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Abstract. Time series prediction is an important problem in many areas
of science and engineering. We investigate the use of a parsimonious set of
autoregressive variables in the long-term prediction task using the direct
prediction approach. We use a fast input selection algorithm on a large set
of autoregressive variables for different direct predictors, and train non-
linear models (LS-SVM and a committee of LS-SVM) on the parsimonious
set of non-contiguous set of autoregressive variables. Results will be shown
for the time series competition task.

1 Introduction

Time series prediction aims at predicting future values of a time series based on
a recorded, finite collection of time series samples. Time series prediction has
many applications in natural sciences, engineering, and economics [2, 5, 11].

In this work, we perform input selection of autoregressive variables to pro-
duce a parsimonious, or sparse set of input variables for the prediction problem.
The resulting set of variables is typically a non-contiguous set of variables, un-
derlying the importance of a few relevant variables that will produce a good
predictor. Inputs of the sparse models are selected from a large set of autore-
gressive input variables for a given past horizon [8, 9]. In addition, the reduction
of input space dimension helps us to avoid the problems caused by the curse of
dimensionality [10]. On the basis of the selected variables, we train a non-linear
predictor, since the linear models do not produce sufficiently accurate predic-
tions in many applications. Here, we have chosen to use the least squares support
vector machine (LS-SVM) [7], since it is relatively fast to train and it has only
two tuning parameters in the case of Gaussian kernels. The LS-SVM has been
successfully used in the time series prediction context, for instance in [6].

In addition to selecting the best model based on cross-validation, we train
several perturbed models around the optimum, and give the average prediction
of the set of models as our final prediction. This approach takes into account
that the tuning parameters are evaluated in predefined grids and small changes
in their values could lead even better prediction performance.

The article is organized as follows. The Section 2 describes our approach to
long-term time series prediction. In Section 3, the two phase modeling strategy
is described. We briefly present the data provided by the conference organizers
and present the empirical experiments in Section 4 followed by summary and
conclusions in Section 5.



2 Long-Term Prediction of Time Series

In a time series prediction problem, future values of time series are predicted
using the previous values. In the long-term prediction, or multi-step-ahead pre-
diction, recurrent or direct approaches can be used. In the recurrent prediction,
the previous predictions are used as inputs, thus errors may accumulate and
diminish the quality of predictions. In this work, we rely on direct prediction
strategy, where the model

ŷt+k−1 = fk(yt−1, yt−2, . . . , yt−l) (1)

is used for k-step-ahead prediction. The predicted values are not used as inputs
at all in this approach, thus the errors in the predicted values are not accumu-
lated into the next predictions. However, when all the values from yt to yt+k−1

need to be predicted, k different models must be constructed. This increases the
computational complexity, but more accurate results are achieved using the di-
rect than the recursive strategy as shown in [8]. In addition, the direct approach
allows us to select different input variables to various k-step-ahead prediction
models.

3 Two Phase Prediction Approach

3.1 Phase I: Input Selection

Consider the regression problem that there are N measurements available from
an output variable y and input variables xi, i = i, . . . , l. In this phase, the
dependency is assumed to be linear

yj =

l∑

i=1

βixj,i + εj , j = 1, . . . , N . (2)

The errors εj are assumed to be independently normally distributed with zero
mean and common finite variance. All the variables are assumed to have zero
mean and unit variance, thus the constant term is dropped out from the model.
The ordinary least squares (OLS) estimates of the regression coefficients β̂i are
obtained by minimizing the mean squared error (MSE).

Usually, the quality of the model (2) can be improved by selecting the input
variables. Firstly, the generalization ability of the model may increase if only
a subset of input variables are used. Secondly, the final model highlights the
most important dependencies better and the underlying model is easier to un-
derstand or interpret. In this work, we use a previously proposed efficient input
selection procedure [8], [9]. The procedure starts by estimating the linear model

using all the available inputs. The sampling distributions of OLS estimates β̂i

and the standard deviation str of the training MSEs are estimated using M
times k-fold cross-validation. Mk estimates of each coefficient βi formulate the
sampling distributions. The median mβi

is used as the location parameter for



the distribution, since it is a reasonable estimate for skewed distributions and
distributions with outliers. The width of the distribution of β̂i is evaluated us-
ing the difference ∆βi

= β̂high
i − β̂low

i , where β̂high
i is Mk(1 − q)th and β̂low

i is

Mkqth value in the ordered list of the Mk estimates β̂i [3] and q can be set,
e.g., q = 0.165. With this choice of q, the difference ∆βi

is twice as large as the
standard deviation in the case of the normal distribution. The difference ∆βi

describes well the width of both asymmetric and symmetric distributions.
The ratio |mβi

|/∆βi
is used as a measure of significance of the corresponding

input variable. The input with the smallest ratio is dropped out from the set
of inputs. After that, the cross-validation procedure using the remaining inputs
and pruning is repeated as long as there are variables left in the set of inputs.

In the end, we have l different models. The purpose is to select a model
which is as sparse as possible, but it still has comparable prediction accuracy.
The final model is the least complex model whose validation error is under the
threshold Emin

v + smin
tr , where smin

tr is the standard deviation of training MSE
of the model having the minimum validation error Emin

v .
Advantages of the used algorithm is the ranking of the inputs according

to their explanatory power and sparseness of the final model. In addition, it
is applicable in the case of large number of inputs, since the computational
complexity is linear O(l) with respect to the number of available inputs l.

3.2 Phase II: Non-linear modeling using LS-SVM

Although the linear models are easy to interpret and fast to calculate they are
not accurate enough in some problems. Our proposal is to use the selected in-
puts also in the non-linear model. Goals of this approach are to avoid the curse
of dimensionality, over-parameterization, and over-fitting in the non-linear mod-
eling phase. In addition, the interpretability of the non-linear model increases,
since only a subset of inputs is included to the model. In this work, we choose
the least squares support vector machines (LS-SVM) as a nonlinear predictor
[7]. In the primal space, the LS-SVM model is defined as

ŷ = w
T φ(x) + b, (3)

where φ(·) is the mapping to the high dimensional feature space. Given a data
set {xj , yj}

N
j=1, the optimization problem is formulated in the primal space as

follows

min
1

2
w

T
w +

γ

2

N∑

j=1

e2
j (4)

s.t yj = w
T φ(xj) + b + ej , j = 1, . . . , N,

where γ is the regularization parameter. In practice, the problem (4) is solved
in the dual space and the resulting model is

y(x) =
N∑

j=1

αjK(x,xj) + b, (5)



where αj are Lagrange multipliers and the kernel trick K(xl,xj) = φ(xl)
T φ(xj)

is applied. The Gaussian kernels K(xl,xj) = exp(−‖xl − xj‖
2/σ2) are used in

this work. In this case we have two tuning parameters, which are selected using
cross-validation. The LS-SVM model is presented in detail, for example, in [7].

From the input selection point of view, the two phase approach is a so called
filter approach [4], since a linear model is used to select a parsimonious set
of inputs and a non-linear predictor is trained on top of them. In the earlier
work [9], we also performed sensitivity analysis on the selected input variables
in order to investigate the importance of variables in non-linear model. Since
the competition setting does not give too much weight on the interpretation, we
omit this aspect from this work.

4 Experiments

In this section, we present our empirical experiments with the competition data
set provided by the symposium organizers. The data set is briefly described in
the Section 4.1, model selection in Section 4.2 and the results are shown in the
section 4.3.

4.1 Prediction competition data set

Time series competitions are a good way to measure out-of-the sample gener-
alization ability of predictors; they have a long history [11] and have become
a relatively popular setting for comparing methods for time series predictions.
In this competition, the domain of origin of the data remains so far completely
unknown to the competitors.

The data set provided by the organizers of the conference is a scalar time
series yt, t = 1, . . . , N with N = 875 samples measured in a discrete time grid.
The goal of the competition is two-fold: both the 15 and 50 next predicted val-
ues of the time series will be used to measure the goodness of the prediction
approach. The accuracy of the predictors will be measured by the MSE between
the predicted values and the true values, which are not accessible by the com-
petitors. The goodness measure has then the form with K = 15, 50 : MSEK =
1

K

∑K

k=1
(yt+k−1−ŷt+k−1)

2. The MSE measures an overall performance averaged
over the whole prediction horizon. The short-term prediction being supposedly
easier and resulting in smaller MSE values.

4.2 Model selection with cross validation

In order to generalize well, the prediction must be accurate not only in the
training set, but also in a data set that is not part of the training. We have left
out the last 50 samples from the original data set, which is used as a test set. This
simulates the competition setup. In order to estimate generalization properties
of the predictors, we have used rest of the data in training and validation. All
the models are trained using normalized (zero mean and unit variance) data,
but all the results, for instance the errors, are shown in the original scale.
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Fig. 1: Illustration of input selection in the prediction of yt+24, training error
(solid line with circles) and validation error (dashed line with dots) as a function
of the number of inputs in the linear model. The vertical line marks the minimum
validation error and the horizontal dash-dotted line represents the threshold,
which is used in the selection of the final model.

In the input selection, 10-fold cross-validation repeated M = 100 times is
used. This choice produces 1000 estimates for the coefficients βi, which is con-
sidered to be large enough for reliably estimating the distribution of the pa-
rameters in the linear model. The LS-SVM models using selected inputs are
evaluated using 15 values of the regularization parameter γ and 15 values of
the kernel parameter σ2, which are logarithmically equally spaced in the ranges
γ ∈ [10−2, 105] and σ2 ∈ [10−3, 104]. The optimal values of γ and σ2 are selected
using 10-fold cross-validation repeated ten times to increase the reliability of the
results.

For the final predictions used in the competition, we used all the available
data to train the models with the parameters producing minimum validation
errors. These models cannot obviously be validated against the available data
set anymore.

4.3 Results

As a result of our approach to predict the time series, we get a parsimonious set
of inputs, which provides insight to the system itself. Since this is of little value
in the competition setting, we concentrate on the prediction results.

The maximum number of inputs is set to be l = 50, i.e. the available inputs
are yt−l, l = 1, . . . , 50 in each of the 50 prediction cases. Figure 1 illustrates how
the training and the validation errors develop as a result of our input selection
procedure in the case of 25-step-ahead (yt+24) prediction. It is notable that
the validation error does not increase drastically until almost all the inputs are
dropped out from the model. If the final model had been selected according to
the minimum validation error the number of inputs would have been 7. However,
even more parsimonious model is achieved when the thresholding is used. The
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Fig. 2: The selected inputs in the final models. The outputs yt+k, k = 0, 1, . . . , 49
are in the x-axis and the available inputs yt+l, l = −1,−2, . . . ,−50 are in the
y-axis. The selected inputs are denoted by black rectangles in each column.

final number of inputs is 5 and the validation error does not increase significantly.
In Figure 2, we illustrate the selected inputs in our direct prediction tasks

with prediction horizon varying from 1 to 50 (yt, . . . , yt+49). The black squares in
each of the vertical columns denote the inclusion of the variable to the prediction
model. The figure shows that each of the direct predictors has a different set of
variables. The first available autoregressive input variable yt−1 is interestingly
included in all the models for predicting yt+k−1 upto the value of k = 32. Also,
the last autoregressive input yt−50 is included in most of the models. The partial
diagonal patterns indicate the inclusion of a variable with the same absolute lag
difference from the value to be predicted. It is noteworthy, that the pattern
of selected input variables is relatively sparse, approximately only 5 inputs are
chosen from the available 50 autoregressive input variables (yt−1, . . . , yt−50).
For instance, the selected 5 inputs in 25-step-ahead prediction model (yt+24)
are yt−1, yt−4, yt−12, yt−27, and yt−50. The direct predictor will then have the
form ŷt+24 = f24(yt−1, yt−4, yt−12, yt−27, yt−50) and the form of the prediction
function f24 is left to be specified.

In Figure 3, the validation mean squared errors for direct k-step-ahead pre-
dictions yt+k−1, k = 1, ...50 are shown. The dashed line with circles indicates the
mean squared errors of the linear predictors using the parsimonious, or sparse
pattern of autoregressive input variables. The solid line with dots indicates the
mean squared errors of the LS-SVM models trained using the same inputs as
the linear models. The non-linear predictors (LS-SVM) show consistently bet-
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Fig. 3: The mean-square error (MSE) calculated for the validation set for dif-
ferent direct predictors yt+k−1, k = 1, . . . , 50. The MSE for the sparse linear
model has been plotted with a dashed line marked with circles, the MSE for the
LS-SVM has been plotted with a dotted solid line.

ter performance over whole prediction horizon in the validation set. The errors
increase when the prediction horizon increases, which is expected behavior.

In Figure 4, the absolute errors of predictions |yt+k−1− ŷt−k+1|, k = 1, . . . , 50
are shown for the linear models (dashed line with circles) and for the LS-SVM
models (solid line with dots) in the test set. The LS-SVM model has smaller
absolute error in 19 cases out of the 50, but it only performs clearly better in the
prediction of 19-22 steps-ahead. On the other hand, the linear model is clearly
more accurate in the prediction of 9-11 and 34-46 steps-ahead.

In order to improve the performance of the LS-SVM models we train a com-
mittee of LS-SVM models for each k-step-ahead prediction. It is known that
combining the models to form a committee can significantly improve the pre-
dictions on new data [1]. For each k-step-ahead prediction case we train a com-
mittee, which consists of 10 LS-SVM models. To get variation for the members
of committees we train them as follows. Firstly, we train each member using a
random subsample of data whose size is 9/10 of the original data. Secondly, the
kernel parameters for the members of committee are linearly equally spaced in
the range σ2 ∈ [σ2

opt − σ2
opt/2, σ2

opt + σ2
opt/2, ], where σ2

opt is the optimal value
obtained using cross-validation. The same value of regularization parameter γ
is used for each member of the committee. Obviously, the σ2

opt and γ might
vary in different k-step-ahead prediction models. In the end, the output of the
committee is a mean of the outputs of the members of the committee.

The mean-square test errors MSEK = 1

K

∑K

k=1
(yt+k−1 − ŷt+k−1)

2,K =
15, 50 for the linear models, the LS-SVM models, and committees of LS-SVMs
are presented in Table 1. Although the cross-validation has been done carefully,
the test set (the last 50 points not part of the validation or the training set)
indicates worse performance for the LS-SVM models than for the linear models.
The committees of LS-SVM do not either perform as well as the linear models.
This is clearly a contrary finding with the results from the validation results.
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Fig. 4: The absolute errors of predictions |yt+k−1 − ŷt−k+1|, k = 1, . . . , 50 in the
test set. Dashed line with circles and solid line with dots indicate the errors in
the linear and LS-SVM models, respectively.

MSE sparse linear LS-SVM LS-SVM committee
15-step-ahead 0.51 0.98 0.90
50-step-ahead 1.18 1.63 1.60

Table 1: The averaged MSEs for linear models, LS-SVM models, and committees
of LS-SVM models for 15- and 50-step-ahead prediction in the test set.

Certainly, Figure 3 indicates the superiority of the LS-SVMs over linear models
in the validation set. At this time, we cannot attribute this phenomenon to
any particular cause. However, we noted that the averaged MSEs are largely
influenced by a small fraction of unsuccessful predictions in the evaluation of
test errors in Table 1. Thus, these results can be considered as a precautionary
example how well-validated methods can perform poorly in a small test set. In
this setup, we have only one sample for each k-step-ahead prediction model in
the test set.

The given predictions that will be our contribution to the prediction compe-
tition are illustrated in the Figure 5. The upper panel indicates the predictions
of the linear predictors with the selected inputs. The lower panel illustrates
the predictions using LS-SVM models using selected inputs (black dashed line)
and committee of LS-SVMs (gray dashed line). The values on left from the
vertical black line are the input values, i.e last 50 values of given time series.
No final conclusions can be drawn about quality of the predictions, since the
actual values are unknown. However, the predictions using linear model are ob-
viously smoother than predictions using non-linear models. Especially, the time
steps from 908 to 920 may be poorly predicted by the non-linear methods. It is
also noteworthy, that there are almost no differences between the predictions of
LS-SVMs and the committees of LS-SVMs.
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Fig. 5: The predicted values for the purpose of the competition. All 50 predicted
values are shown, the predictions are given by the sparse linear model (upper
panel), LS-SVM (lower panel, black dashed line) and a committee of LS-SVM
models (lower panel, gray dashed line).

5 Summary and Conclusions

Parsimonious sets of input variables provide many advantages in time series pre-
diction. For instance, the final model requires less parameters to be trained.
Also the sparsity provides a good basis for interpretation, and highlights the
relevant dependencies in time series. In a time series prediction competition set-
ting, we have selected parsimonious inputs in the spirit of backward selection,
and trained a LS-SVM prediction model based on the selected inputs. As a
final attempt to improve the prediction accuracy, we have trained a set of mod-
els on slightly perturbed parameters around the optimal cross-validated model
parameters and averaged the results. The goal of our approach is to produce
accurate results, and at the same time provide comprehensible views into the
system through the set of parsimonious regressors.
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