with the 4-gram model by the
bin-method, performed almost as well as the regular cache giving 30 % improvement.
The results concerning the topic and the LSA model are quite similar to the results
reported by Gildea and Hofmann (1999) and Coccaro and Jurafsky (1998). The
exception is the linear interpolation that failed to produce any improvement when
combining the topic model and the 4-gram model. This is discussed in section 4.6.

The results of the perplexity experiments for the three and four model combinations
are presented in table 4.2. The relative perplexity reductions over the plain 4-gram
model are depicted in figure 4.2. Following notation was used in presenting the com-
binations. In each pairwise combination the 4-gram works as the other component
and is left out from the denotation. So “resc(topic)” refers to the combination where
the 4-gram model and the topic model have been combined together using the un-
igram rescaling method. The only case where the “4-gram” has been written out
is the combination 5 in which the 4-gram, topic, and the three-value cache model
have all been combined together using the bin estimation method. The plus symbol
(+) refers to linear interpolation. In the three and four model combinations, the
pairwise combinations have been combined together using linear interpolation. The
only exception is the combination 5 as explained above.

The smallest total perplexity was achieved by combination 5 where the 4-gram model,
topic model, and the cache model are all combined together using the bin estimation
method. This combination resulted in 46 % perplexity reduction which is one of
the greatest reported perplexity reductions that has been achieved by combining
language models. Almost equally good result, 44.8 %, was achieved by combination
3, in which the unigram rescaling combination of the 4-gram and the topic model was
interpolated with the bin-method combination of the 4-gram and the cache model.
For the two model combinations the best performing combination was resulted from
the bin estimation method. It would be reasonable to assume, that when these
two model combinations are further combined together using linear interpolation,
the best performing combination would consist of these bin-method combinations.
However, the best performance was achieved by combination 3, in which the topic
model and the 4-gram model were combined together using unigram rescaling. Why
this happens is unclear. The large test data should exclude the chance of statistical
incident.

Adding the LSA model to the combination of the 4-gram model, topic model, and
the cache model did only little further improvement to the result. The LSA and the
topic model focus in modeling the same aspect of the language. Thus, only little
cumulative improvement is achieved when combining these two together.
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Table 4.1: Perplexity results for two model combinations

Model Method Perplexity
4-gram - 5584
4-gram + LSA linear 5495
4-gram + LSA loglin 4828
4-gram + LSA rescaling 4542
4-gram + LSA bin-method 4428
4-gram + topic linear 5584
4-gram + topic loglin 4836
4-gram + topic rescaling 3892
4-gram + topic bin-method 3666
4-gram + cache linear 4211
4-gram + cache bin-method 3822
4-gram + cache 3-value-bin 3915

Table 4.2: Perplexity results for three and four model combinations

Combination Perplexity
resc(4-gram + topic) lin cache 3634
bin(4-gram + topic) lin cache 3445
resc(4-gram + topic) lin bin(4-gram + cache) 3084
bin(4-gram + topic) lin bin(4-gram + cache) 3154
bin(4-gram + topic + 3-value-cache) 3009
resc(4-gram + topic) lin bin(4-gram + cache) lin resc(4-gram + LSA) 3071
resc(4-gram + topic) lin bin(4-gram + cache) lin bin(4-gram + LSA) 3068
bin(4-gram + topic) lin bin(4-gram + cache) lin resc(4-gram + LSA) 3142
bin(4-gram + topic) lin bin(4-gram + cache) lin bin(4-gram + LSA) 3150
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Figure 4.1: Relative perplexity reductions for two model combinations

To see how well the language models and different combinations performed on the
transcription of the speech data used in the speech recognition experiments, perplex-
ity experiments were run also for this data. The results are given in table 4.3 and
the relative perplexity reductions are depicted in figure 4.3.

Speech recognition results

The results of the speech recognition experiments are given in table 4.4. The relative
word error and phoneme error reductions to the baseline are depicted in figures 4.4
and 4.5. We see that the outstanding perplexity reductions turn into only negligible
improvements in speech recognition results. While the bin-method was dominating in
the perplexity experiments, such tendency is not observed in the speech recognition
results. One reason for this is that the bin-method was not adjusted based on the
speech data while the other methods were. So the results are not strictly comparable
together. The best performing method varies depending on the model and also
whether looking at the word or phoneme error rate. The significantly best performing
combination was the unigram rescaling combination of the 4-gram and the topic
model which achieved 4 % word error reduction and 7.5 % phoneme error reduction
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Table 4.3: Perplexity results for the speech data

Model Method Perplexity
4-gram - 12404
LSA lin 12067
LSA loglin 11320
LSA rescaling 11323
LSA bin-method 10662
topic loglin 10551
topic rescaling 9385
topic bin-method 8789
cache linear 8071
cache bin-method 7263
cache 3-value-bin 7945
topic+cache resc+bin+lin 7008
topic+cache bin-method 6457

Table 4.4: Speech recognition results

Model Method WER (%) PHER (%)
4-gram - 25.70 5.87
LSA linear 25.99 5.79
LSA loglin 25.71 5.95
LSA rescaling 26.12 5.92
LSA bin-method 25.64 5.88
topic loglin 26.27 6.08
topic rescaling 24.66 5.43
topic bin-method 25.28 5.54
cache linear 26.57 5.91
cache bin-method 27.76 5.88
cache 3-value-bin 25.29 5.73
topic+cache resc+bin+lin 26.10 5.75
topic+cache bin-method 24.71 5.50
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Figure 4.2: Relative perplexity reductions for three and four model combinations

compared to the plain 4-gram model.

Statistical analysis

Wilcoxon signed-rank test (Milton and Arnold, 1995) for paired observations was
used to test the statistical significance of the results. The H0 hypothesis was that
the combined model and the baseline model perform equally well measured by the
median of the document perplexities. All perplexity results were compared to the
baseline and the H0 hypothesis could be rejected with practically 100 % confidence
for all combinations. The great level of confidence is due to the large test set and
the Wilcoxon signed-rank test.

It seems that the bin-method is slightly but consistently better than the second best
performing unigram rescaling method. The Wilcoxon signed-rank test shows that
the conclusion is statistically justified as the H0 hypothesis can be rejected again
with practically 100 % confidence.

While the improvements in the perplexity results were clear, the improvements in
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Figure 4.3: Relative perplexity reductions for the speech data

the speech recognition experiments were almost marginal. Measuring the word er-
ror rate, only the best performing combination, the topic model combined with the
4-gram model using the unigram rescaling method, proved to be statistically signif-
icant with confidence value of 98.8 %. Measuring the phoneme error rate, also the
bin estimation method used with the topic model yielded improvement of statistical
significance with confidence value of 99.93 %. The bin-method combination of the
three models, 4-gram, topic, and the cache model, achieved almost as good results
as the best performing combination. However, the confidence value calculated by
the Wilcoxon test is 94 % when comparing the word error rates. So the improve-
ment can not be considered statistically significant. Comparing the phoneme error
rates the improvement is statistically significant. The improvement of any the other
combination can not be stated statistically significant.

4.5 Normalization sum

A concession that we had to make in the speech recognition experiments was that the
combined language model probabilities were left unnormalized. Bellegarda (2000) re-
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Figure 4.4: Relative word error rate reductions in speech recognition experiments

ports that when using n-gram model and the LSA model combined by the unigram
rescaling method, no performance degradation was observed when making this ap-
proximation. However, it is interesting to see, do the combination methods differ in
this aspect. The language model values not summing up to 1 is not dangerous itself,
but if the sum varies a lot from time to time it is bound to have some consequences.
One way to evaluate the combination methods is to measure the variance of the sum
of the probabilities. If the variance is near to zero it implies that little distortion is
introduced when the normalization is omitted. To measure the variance, the nor-
malization coefficient, i.e. the sum of the probabilities of all words, was calculated
for each time, and the mean and the variance for the coefficient were calculated.
The results for the two-model combinations are given in table 4.5. The LSA model
probabilities were also unnormalized themselves what for the probabilities do not
sum to one even when using the linear interpolation. The outputs of the topic and
the cache model are pure probabilities and so the linear interpolation has been left
out from the table.

We see that when combining the LSA model and the 4-gram model the variances are
quite small for all combination methods. When combining the topic model and the
4-gram model the unigram rescaling has much larger variance than the log-linear and
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Figure 4.5: Relative phoneme error rate reductions in speech recognition experi-
ments

Table 4.5: Normalization coefficient statistics

Model Method Mean Variance
4-gram + LSA linear 12 18
4-gram + LSA loglin 0.29 0.0088
4-gram + LSA rescaling 0.50 0.047
4-gram + LSA bin-method 0.99 0.037
4-gram + topic loglin 0.45 0.062
4-gram + topic rescaling 0.81 0.98
4-gram + topic bin-method 0.98 0.016
4-gram + cache bin-method 1.00 0.026
4-gram + cache 3-value-bin 0.98 0.040

the bin estimation methods. This suggests that the bin estimation method and the
log-linear interpolation should suffer even less than the unigram rescaling method
from omitting the normalization.
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4.6 Analysis

Measured by the perplexity, the bin estimation method performed best in all three
cases of combining the 4-gram model with one of the large context models. It seems
that the bin estimation method succeeds in its task of estimating the likelihood
defined in equation 3.15. Performing best in all cases, of which two were of quite
different nature, suggests that the method may be applicable with different kind of
models.

The margin between the bin-method and the unigram rescaling is larger with the
topic model than with the LSA model. This is probably due to the different pre-
processing of the component model probabilities when using the bin-method. The
topic model outputs were divided by the unigram probability of the particular word,
whereas the LSA outputs were not.

To understand more deeply how the bin method works let us look inside what the
method has learned. In figure 4.6 the likelihood values attached to each bin for
combining the 4-gram model and the topic model are presented. We see that the
4-gram model is in a dominating role while the topic model seems to have effect
mainly with very big or small values. In figure 4.7 horizontal cross-sections with
different 4-gram probabilities are plotted from the figure 4.6. In each curve the 4-
gram probability is kept constant and the topic model factor is swept from 0 to
the maximum value1. To make the curves fit nicely into the same picture, each
curve is scaled by dividing its values by their median. This way the curves cross
in the point where the topic factor value is close to 1.0 which means that the topic
model probability for the word is equal to its global unigram probability. When
moving to the right from this point, we see how the increase in the topic factor
value affects the likelihood value. Correspondingly, moving to the left shows how the
likelihood changes when the topic factor value is decreased. From the plot we see
that when the 4-gram probability is high the topic value has almost no effect to the
output value. With the lower 4-gram probability values the topic model has more
and more contribution and the corresponding curve approaches the reference curve
which depicts the case of multiplying the probability values together as is done in
the unigram rescaling. Actually, this plot does not tell the whole truth since the
probability for a word depends also from the values of all other words through the
normalization.

From the figure 4.6 one can make an intuitive deduction that a simple method, which
could possibly work in combining the n-gram model and the topic model, would be

1The factor does not have a defined upper limit so all values above 26.2 in this case are mapped
to the rightmost bins.
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to use formula

P (w|h) ∼ PN (w|h)

(
PT (w|h)

Punigram(w)

)λ(PN (w|h))

(4.1)

where the exponent γ(PN ) is adjusted by the n-gram probability PN (w|h). To try
this is left for future work.

Two reasons can be given for the success of the bin-method. First, no assumptions
are made about the models that are combined. The models can be independent or
strongly correlated. Second, the only assumption that is made about the estimated
likelihood p(w = wi|PA, PB) is that it is piecewise constant. In the linear interpo-
lation, log-linear interpolation, and the unigram rescaling, the likelihood is modeled
by a predefined function that has a few parameters that are optimized on data. The
bin estimation method, like histogram methods generally, allows more freedom to
the function that is estimated. On the other hand, the cost of the flexibility is the
increased amount of data that is needed to reliably train the method.

With the LSA and the topic model the second best performing method after the bin
estimation method was the unigram rescaling. The log-linear interpolation performed
notably worse achieving still significant (∼13 %) improvement to the baseline. There
is a great difference in the performance of the log-linear interpolation and the unigram
rescaling when combining the topic model and the 4-gram model but the difference
is much smaller when combining the LSA model and the 4-gram model. A probable
reason for this is following. The LSA model and the topic model are very similar.
Both of them try to measure the semantic closeness of the words and the current
context. The topic model can be seen to model the topic dependent fluctuation of
the marginal distribution of the words. By dividing the probability estimate of the
topic model for word wi by the unigram probability of the word Puni(w), as is done in
the unigram rescaling method, we get a factor that describes the relative frequency
of the word compared to the its global unigram probability. In the construction of
the co-occurrence matrix in the LSA model, the frequent words that occur in several
documents are punished using the idf-weighting. Thus the output of the LSA model
is neither a pure marginal probability nor a relative frequency factor. For this reason,
the optimal scaling exponents are quite different for the LSA model than for the topic
model, and the difference in the results of the log-linear and the unigram rescaling
methods is much smaller with the LSA model than with the topic model.

In combining the LSA and the 4-gram model, the linear interpolation yielded only
small perplexity reduction. The result is in line with the previously reported results
of Coccaro and Jurafsky (1998). In combining the topic model and the 4-gram model,
the linear interpolation failed to produce any improvement over the baseline. This is
an unexpected result since Gildea and Hofmann (1999) report notable improvement
over the baseline when combining the topic model with the trigram model using
the linear interpolation. The reason behind the bad performance may be the word
borders that are also predicted by the topic model. The 4-gram model manages to
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Figure 4.6: Bin-method likelihood table for the topic model

predict the word borders with good accuracy, and interpolating it with the topic
model will in almost all cases reduce the probability estimate of the word border.
As the word borders constitute over one third of all tokens, the worsened accuracy
in predicting them degrades the total performance of the model. In the LSA model
the word borders were not included but the probability for the word borders was
determined merely by the 4-gram model.

While in combining the LSA and the topic model with the 4-gram model the linear
interpolation performed bad, it performed comparably well in combining the cache
model and the 4-gram model. Looking at the perplexity results for the three and four
model combinations in figure 4.2, it is seen that interpolating the two-model combi-
nations together yielded significant improvement to the two model results. Also in
the experiments of Goodman (2000), remarkable perplexity reductions were achieved
by using the linear interpolation in combining several language models. To under-
stand why the linear interpolation performs well in some cases while in some cases it
is almost useless, we have to remember that the averaging that is done in the linear
interpolation is inclined to smooth the output distribution. This is particularly the
case when one of the component models is significantly smoother than the others. In
some cases the smoothing may reduce the total perplexity by raising the low prob-
ability estimates. However, the averaging is bound to worsen the high probability
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Figure 4.7: Relative likelihoods for the combination of the topic model and the
4-gram model with different 4-gram values. The curves are median scaled.

estimates. My conclusion is that the linear interpolation can be efficient when any
of the component models is not significantly smoother than the other models. This
is the case when the models incorporate the same amount of local information, for
example, in the case of n-gram-based models of approximately same order. When
one of the component models is significantly smoother than the others, the damage
produced by the smoothing becomes greater than the gain that is possibly brought
in by the model.
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Chapter 5

Conclusions

In this work several methods for combining language models have been studied. The
purpose was to give the reader a picture of available methods and their properties,
what are the pros and cons for each method and what kind of situations do they
suit for. In addition, a new combination method, called bin estimation method, was
presented.

A theoretically justified way of combining different information sources is provided
by the maximum entropy modeling. In previous work the ME modeling has been
successfully used with a variety of models showing that the approach has also practi-
cal potential. Practical issues however have restricted the use of the method, as the
training and the use of the ME models are computationally demanding. However,
the vivid research and the use of efficient algorithms have brought the method to one
option when choosing the combination method for language models.

In many cases, sufficient performance can be achieved by more simple methods than
the ME modeling. For example, in the case of combining the topic or the LSA model
with the n-gram model, a simple formula, called unigram rescaling, has been drawn
for the probability under relatively mild assumptions.

In this work, four combination methods: linear interpolation, log-linear interpolation,
unigram rescaling, and bin estimation method were evaluated by perplexity and
speech recognition experiments. In the perplexity experiments, the best performing
method was the bin estimation. The greatest overall perplexity reduction, 46 %,
was achieved by using the bin estimation method in combining 4-gram, topic, and
the cache models together. The result is one of the greatest perplexity reductions
that has been reported over the properly smoothed 4-gram model. However, the
remarkable perplexity reductions turned only into small improvements in the speech
recognition experiments.
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CHAPTER 5. CONCLUSIONS

The presented bin estimation method is one possible implementation for using mul-
tivariate function estimation methods in the task of combining language models. It
is left for future work to study whether improvements could be achieved by more
thorough parameter optimization or using some other function estimation methods.
In the bin estimation method, no assumptions are made about the models to be
combined. Also, the only restriction set to the likelihood function is that it has to
be slowly variating enough to be accurately estimated by the histograms. These
things and the better performance compared to the other evaluated methods suggest
that the bin-method may be applicable in combining many kind of models. How-
ever, to make further conclusions would need more experiments with different kind
of language models.

One possible application of the method is to use it in analyzing the joint behavior of
the models. That way it may be possible to find more simple combination methods
for different models. The disadvantage of the bin method is that it needs a large
amount of data to train the combination parameters properly. This may restrict the
number of the models that can be combined simultaneously with the method.

Probably the most commonly used combination methods, the linear interpolation and
the backoff method, have still an important role in language modeling in combining
different models. The linear interpolation is fast to calculate and the parameter
estimation is easy as it has very little parameters and the heavy calculation of the
normalization is avoided. In cases where the linear interpolation does not introduce
severe averaging, it seems to have relatively good performance and it may be a good
choice for the combination method. The backoff method has shown to perform worse
than the linear interpolation method when used in combining different order n-gram
models. Whether this is a common rule is still uncertain.

Some interesting methods, like maximum entropy approach, were considered only on
theoretical level. To go deeper in the subject, more experiments should be run using
different language models and data sets.
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