1. Consider a stochastic, two-state neuron j operating at temperature T. This neuron flips from state x_{j} to state $-x_{j}$ with probability

$$
P\left(x_{j} \rightarrow-x_{j}\right)=\frac{1}{1+\exp \left(\Delta E_{j} / T\right)}
$$

where ΔE_{j} is the energy change resulting from such a flip. The total energy of the Boltzmann machine is defined by

$$
E=-\frac{1}{2} \sum_{i} \sum_{j} w_{i \neq j} x_{i} x_{j}
$$

where $w_{j i}$ is the synaptic weight from neuron i to neuron j, with $w_{j i}=w_{i j}$ and $w_{i i}=0$.
(a) Show that

$$
\Delta E_{j}=2 x_{j} v_{j}
$$

where v_{j} is the induced local field of neuron j.
(b) Hence, show that for an initial state $x_{j}=-1$, the probability that neuron j is flipped into state +1 is $1 /\left(1+\exp \left(-2 v_{j} / T\right)\right)$.
(c) A very similar formula as in part (b) holds for neuron j flipping into state -1 when it is initially in state +1 . Given these state change probabilities, what must the state probabilities of neuron j be in equilibrium?
2. Summarize the similarities and differences between the Boltzmann machine and a sigmoid belief network.
3. Haykin, Equation (12.22) represents a linear system of N equations, with one equation per state. Let

$$
\begin{gathered}
\mathbf{J}^{\mu}=\left[J^{\mu}(1), J^{\mu}(2), \ldots, J^{\mu}(N)\right]^{T} \\
\mathbf{c}(\mu)=[c(1, \mu), c(2, \mu), \ldots, c(N, \mu)]^{T} \\
\mathbf{P}(\mu)=\left[\begin{array}{cccc}
p_{11}(\mu) & p_{12}(\mu) & \ldots & p_{1 N}(\mu) \\
p_{21}(\mu) & p_{22}(\mu) & \ldots & p_{2 N}(\mu) \\
\vdots & \vdots & & \vdots \\
p_{N 1}(\mu) & p_{N 2}(\mu) & \ldots & p_{N N}(\mu)
\end{array}\right]
\end{gathered}
$$

Show that Haykin, Eq.(12.22) may be reformulated in the equivalent matrix form:

$$
(\mathbf{I}-\gamma \mathbf{P}(\mu)) \mathbf{J}^{\mu}=\mathbf{c}(\mu)
$$

where \mathbf{I} is the identity matrix. Comment on the uniqueness of the vector \mathbf{J}^{μ} representing the cost-to-go functions for the N states.
4. In Haykin, Section 12.4 it is said that the cost-to-go function satisfies the statement

$$
J^{\mu_{n+1}} \leq J^{\mu_{n}}
$$

Justify this statement.

