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Abstract

Representing interactions between variables in large
data sets in an understandable way is usually important
and hard task. This article presents a methodology how
a linear dependency structure between variables can be
constructed from multivariate data. The dependencies be-
tween the variables are specified by multiple linear regres-
sion models. A sparse regression algorithm and bootstrap
based resampling are used in the estimation of models and
in construction of a belief graph. The belief graph high-
lights the most important mutual dependencies between the
variables. Thresholding and graph operations may be ap-
plied to the belief graph to obtain a final dependency struc-
ture, which is a tree or a forest. In the experimental section
results of the proposed method using real-world data set
were realistic and convincing.

1. Introduction

Large data sets are available from many different
sources, for example from industrial processes, economy,
mobile communications network, and environment. Deeper
understanding of the underlying process can be achieved by
exploring or analyzing the data. Economical or ecological
benefits are a great motivation for the data analysis.

In this study, dependencies between the variables in data
set are analyzed. The purpose is to estimate multiple linear
regression models and learn a linear dependency tree or for-
est of the variables. The dependency structure clearly shows
how a change in a value of one variable induces changes in
values of other variables. This might be useful information
in many cases, for instance, if values of some variable can-
not be controlled directly.

The multiple linear regression models have a couple of
advantages. The dependencies in linear models are easy to
interpret. In addition, processes may be inherently linearor
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Figure 1. The flow chart of the proposed
method.

over short ranges many processes can be approximated by a
linear model.

A flow chart of the methodology proposed in this study
is presented in Figure 1. The method consists of five phases.
First, there should be some multivariate data available. The
data do not necessarily have to be time-series data, although
time-series data is used as an example in this study.

The second phase deals with the preprocessing of data.
Some operations have to be usually performed on measure-
ments before they can be analyzed mathematically. Some
measurements may be missing or measurements can be
noisy.

In the third phase, as many multiple linear regression
models as there are variables in the data are estimated. Each
variable is a dependent variable in turn and the rest of the
variables are possible independent variables. The most sig-
nificant independent variables for each model are selected
using the bootstrap and a sparse regression algorithm. The
relative weights of the regression coefficients are computed
from the bootstrap replications. The relative weight of the
regression coefficient measures a belief that the correspond-
ing independent variable belongs to the estimated linear
model.

In the fourth phase, a belief graph is constructed from the
relative weights of the regression coefficients. The belief
graph represents the strength of the dependencies between
the variables. In the belief graph there are as many nodes
as there are variables in the data. The relative weights de-
fine arcs of the belief graph. A predefined threshold value
and a moralizing operation are applied to the belief graph



resulting a moral graph or a final dependency graph.
Finally, a dependency structure of the variables is calcu-

lated from the dependency graph. A set of variables, which
forms a multiple linear regression model, belongs to a same
maximal clique. However, the formulation of final depen-
dency structure is restricted such that the dependencies can-
not form circles in a final structure i.e. the variable cannot
be dependent on itself through the other variables. Thus, the
final dependency structure is a tree or a forest.

The rest of the article is organized as follows. In Sec-
tion 2 a few other similar studies are briefly described. The
multiple linear regression model and sparse regression al-
gorithms are introduced in the beginning of Section 3, fol-
lowed by the bootstrap and the computation of the relative
weights of the regression coefficients. The construction of
linear dependency tree or forest is proposed in Section 4.
The proposed method is applied to real-world data set. The
description of data and the results of experiments are shown
in Section 5. The experiments mainly serve an illustrative
example of the proposed methodology. Conclusion and fi-
nal remarks are in Section 6.

2 Related work

To our knowledge, novelty of this work is in the sparse
construction of linear models and the application of the
bootstrap. Several studies about dependencies between the
variables in multivariate data are accomplished, for example
[3], [13], [11], [16], and [20].

Dependency trees are also used in [3]. A method which
approximates optimally ad-dimensional probability distri-
bution of thed variables is shown. Each variable can only
be dependent on at most one variable in that model, when
in this study one variable can be dependent on several vari-
ables.

Belief networks are discussed in [13]. The belief net-
work induces a conditional probability distribution over its
variables. The belief networks are directed and acyclic. De-
pendency networks which can be cyclic are presented in
[11]. In both belief and dependency networks the variables
are conditioned upon its parent variables. The directed de-
pendency means that changes in the parent has effect on the
child. The undirected dependency means that changes are
induced into the both directions. In this study, continuous
variables are only modeled, whereas the belief and the de-
pendency network can be used with discrete variables.

Independent variable group analysis (IVGA) is proposed
in [16]. In that approach the variables are clustered. The
variables in one cluster are dependent on each other but
they are independent on the variables which belong to other
clusters. In IVGA, the dependencies between the groups or
clusters are ignored and the dependencies in each group can
be modeled in different ways.

Structural equation modeling (SEM) [20] is another
technique to investigate relationships between the variables.
SEM provides a methodology to test a plausibility of hy-
pothesized models. The predefined dependencies between
the variables are investigated using the SEM, when the de-
pendencies are learned from the data using the method pro-
posed in this study. Structural Equation models can consist
of both observed and latent variables. The latent variables
can be extracted from the observed ones using for example
the factor analysis. Observed variables are only modeled in
this study.

3 Methods

3.1 Multiple linear regression

The dependencies between the variables are modeled us-
ing the multiple linear regression. The model is

yt = β1xt,1 + β2xt,2 + . . . + βkxt,k + ǫt, (1)

whereyt is the dependent variable,xt,i, i = 1, . . . , k are
the independent variables,βi, i = 1, . . . , k are the corre-
sponding regression coefficients, andǫt is normally dis-
tributed random noise with zero mean and unknown vari-
anceǫt ∼ N(0, σ2). The indext = 1, . . . , N represents
the tth observation of the variablesy andxi andN is the
sample size.

Equation (1) can also be written in matrix form as fol-
lows

y = Xβ + ǫ. (2)

Here we assume that the variables are normalized to zero
mean and thus, there is no need for a constant term in mod-
els (1) and (2).

The ordinary least squares (OLS) solution is

bOLS = (XT X)−1XT y (3)

wherebOLS = [b1, . . . , bk] is the best linear unbiased esti-
mate of the regression coefficients.

3.2 Linear sparse regression

The usual situation is that the available data are
(x1, . . . ,xk,y) and the linear regression model should be
estimated. The OLS estimates are calculated using all the
independent variables. However, the OLS estimates may
not always be satisfactory. The number of possible inde-
pendent variables may be large and there are likely non-
informative variables among them.

The OLS estimates have a low bias but a large variance.
The large variance impairs the prediction accuracy. The pre-
diction accuracy can sometimes be improved by shrinking



some regression coefficients toward zero, although at the
same time the bias increases [4]. The models with too many
independent variables are also difficult to interpret. Now,
the objective is to find a smaller subset of independent vari-
ables that have the strongest effect in the regression model.

In the subset selection regression only a subset of the
independent variables are included to the model, but it is
an inefficient approach if the number of independent vari-
ables is large. The subset selection is not robust because
small changes in the data can result in very different mod-
els. More stable result can be achieved using the nonnega-
tive garrote [2]. The garrote also eliminates some variables
and shrinks other coefficients by some positive values.

Ridge regression [12] and lasso [22] algorithms produce
a sparse solution or at least shrink estimates of the regres-
sion coefficients toward zero. Both algorithms minimize a
penalized residual sum of squares

argmin
β

{

||y − Xβ||2 + λ

k
∑

i=1

|βi|
γ
}

, (4)

whereγ = 2 in ridge regression andγ = 1 in lasso. The
tuning parameterλ controls the amount of shrinkage that is
applied to the coefficients. The problem in Equation (4) can
be represented equivalently as a constrained optimization
problem. In that approach the residual sum of squares||y−
Xb||2 is minimized subject to

k
∑

i=1

|βi|
γ ≤ τ, (5)

whereγ is the same as in Equation (4) and the constant
τ controls the amount of the shrinkage. The parametersλ
in Equation (4) andτ in Equation (5) are related to each
other by a one-to-one mapping [10]. A large value ofλ
corresponds to a small value ofτ .

The ridge regression solution is easy to calculate, be-
cause the penalty term is continuously differentiable. The
solution is

bRR = (XT X + λI)−1XT y, (6)

whereI is an identity matrix, but it does not necessarily
set any coefficients exactly to zero. Thus, the solution is
still hard to interpret if the number of independent variables
k is large. The lasso algorithm sets some coefficients to
zero with a properτ , but finding the lasso solution is more
complicated due to absolute values in the penalty term. A
quadratic programming algorithm has to be used to compute
the solution. Also, the value ofτ or λ which controls the
shrinkage is strongly dependent on data. Therefore, seek-
ing such a value may be difficult in many cases. The data-
based techniques for estimation of the tuning parameterτ
are presented in [22].
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Figure 2. The progress of the LARS algorithm.
The figure is reproduced from the original
LARS article by Efron et al. [7].

The lasso algorithm is not applicable if the number of
possible independent variables is large. Forward stagewise
linear regression (FSLR) can be used instead of lasso in
that case [10]. FSLR approximates the effect of the lasso
penaltyγ = 1 in Equation (4). New independent variables
are added sequentially to the model in FSLR. Two constants
δ andM have to be set before iterations. The regression
coefficient that diminish most the current residual sum of
squares, is adjusted by amount ofδ at each successive iter-
ation. The value ofδ should be small andM should be a
relatively large number of iterations.

All the estimates of coefficientsbi, i = 1, . . . , k are set to
zero in the beginning. Many of the estimatesbi are possibly
still zero afterM iterations. It means that corresponding
independent variables are not yet added to the regression
model. The solution after theM iterations is almost similar
than the lasso solution with someλ. They are even identical
in some cases [10].

The preceding methods such as ridge regression, lasso,
and FSLR are introduced as the historical precursors of the
Least Angle Regression (LARS) model selection algorithm.
We are mainly interested in the methods producing sparse
models. Thus, lasso and FSLR could be applied, but they
have deficiencies compared to the LARS algorithm. The
parametersλ or τ in lasso andδ andM in FSLR have to
be predefined, whereas LARS is completely parameter free
and it is also computationally more efficient than lasso or
FSLR. However, all the three methods produce nearly same
solutions. Only LARS algorithm is applied to selection of
the most significant independent variables in this study.

In Figure 2 the progress of the LARS algorithm is vi-
sualized. All the variables are scaled to have zero mean
and unit variance. One independent variable is added to the
model in each step. First, all regression coefficients are set
to zero. Then, the most correlated independent variablexi1

with y is found. The largest possible step in the direction



of u1 is taken until some other variablexi2 is as correlated
with the current residuals asxi1 . That is the point̂y1. At
this point LARS differs from traditional Forward Selection,
which would proceed to the pointy1, but the next step in
LARS is taken in a directionu2 equiangular betweenxi1

andxi2 . LARS proceeds in this direction until a third vari-
ablexi3 is as correlated with the current residuals asxi1

andxi2 . Next step is taken in a directionu3 equiangular
betweenxi1 , xi2 , andxi3 until a fourth variable can be
added to the model. This procedure is continued as long
as there are still independent variables left. So,k steps are
needed for the full set of solutions i.e. the result isk differ-
ent multiple linear regression models. In Figure 2yi repre-
sent the corresponding OLS estimates fromkth step. LARS
estimateŝyk approach but never reach OLS estimatesyk,
except at the last step the LARS and OLS estimates are
equivalent. The mathematical details of LARS algorithm
are presented in [7].

The problem is to find the best solution from all thek
possibilities which LARS returns i.e. a proper number of
independent variables. This selection can be done accord-
ing to the minimum description length (MDL) information
criterion [9]. The varianceσ2 of ǫt is assumed to be un-
known, thus, the MDL criterion is written in context of the
linear regression, as presented in [9],

MDL(k) =
N

2
log ||y − ŷ||2 +

k

2
log N. (7)

y is the dependent variable,ŷ is the estimate of the depen-
dent variable,N is the sample size andk is the number
of added independent variables. The value of Equation (7)
is calculated for all the solutions. The selected regression
model minimizes Equation (7).

The MallowsCp criterion [18], [19] is a common crite-
rion in subset selection. However,Cp is not used, because it
can select submodels of too high dimensionality [1]. A re-
view of several other information criteria can be found from
[21].

3.3 Bootstrap

The bootstrap is a statistical resampling method and it
was introduced by Efron in [6]. The idea of bootstrap is to
use sample data to estimate some statistics of the data. No
assumptions are made about the forms of probability distri-
butions in the bootstrap procedure. The statistic of interest
and its distribution are computed by resampling the original
data with replacement.

Bootstrapping a regression model can be done in two
different ways. The methods are bootstrapping residuals
and bootstrapping pairs [8]. The independent variables
(x1, . . . ,xk) are treated as fixed quantities in the bootstrap-
ping residuals approach. That assumption is strong and it

can fail even if Equation (1) for the regression model is cor-
rect. In the bootstrapping pairs approach weaker assump-
tions about validity of Equation (1) are made.

In the bootstrapping pairs,F̂ is assumed to be
an empirical distribution of the observed data vectors
(xt,1, . . . , xt,k, yt), where t = 1, . . . , N . F̂ puts prob-
ability mass of1/N on each vector(xt,1, . . . , xt,k, yt).
A bootstrap sample is now a random sample of sizeN
drawn with replacement from the population ofN vectors
(xt,1, . . . , xt,k, yt).

B independent bootstrap samples(X∗i,y∗i), i =
1, . . . , B of the sizeN are drawn from the distribution̂F .
The bootstrap replicationsb∗i of the estimatesb are com-
puted using the LARS algorithm and the MDL information
criterion. The statistic of interest or some other featuresof
the parametersb can be calculated from theseB bootstrap
replications.

3.4 Computation of relative weights of regression
model

In this study, relative weights of the coefficients of mul-
tiple linear regression model are computed. The relative
weights are calculated from the bootstrap replications as
follows

w =
1

B

B
∑

i=1

|b∗i|

1
T |b∗i|

. (8)

B is the number of bootstrap replications andb∗i is theith
bootstrap replication of coefficientsb. The absolute values
are taken over all the components of vectorb∗i. There is
a sum of the absolute values of coefficients in the denomi-
nator. 1 is a vector of ones and the length of the vector is
the same as the length of the vectorb∗i. All the compo-
nents of vector|b∗i| are divided by the previous sum. These
operations are done for every bootstrap replication and the
scaled bootstrap replications are added together. This sum
is divided by the number of bootstrap samplesB. The re-
sult is a vectorw, which includes the relative weights of the
coefficientsb.

There is a relative weightwi for the each possible inde-
pendent variablexi, i = 1, . . . , k in the vectorw. The value
of eachwi is within the rangewi ∈ [0, 1] and

∑

i wi = 1.
The relative weight of the independent variable is a measure
of the belief that the independent variable belongs to the es-
timated linear model. The independent variable can be re-
jected from the estimated model if the value ofwi is zero
or under a predefined threshold value. The most signifi-
cant independent variables have the largest relative weights.
In this study the variables are scaled to have unit variance,
therefore, the regression coefficients are comparable to each
other and their absolute values can be used as a measure of
significance.



The vector of relative weights can also be regarded as a
discrete probability distribution. From the probability dis-
tribution it can be seen which independent variables are
likely to be included to the final linear sparse regression
model.

4 Learning a linear dependency structure

4.1 Constructing a belief graph

Let us assume now that there are dataD available, which
havek+1 variables andN measurements for each variable.
The objective is to find multiple linear regression models
among the variables. Each variable is the dependent vari-
able in turn and the rest of the variables are the possible
independent variables. So, the following models have to be
estimated.

x̂1 = b1
2x2 + b1

3x3 + . . . + b1
kxk + b1

k+1xk+1

x̂2 = b2
1x1 + b2

3x3 + . . . + b2
kxk + b2

k+1xk+1

...

x̂j = bj
1x1 + . . . + bj

j−1
xj−1 + bj

j+1
xj+1 + . . .

bj
k+1

xk+1

...

x̂k = bk
1x1 + bk

2x2 + . . . + bk
k−1xk−1 + bk

k+1xk+1

x̂k+1 = bk+1

1 x1 + bk+1

2 x2 + . . . + bk+1

k−1
xk−1 + bk+1

k xk

The relative weights of the regression coefficients are com-
puted for all the abovek +1 linear models as it is described
in Sections 3.2-3.4. A belief graphGb is constructed from
thesek + 1 vectors of the relative weights.

Each variable of dataD is presented as a node in the be-
lief graphGb. The weighted arcs between the nodes are ob-
tained from the nonzero relative weights. Thus, the weights
of arcs measure the strength of the belief that there exists
a linear dependency between the corresponding two vari-
ables. The directions of dependencies are from the inde-
pendent variable to the dependent variable.

The dependencies or the number of arcs in the belief
graph can be reduced by setting some threshold valueλ for
the relative weights. The relative weight is set to zero if it
is below the threshold and the rest of the relative weights
are set to unity. This means that remaining dependencies
are treated as equally important thereafter. The belief graph
Gb becomes unweighted directed graphGd after using the
thresholdλ. However, some dependencies may be bidirec-
tional. The value of threshold is not estimated according to
some defined principle. A suitable value forλ is decided
by exploring the values of relative weights. The purpose is
to find such value forλ that minor changes inλ would not
cause major changes in the graphGd.

The direct use of the full information in the belief graph
will be studied further.

4.2 Constructing a moral graph

The following idea of constructing an undirected and a
moral graph from the belief graph is adapted from [13]. Let
Vi, i = 1, . . . , k stand for a node or a variable in the graphs.
The directions of dependencies can be discarded fromGd

and the result is an unweighted undirected graphGu. It
can be assumed now that two variablesVi andVj belong
potentially to the same linear model if they are connected
by an arc inGu. We mean that the variables belong possibly
to the same set of variables which forms one linear sparse
regression model. That is, the roles of the variablesVi and
Vj either as independent variable or dependent variable are
not specified yet.

Let us assume that a variablexj3 is the actual dependent
variable. A possible regression model isxj3 = βj1xj1 +
βj2xj2 + φ, whereφ is a function of the other independent
variables and noise. When variablesxj1 andxj2 are consid-
ered as the dependent variables, it is possible that the depen-
dency with the variablexj3 is found, but the dependencies
betweenxj1 andxj2 are ignored in both cases. However,
all three variablesxj1 , xj2 , andxj3 belong potentially to
the same linear model. An arc can be added to connect the
corresponding nodes inGu. The added arc is called a moral
arc. A moral graphGm is obtained when all moral arcs
have been added toGu. The moral arcs are added toGu

according to the following procedure.

• Create a directed graphG′

u from Gu. The directions of
dependencies are set to graphG′

u such that there do not
exist cycles. For each nodeVi, find its parentsPVi

in
G′

u. Connect each pair of nodes inPVi
by adding undi-

rected arcs between the corresponding nodes inGu.

In this study, the graphG′

u is created fromGu such that
the parentVi has a smaller index than the childVj i.e. i < j
in G′

u. This restriction confirms that the relationships can
be interpreted correctly and the number of added moral arcs
is reasonable. The parent and child relationships can be de-
fined differently toG′

u as above and it likely results in a dis-
similar moral graph and a final dependency structure. The
final dependency structure can be constructed as well from
Gu as fromGm. Basically, sparser models are obtained
from Gu, but the moral arc addition can give additional use-
ful information in some cases.

4.3 Constructing final linear models

The objective is to find multiple linear regression mod-
els among the variables in the dataD. The linear models or



the sets of variables are sought from the unweighted undi-
rected graphGu or from the moral graphGm. The vari-
ables, which are interpreted to belong to the same model,
are parts of the same maximal clique. A subgraph ofGu or
Gm is called a clique if the subgraph is complete and max-
imal. A subgraph is complete, if every pair of nodes in the
subgraph is connected by an arc. The clique is maximal, if
it is not a subgraph of the larger complete subgraph [13].

An algorithm, which can be used to generate all maximal
cliques from an arbitrary undirected graph, is presented in
detail in [15]. A short description of the algorithm is given
in the next two paragraphs.

Let Cn stand for a list of all cliques which includen
nodes. The algorithm starts by forming all 2-cliques. All
pairs of nodes which are connected by an arc are 2-cliques.
There exists 3-clique if two 2-cliques have one node in
common and two sole nodes are connected. For example,
if there are cliques{V1, V2}, {V1, V3} and{V2, V3} in the
graph, then there exists 3-clique{V1, V2, V3}. All 3-cliques
are collected to the listC3.

All (n + 1)-cliques can be constructed from the listCn.
Two n-cliquesc1

n andc2
n, which have already(n−1) nodes

in common, are tested if they could form a new(n + 1)-
cliquecn+1. There has to existn-cliquec3

n, which has(n−
2) nodes in common with cliquesc1

n andc2
n, in the listCn.

Additionally, (n−1)th node ofc3
n has to be equivalent tonth

node ofc1
n andnth node ofc3

n has to be equivalent tonth
node ofc2

n, then there is(n + 1)-cliquecn+1 in the graph.
For example, if there exist cliquesc1

4 = {V1, V2, V3, V4},
c2
4 = {V1, V2, V3, V5} andc3

4 = {V1, V2, V4, V5}, then there
exist 5-cliquec5 = {V1, V2, V3, V4, V5} in the graph. This
procedure is repeated as long as new cliques can be con-
structed. All listsCi, i = 1, . . . , nmax are tested in the
end, that anyn-clique is not a subclique of(n + m)-clique,
m > 0. If there exist subcliques they can be eliminated. In
the end, the dependent variable in all the cliques is selected
such that the coefficient of determination is maximized.

The problem to find all maximal cliques is known to be
NP -hard [14]. This means that the computational time for a
solution is nondeterministic and the number of cliques can
increase exponentially. Several other algorithms for solv-
ing the clique problem are introduced and analyzed in [14].
Computationally, the task is feasible, if the number of vari-
ables in the dataD is not large. The number of variables
can be a few hundred. The number of arcs in the graph also
affects on the computational efficiency.

The number of found complete and maximal cliques can
be large, but there are additional criteria how final cliques
are selected. Firstly, two cliques can have only one variable
or node in common. Secondly, the common variable can-
not be a dependent variable in both cliques. Finally, cycles
are not allowed in the dependency structure. Therefore, the
dependency structure is a dependency tree or a forest under

these restrictions. The independent variables are the parents
of the dependent variable in the final dependency structure.
The construction of the dependency structure starts from the
linear model which has the highest coefficient of determi-
nation. After that, the linear models are added such that the
coefficients of determination are as good as possible and the
previous restrictions are not violated.

5 Experiments

5.1 Data

A real-world data set which is used in this study is called
the System data. The System data consist of nine measure-
ments from a single computer which is connected to a net-
work. The computer is used for example to edit programs
or publications and to calculate computationally intensive
tasks [23].

Four of the variables describe the network traffic. Rest of
the variables are measurements from the central processing
unit (CPU). All the variables are in relative measures in the
data set. The variables are 1.blks/s (read blocks per
second (network)), 2.wblks/s (written blocks per second
(network)), 3.usr (time spent in user processes (CPU)), 4.
sys (time spent in system processes (CPU)), 5.intr (time
spent handling interrupts (CPU)), 6.wio (CPU was idle
while waiting for I/O (CPU)), 7.idle (CPU was idle and
not waiting for anything (CPU)), 8.ipkts (the number
of input packets (network)), and 9.opkts (the number of
output packets (network)).

The System data is collected during one week of com-
puter operation. The first measurement is done in the morn-
ing on Monday and the last one is done in the evening on
Friday. The measurements are done every two minutes dur-
ing the day and every five minutes during the night. The
measurements are done from every nine variables each time.
There are missing values in all the variables. A more de-
tailed description of the System data set is found from [23].

5.2 Preprocessing of the data

In general, processes are usually in different states dur-
ing the measurements. It is possible that dissimilar linear
dependency structures are needed to describe the operation
of computer during the week, for example one structure
during the day and another during the night. The variable
blks/s can vary depending on if someone is working with
the computer.

In this study, the similar states of the process are sought
using the variableblks/s, which is, thus, a reference vari-
able. The reference variable can be any of the variables in
the data set depending on which feature is wanted to be ex-
plored. The reference variable is plotted in Figure 3.
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Figure 3. The reference variable blks/s and
the selected windows.

A query window is selected from the reference variable.
The query window of reference variable should include in-
formation or the measurements of the feature i.e. the inter-
esting state of the time-series, which is under exploration.
The selected query window is the window number one in
Figure 3. The measurements in the query window are done
in the afternoon on Friday.

The similar states of the reference variable can be lo-
cated mathematically in many ways. In this study, the sum
of squares of differences between the query window and a
candidate window is minimized. The candidate window is
a part of the reference variable which is as long as the query
window. The candidate windows are not allowed to overlap
with each other or with the query window. The candidate
windows which have the smallest sum of squares of differ-
ences between the query window are chosen.

The sum of squares of differences between the query
window and the candidate window i.e. the Euclidean dis-
tance between them is calculated as follows

Ec =

M
∑

i=1

(yq,i − yc,i)
2, (9)

whereyq is the query window,yc is the candidate window,
andM is a number of the measurements which are included
in the query window.

The number of chosen candidate windows can be de-
cided, for example, by setting a threshold value to Equa-
tion (9). Another option is to select so many windows that
there are enough data points in further calculations. In Fig-
ure 3, windows2 − 8 are the chosen candidate windows.
Smaller numbers of candidate windows refer to smaller val-
ues of Equation (9). The measurements in all the chosen
candidate windows are done during the working hours.

The data in the chosen candidate windows and in the
query window from the reference variable are chosen and
the rest of the measurements are excluded from further cal-
culations. The parts, which have the same time label as cho-
sen candidate windows and query window, are also selected
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Figure 4. Development of coefficient values in
the LARS algorithm (a). Values of MDL crite-
rion for different models (b). The vertical line
in (a) and the diamond in (b) represents the
minimum value of MDL criterion.

from the rest of the time-series. All the selected windows
are scaled to have zero mean and unit variance. There are
70 data points in each selected window so in the further cal-
culations there areN = 560 data points in total from every
variable.

New time-series are acquired when the selected windows
of the original variables are put one after another. The orig-
inal measurements often include noise. The level of the
noise may be disturbingly high. In that case, noise reduction
techniques can be applied to the selected windows, for ex-
ample techniques based on the wavelet transform [5], [17].

This kind of similarity search in high dimensions, i.e
with very long time windows, should be approached with
caution. The Euclidean distance between the windows may
not work because of the curse of dimensionality. This se-
lection of windows, however, is not central to this work, but
it can be used if only the certain parts of the time-series are
interesting and wanted to be explored.

5.3 An example of sparse regression

The operation of LARS algorithm is illustrated with an
example. The variableblks/s is the dependent variable
and rest of the variables are the possible independent vari-
ables.

The independent variables are added to the regression
model in the following orderwblks/s, wio, sys, ip-
kts, intr, idle, opkts, andusr. Development of re-
gression coefficients are plotted in the left panel of Figure4.
The values of MDL criterion are plotted in the right panel
of the same figure. The minimum value is achieved by step
four i.e. the first four added independent variables are in-
cluded to the regression model.

The sparse regression model is

ŷblks/s = 0.44xwblks/s + 0.45xwio (10)

+0.19xsys + 0.07xipkts.
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Figure 5. The adjacency matrices of the be-
lief graph Gb (a) and the unweighted directed
graph Gd (b).

The coefficients of determination of the sparse model (10)
and the full model are 0.89 and 0.90, respectively. Thus,
the excluded variables can be considered as non-informative
and dropping out them improve the interpretability of de-
pendencies between the variables.

5.4 The dependency structure of System data

The objective is to find the best multiple linear regres-
sion models from the preprocessed data set. The process
proceeds as it is described in Section 4. The first task is to
construct the belief graphGb.

The adjacency matrix of the belief graphGb is presented
in the left panel of Figure 5. The relative weights of the re-
gression coefficients of theith model are in theith column
in the adjacency matrix. Theith variable has been the de-
pendent variable in theith model and rest of the variables
have been the possible independent variables. The relative
weights for the variables2, . . . , 8, when the variable 1 is the
dependent variable, are presented in the first column of the
adjacency matrix ofGb. The other columns are constructed
in a corresponding way. Dark colors refer to a strong belief
that these variables are significant in the multiple linear re-
gression model. For example, in the first column or in the
first regression model the variables 2 (wblks/s), 4 (sys),
and 6 (wio) are the most significant independent variables.
The number of bootstrap replications wasB = 1000 in each
of the nine cases. The relative weights of the coefficients
were calculated according to Equation (8).

The directed graphGd is computed fromGb using the
thresholdλ = 0.1 i.e the dependencies whose relative
weight is under 0.1 are ignored and rest of the weights are
set to unity. The adjacency matrix ofGd is in the right panel
of Figure 5. The unweighted undirected graphGu is ob-
tained fromGd by ignoring the directions of dependencies
and the moral graphGm is calculated fromGu as it is de-
scribed in Section 4.2. The adjacency matrices ofGu and
Gm are drawn in Figure 6.
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Figure 6. The adjacency matrices of the un-
weighted undirected graph Gu (a) and the
moral graph Gm (b).
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Figure 7. The dependency forest from the
graph Gu.

The final linear models are sought from the undirected
graphGu and from the moral graphGm. The variables
which belong to the same multiple linear regression model
are part of the same maximal clique in the graphsGu or
Gm. The maximal cliques are found using the algorithm
which is presented in Section 4.3.

Three maximal cliquesc1
4 = {idle,usr,sys,intr},

c1
3 = {ipkts,opkts, wblks/s} and c2

3 =
{blks/s,wblks/s,wio} were found from the graph
Gu. The best models are achieved if the variablesidle,
ipkts andblks/s are chosen to be the dependent vari-
ables. The coefficients of determination are then 0.95, 0.94
and 0.82. The dependency forest of these linear models is
in Figure 7.

All variables in cliquec1
4 are measurements from the

CPU. All regression coefficients were negative in this
model. If there is a positive change in some independent
variable, the value of the dependent variableidle will de-
crease.

Cliquesc1
3 andc2

3 are dependent on each other through
the variablewblks/s, which is one of the independent
variables in both models. When a positive change occurs
in the variablewblks/s also the values of the dependent
variablesipkts andblks/s increase. All variables in the
cliquec1

3 are the measurements from the network traffic. In
the cliquec2

3, the variableblks/s is the measurement from
the network traffic and the variablewio is the measurement
from the CPU.
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Figure 8. The dependency tree from the graph
Gm.

An alternative dependency structure is computed from
the graph Gm. There were two maximal cliques
and the variableblks/s was left alone. Cliques
are c1

5 = {idle,usr,sys,intr,wio} and c1
4 =

{ipkts,wio,wblks/s,opkts}. The dependency
structure is plotted in Figure 8.

All the variables in the cliquec1
5 are measurements from

the CPU. The best model is obtained, whenidle is the de-
pendent variable. Then the coefficient of determination is
0.96, which indicates that the linear model describes the de-
pendencies between the variables very well. The first linear
sparse regression model is

ŷidle = −0.64xusr − 0.30xsys (11)

−0.13xintr − 0.08xwio.

The independent variables describe how much of the
CPU power is spent to different activities and the dependent
variable describes how much of the CPU power is unused
at the moment. According to the estimated linear model
the value ofidle decreases when the values ofusr, sys,
intr andwio increase. This is very intuitive result be-
cause the processes which need CPU power obviously di-
minish the available CPU power.

The cliquec1
4 formulates another multiple linear regres-

sion model. When the variableipkts is selected to the
dependent variable, the best coefficient of determination
(0.94) is achieved. The second model is

ŷipkts = −0.01xwio + 0.11xwblks/s (12)

+0.93xopkts.

The variableipkts consists of measurements from the
network traffic. The variableswblks/s andopkts de-
scribes also the network traffic andwio is the same mea-
surement from the CPU as in model (11). When the num-
ber of written blocks per second and the number of output
packets increase the number of input packets also increases
according to Equation (12). This is a natural situation in the
bidirectional network traffic. The packets are sent to both
directions when for example a file is downloaded.

Models (11) and (12) are dependent on each other
through the variablewio. Changes inwio has effect on
both dependent variablesidle and ipkts. A positive
change inwio decreases the values ofidle andipkts.
However, the variablewio could be possibly excluded from
model (12), since the value of its regression coefficient is
negligible and it has not much effect on the coefficient of
determination.

6 Summary and conclusion

In this study, the method for analyzing linear depen-
dencies in multivariate data is proposed. The result of the
method is a linear dependency tree or a forest. The depen-
dencies of the variables can be clearly seen from the final
dependency structure. Thus, it is possible to get deeper un-
derstanding of the underlying process. The linear depen-
dencies are modeled by multiple linear regression models.

Similar states of time-series are selected using the Eu-
clidean distance between a reference variable. A single re-
gression model is constructed to model that selected state.
It may be difficult or even impossible to construct a single
regression model to time-series, which consists of many dif-
ferent states. Every state would require a model of its own.

This study proposes how the relative weights of the re-
gression coefficients can be calculated from the bootstrap
replications. The relative weight of the regression coeffi-
cient is a measure of belief that the corresponding indepen-
dent variable belongs to a certain regression model. In addi-
tion, the dependent variable or variables are selected during
the execution of the algorithm.

In the experiments it was shown that the most signifi-
cant variables have the highest relative weights. The rela-
tive weights seem to be appropriate to measure significance
of the independent variables.

The final dependency structure was constructed from the
belief graph. The belief graph represents the variables and
the relative strength of the dependencies between the vari-
ables. A threshold value was used to reduce the dependen-
cies in the belief graph. The chosen threshold value has a
strong impact on the final dependency structure. A minor
change in the threshold value can cause a major changes in
the final dependency structure. Thus, special attention to the
threshold value should be paid. It would be beneficial to au-
tomate the selection of the threshold value. One possibility
might be to include it somehow in the moralizing operation.
Another possibility could be to learn the final dependency
structure from the belief graph ignoring the weakest depen-
dencies by some data based method such that a tree or a
forest structure is achieved.

The proposed method was tested using a real world-data
set. The constructed dependency structures were convinc-
ing. Approximately 95% of the variation of dependent vari-



ables was explained by the regression models which were
constructed from the System data, although no assumptions
were made about the number of linear models. The result-
ing dependency structure was almost similar to one shown
in Figure 8, when the whole data set was used in the con-
struction of the dependency structure. When models (11)
and (12) were tested with the excluded data the coefficients
of determination were nearly as good as with the used data.

The final dependency structure highlights the dependen-
cies of the variables in an intelligible way. On the other
hand, it is difficult to measure the level of interpretability.
The goodness of the models may be hard to justify if coef-
ficient of determinations are moderate, but the dependency
structure can still give additional and unexpected informa-
tion in co-operation with someone who has specific knowl-
edge of the underlying process.
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