c.1t.d FRsrcl, FRsrc2 Compare Less Than Double
c.lt.s FRsrcl, FRsrc2 Compare Less Than Single
Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is less than the second.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double
Convert the single precision floating point number or integer in register FRsrc to a double
precision number and put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single
Convert the double precision floating point number or integer in register FRsrc to a single
precision number and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer
Convert the double or single precision floating point number in register FRsrc to an integer and
put it in register FRdest.

div.d FRdest, FRsrcl, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrcl, FRsrc?2 Floating Point Divide Single
Compute the quotient of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

1.d FRdest, address Load Floating Point Double t
1.s FRdest, address Load Floating Point Single t
Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Mowve Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from register FRsrc to register FRdest.

mul.d FRdest, FRsrcl, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrcl, FRsrc2 ' Floating Point Multiply Single

Compute the product of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single
Negate the floating point double (single) in register FRsrc and put it in register FRdest.

s.d FRdest, address Store Floating Point Double T
s.s FRdest, address Store Floating Point Single T
Store the floating float double (single) in register FRdest at address.

sub.d FRdest, FRsrci, FRsrc2 V Floating Point Subtract Double
sub.s FRdest, FRsrcl, FRsrc2 Floating Point Subtract Single

Compute the difference of the floating float doubles (singles) in registers FRsrc1 and FRsrc2
and put it in register FRdest.
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Data Segment

Text Segment

0x400000

Figure 5: Layout of memory.
2.12 Exception and Trap Instructions

rfe Return From Ezxception
Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call (see Table 1) provided by SPIM.

break n ' Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.

3 Memory Usage

The organization of memory in MIPS systems is conventional. A program’s address space is
composed of three parts (see Figure 5).

At the bottom of the user address space (0x400000) is the text segment, which holds the
instructions for a program. '

Above the text segment is the data segment (starting at 0x10000000), which is divided into
two parts. The static data portion contains objects whose size and address are known to the
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$tp —— argument 6

argument 5

arguments 1-4 T
. . memory
saved registers addresses

local variables

dynamic area

$sp —m————

Figure 6: Layout of a stack frame. The frame pointer points just below the last argument passed
on the stack. The stack pointer points to the last word in the frame.

compiler and linker. Immediately above these objects is dynamic data. As a program allocates
space dynamically (i.e., by malloc), the sbrk system call moves the top of the data segment up.

"~ The program stack resides at the top of the address space (OxT71HHEf). It grows down, towards
the data segment.

4 Calling Convention

The calling convention described in this section is the one used by gcc, not the native MIPS
compiler, which uses a more complex convention that is slightly faster.

Figure 6 shows a diagram of a stack frame. A frame consists of the memory between the
frame pointer ($£p), which points to the word immediately after the last argument passed on
the stack, and the stack pointer ($sp), which points to the last word in the frame. As typical
of Unix systems, the stack grows down from higher memory addresses, sO the frame pointer s
above stack pointer.

The following steps are necessary to effect a call:

1. Pass the arguments. By convention, the first four arguments are passed in registers $a0—
$a3 (though simpler compilers may choose to ignore this convention and pass all arguments
via the stack). The remaining arguments are pushed on the stack.

9. Save the caller-saved registers. This includes registers $t0-$t9, if they contain live values
at the call site. :
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3. Execute a jal instruction.
Within the called routine, the following steps are necessary:
1. Establish the stack frame by subtracting the frame size from the stack pointer.

9. Save the callee-saved registers in the frame. Register $fp is always saved. Register $ra
needs to be saved if the routine itself makes calls. Any of the registers $s0-$s7 that are
used by the callee need to be saved.

3. Establish the frame pointer by adding the stack frame size - 4 to the address in $sp.

Finally, to return from a call, a function places the returned value into $v0 and executes the
following steps:

1. Restore any callee-saved registers that were saved upon entry (including the frame pointer
$£p).

2. Pop the stack frame by adding the frame size to $sp.

3. Return by jumping to the address in register $ra.

5 Input and Output

In addition to simulating the basic operation of the CPU and operating system, SPIM also
simulates a memory-mapped terminal connected to the machine. When a program is “running,”
SPIM connects its own terminal (or a separate console window in xspim) to the processor. The
program can read characters that you type while the processor is running. Similarly, if SPIM
executes instructions to write characters to the terminal, the characters will appear on SPIM’s
terminal or console window. One exception to this rule is control-C: it is not passed to the
processor, but instead causes SPIM to stop simulating and return to command mode. When the
processor stops executing (for example, because you typed control-C or because the machine hit
a breakpoint), the terminal is reconnected to SPIM so you can type SPIM commands. To use
memory-mapped 10, spim or xspim must be started with the -mapped_io flag.

The terminal device consists of two independent units: a receiver and a transmitter. The
receiver unit reads characters from the keyboard as they are typed. The transmitter unit writes
characters to the terminal’s display. The two units are completely independent. This means, for
example, that characters typed at the keyboard are not automatically “echoed” on the display.
Instead, the processor must get an input character from the receiver and re-transmit it to echo
it.

The processor accesses the terminal using four memory-mapped device registers, as shown
in Figure 7. “Memory-mapped” means that each register appears as a special memory location.
The Receiver Control Register is at location 0xffff0000; only two of its bits are actually used.
Bit 0 is called “ready”: if it is one it means that a character has arrived from the keyboard but
has not yet been read from the receiver data register. The ready bit is read-only: attempts to
write it are ignored. The ready bit changes automatically from zero to one when a character
is typed at the keyboard, and it changes automatically from one to zero when the character is
read from the receiver data register. :

Bit one of the Receiver Control Register is “interrupt enable”. This bit may be both read
and written by the processor. The interrupt enable is initially zero. If it is set to one by the
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Unused 1 1

Receiver Control
(Oxffff0000)

Interrupt Ready

Enable
Unused 8
Receiver Data
(0xffff0004)
Received Byte
- Unused 1 1
Transmitter Control
(0xfftf0008)
Interrupt Ready
Enable
Unused 8
Transmitter Data
(0xtttf000c)
Transmitted Byte

Figure 7: The terminal is controlled by four device registers, each of which appears as a special
memory location at the given address. Only a few bits of the registers are actually used: the
others always read as zeroes and are ignored on writes.
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processor, an interrupt is requested by the terminal on level zero whenever the ready bit is one.
For the interrupt actually to be received by the processor, interrupts must be enabled in the
status register of the system coprocessor (see Section 2).

Other bits of the Receiver Control Register are unused: they always read as zeroes and are
ignored in writes.

The second terminal device register is the Receiver Data Register (at address 0xffff0004).
The low-order eight bits of this register contain the last character typed on the keyboard, and
all the other bits contain zeroes. This register is read-only and only changes value when a new
character is typed on the keyboard. Reading the Receiver Data Register causes the ready bit in
the Receiver Control Register to be reset to zero.

The third terminal device register is the Transmitter Control Register (at address 0xffff0008).
Only the low-order two bits of this register are used, and they behave much like the corresponding
bits of the Receiver Control Register. Bit 0 is called “ready” and is read-only. If it is one it
means the transmitter is ready to accept a new character for output. If it is zero it means the
transmitter is still busy outputting the previous character given to it. Bit one is “interrupt
enable”; it is readable and writable. If it is set to one, then an interrupt will be requested on
level one whenever the ready bit is one.

The final device register is the Transmitter Data Register (at address 0xffff000c). When it is
written, the low-order eight bits are taken as an ASCII character to output to the display. When
the Transmitter Data Register is written, the ready bit in the Transmitter Control Register will
be reset to zero. The bit will stay zero until enough time has elapsed to transmit the character
to the terminal; then the ready bit will be set back to one again. The Transmitter Data Register
should only be written when the ready bit of the Transmitter Control Register is one; if the
transmitter isn’t ready then writes to the Transmitter Data Register are ignored (the write
appears to succeed but the character will not be output).

In real computers it takes time to send characters over the serial lines that connect terminals
to computers. These time lags are simulated by SPIM. For example, after the transmitter starts
transmitting a character, the transmitter’s ready bit will become zero for a while. SPIM measures
this time in instructions executed, not in real clock time. This means that the transmitter will
not become ready again until the processor has executed a certain number of instructions. If
you stop the machine and look at the ready bit using SPIM, it will not change. However, if you
let the machine run then the bit will eventually change back to one.

25



