next up previous
Next: About this document ...

Block Diagrams / Lohkokaavio

A causal LTI system can be written with a differential equation


\begin{displaymath}\sum_{k=0}^N a_k \, y[n-k] = \sum_{k=0}^M b_k \, x[n-k]\end{displaymath}

There are three basic functions in LTI systems.

\epsfig{file=block_diagrams.eps, width=13cm}

FIR (finite impulse response) systems have an impulse response h[n]of finite length. For example $h[n] = \delta[n] - 0.5\delta[n-1]$is zero when n<0 or n>1. FIRs are therefore always BIBO-stable. Transfer function H(z) consists only of numerator polynomial.

\epsfig{file=block_fir.eps, width=13cm}

IIR (infinite impulse response) systems have an impulse response h[n]of infinite length. For example h[n] = 0.5n u[n]is nonzero when $n \ge 0$. IIRs contain feedback loops. Transfer function H(z) consists of numerator and denominator polynomials


\begin{displaymath}H(z) = \frac{b_0 + b_1 \, z^{-1} + ... + b_M \, z^{-M}}{a_0 + a_1 \, z^{-1} + ... + a_N \, z^{-N}}\end{displaymath}

Stability can be derived from positions of poles (roots of denominator). If poles are strictly inside unit circle, then system is stable.

\epsfig{file=block_iir.eps, width=13cm}



 

Jukka Parviainen
2001-02-15