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ABSTRACT

Multiresponse sparse regression is the problem of estimat-

ing many response variables using a common subset of in-

put variables. Our model is linear, so row sparsity of the co-

efficient matrix implies subset selection. This is formulated

as the problem of minimizing the residual sum of squares,

where the row norms of the coefficient matrix are penalized.

The proposed approach differs from existing ones in that any

penalty function that is increasing, differentiable, and con-

cave can be used. A convergent majorize-minimize algorithm

is adopted for minimization. We also propose an active set

strategy for tracking the nonzero rows of the coefficient ma-

trix when the minimization is performed for a sequence of

descending values of the penalty parameter. Numerical ex-

periments are given to illustrate the active set strategy and

analyze penalization with different degrees of concavity.

Index Terms— MM algorithm, variable selection, row

sparse matrices, simultaneous sparse approximation.

1. INTRODUCTION

Suppose that we have q response variables and m input vari-

ables from which we have n observations. Consider the model

Y
(n×q)

= X
(n×m)

W
(m×q)

+ E
(n×q)

. (1)

The columns of X are zero mean and constant norm input

variables, W is a row sparse coefficient matrix, and E is

an unknown noise matrix. The row sparsity of W has the

effect that some of the input variables do not contribute to

the response variables at all. Multiresponse sparse regres-

sion (MRSR) is the problem of identifying and estimating the

nonzero rows of W given the matrices X and Y .

A traditional paradigm for solving the MRSR problem is

to apply such measures as prediction error, tests of statistical

significance, or information criteria to rank different combi-

nations of input variables. Some stepwise algorithm is used

to find promising combinations. Theoretical results show that

certain greedy algorithms succeed when the input variables

are weakly correlated [1]. On the other hand, empirical ev-

idence shows that they fail in the presence of higher corre-

lations [2]. There are better and less greedy algorithms for

stepwise subset selection [2], but it is not always clear, what

is exactly the objective that they optimize.

Recently, relaxation techniques for the MRSR problem

have emerged in the signal processing and statistical commu-

nities, apparently through independent research efforts [3],

[4], [5], [6], [7]. These techniques penalize the model fit-

ting in a way that the estimate for W becomes row sparse.

Particularly, when the relaxation problem is convex, efficient

methods exist for finding a global solution.

In this article, MRSR is formulated as a relaxation prob-

lem to minimize the objective function1

Eλ
µ(W ) = 1

2‖Y −XW ‖2F + λ

m
∑

i=1

pµ(‖wi‖), (2)

where λ ≥ 0 is used to balance between model fitting and pe-

nalization. The subscript µ ≥ 0 measures perturbation from

the desired objective Eλ
0 (W ), in a way to be made precise

in Section 2.2. Until then, one can fix µ = 0. The penalty

function p0(s) is increasing on s ≥ 0.

The objective Eλ
0 (W ) is introduced in [8], where the sin-

gle response q = 1 case is studied and penalty functions re-

sulting in estimates that satisfy the properties of unbiased-

ness, sparsity, and continuity are proposed. In [9], a majorize-

minimize (MM) algorithm is developed for optimizing the

perturbed objective Eλ
µ(W ) with µ > 0. The perturbation

enables analyzing the convergence of the algorithm and it also

solves some other deficiencies. This article extends the works

[8] and [9] to the multiple response q > 1 case. The global

convergence of the extended algorithm follows from general

results of the MM theory [9], [10]. The main contribution

of this article is a stable active set strategy for tracking the

nonzero rows of the solution W (λ) when Eλ
0 (W ) is mini-

mized for a sequence of descending values of λ. This lessens

computational burden, since only the active rows need to be

optimized while the solution remains the same.

Existing studies of the q > 1 case are regarded to the ob-

jective (2) as follows. The choice p0(s) = s makes Eλ
0 (W ) a

1Throughout the article, ‖ · ‖ denotes the L2 vector norm and the Frobe-

nius matrix norm is ‖ · ‖F = ‖vec(·)‖. A bolded lower case letter refers to

a column vector whose elements are taken from a single row of a matrix. For

example, we have W
T = [w1, · · · , wm].



convex function and the resulting minimization problem has

been studied extensively [4], [5], [7]. Here the main focus

is on strictly concave penalty functions, which are needed

to avoid unnecessary modeling bias when the true unknown

value ‖wi‖ is large [8]. The Regularized M-FOCUSS algo-

rithm [4] uses p0(s) = z−1sz , which is strictly concave on

s ≥ 0 for z ∈ (0, 1). However, the algorithm lacks rigorous

proof of convergence and it appears to be unable to change

the status of a row of W from zero to nonzero in the process

of iteration.

2. OPTIMIZATION

2.1. First order optimality conditions

We start with the first order optimality conditions for min-

imizing the desired objective Eλ
0 (W ) under the assumption

that p0(s) is differentiable on s ≥ 0. In this case, the mapping

p0(‖wi‖) is differentiable on the whole domain R
q, possibly

excluding the point wi = 0. Since nondifferentiability at

this point turns out to be the key factor for row sparsity, we

cannot rely on gradient-based calculus. Instead, we note that

Eλ
0 (W ) is directionally differentiable everywhere.

The derivative of Eλ
0 (W ) at W in a direction V is

Eλ
0
′(W )(V ) =

∑

i∈I

vT

i

(

gi + λ
p′0(‖wi‖)

‖wi‖
wi

)

+

∑

i/∈I

(vT

i gi + λp′0(0)‖vi‖),
(3)

where G = −XT (Y − XW ) denotes the gradient of the

loss function 1
2‖Y −XW ‖2F and I = {i : ‖wi‖ > 0}.

Proposition 1 Eλ
0
′(W )(V ) ≥ 0 holds for all V if and only

if the following conditions are satisfied

−gi = λ
p′0(‖wi‖)

‖wi‖
wi, i ∈ I (4)

‖gi‖ ≤ λp′0(0) , i /∈ I. (5)

Proof Let (4)–(5) hold. Then we clearly have Eλ
0
′(W )(V ) =

∑

i/∈I(vT

i gi + λp′0(0)‖vi‖) ≥ 0 ∀V because of the Cauchy-

Schwarz inequality vT

i gi ≥ −‖vi‖‖gi‖.
Let Eλ

0
′(W )(V ) ≥ 0 hold ∀V . (I) Assume ∃i ∈ I such

that hi := gi + λ
p′

0(‖wi‖)
‖wi‖

wi 6= 0. Set vj = 0 for j 6= i and

vi = −hi. (II) Assume ∃i /∈ I such that ‖gi‖ > λp′0(0). Set

vj = 0 for j 6= i. If gi 6= 0 set vi = −gi and, otherwise,

take any vi 6= 0. Both (I) and (II) lead to the contradiction

Eλ
0
′(W )(V ) < 0, so (4)–(5) must hold. �

If W minimizes the directionally differentiable function

Eλ
0 (W ), then Eλ

0
′(W )(V ) ≥ 0 holds for all V [11]. Thus,

(4)–(5) are necessary for optimality. In the case that p0(‖wi‖)
is convex, it can be shown that (4)–(5) are also sufficient. Ob-

serve that the penalty function encourages row sparsity only

when p′0(0) > 0 applies. The same property has been derived

for the single response q = 1 case in [8].

2.2. MM algorithm

A general MM algorithm reduces the objective function mono-

tonically by minimizing a succession of approximations, each

of which majorizes the objective in a certain sense. In essence,

the MM algorithm replaces a difficult optimization problem

by a sequence of easier subproblems. Our desired objective

Eλ
0 (W ) is difficult to minimize, because it may be noncon-

vex and thereby admit multiple local minima, and because the

function p0(‖wi‖) is nondifferentiable at wi = 0 under the

sparsity assumption p′0(0) > 0. The latter difficulty also pre-

vents the use of a differentiable majorizer at this point, which

spoils the idea of the MM algorithm with easy subproblems.

We adopt the approach taken in [9] and consider a per-

turbation µ > 0, which makes Eλ
µ(W ) differentiable every-

where, but maintains it close to Eλ
0 (W ). The smaller the

value µ, the more similar the two functions are. Then we use

an MM algorithm to minimize the new perturbed objective.

It is worth noting that minimizing Eλ
µ(W ) directly with a

gradient-based method might not be easy, since it is very close

to the nondifferentiable function Eλ
0 (W ) when µ is small.

To begin with the algorithm, we define pµ(s) as follows

pµ(s) = p0(s)− µ

∫ s

0

p′0(t)

µ + t
dt, µ > 0 (6)

and construct its quadratic majorizer in the next proposition,

see Eq. (3.6) and Proposition 3.2 in [9].

Proposition 2 Suppose that p0(s) is differentiable, increas-

ing, and concave on s ≥ 0 such that p′0(0) ∈ (0,∞). Then

for all s, s[k] ≥ 0 and µ > 0 the function

qµ(s; s[k]) = pµ(s[k]) +
(s2 − s[k]2)p′0(s

[k])

2(µ + s[k])
(7)

majorizes pµ(s) at the point s[k] and satisfies the condition

qµ(s; s[k]) ≥ pµ(s) for all s ≥ 0 with equality when s = s[k].

The function Eλ
µ(W ) is clearly majorized by the function

Qλ
µ(W ;W [k]) = 1

2‖Y −XW ‖2F + λ

m
∑

i=1

qµ(‖wi‖; ‖w
[k]

i ‖)

(8)

and the following majorization property holds

Qλ
µ(W ;W [k]) ≥ Eλ

µ(W ) for all W with equality

when W ∈ {W : ‖wi‖ = ‖w[k]

i ‖, i = 1, . . . ,m}.
(9)

Consider any iteration map, which decreases the majorizer

such that Qλ
µ(W [k+1];W [k]) < Qλ

µ(W [k];W [k]) holds. This

leads, together with (9), to the monotonicity property

Eλ
µ(W [k+1]) ≤ Qλ

µ(W [k+1];W [k])
< Qλ

µ(W [k];W [k]) = Eλ
µ(W [k]).

(10)

The majorizer (8) is quadratic and strictly convex, so it is easy

to satisfy (10) by taking the next iterate

W [k+1] =(XTX + λΩ [k]

µ )−1XT Y (11)



to minimize the majorizer. Here Ω
[k]

µ is a diagonal matrix

with the ith diagonal element p′0(‖w
[k]

i ‖)/(µ + ‖w[k]

i ‖).
The convergence properties of MM algorithms are well

known in general [10]. In the present context, it suffices to

note that the majorizer (8) is strictly convex and the iteration

map (11) is continuous, so all fixed points of the algorithm

are stationary points of Eλ
µ(W ). A fixed point is guaranteed

to exist, since Eλ
µ(W ) is lower compact. In addition, if Wµ

minimizes Eλ
µ(W ), then any limit point of {Wµ} as µ → 0

minimizes Eλ
0 (W ) [9]. In the particular case that we have

p0(s) = s and the columns of X are linearly independent,

Eλ
µ(W ) is strictly convex and the algorithm converges to the

unique minimizer of Eλ
µ(W ). The use of strictly concave

penalty functions is likely to introduce local minima, which

may also be fixed points of the algorithm.

2.3. Active set strategy

The parameter λ is free and its value must be fixed by cross-

validation or related methods in practical problems. Thus

it is necessary to perform the minimization for several val-

ues λ[0] > λ[1] > · · · ≥ 0. Under the sparsity assumption

p′0(0) > 0, some rows of the minimizer W (λ[t]) are zero for

a large enough λ[t]. In the next step λ[t+1], it is tempting to use

W (λ[t]) as a starting point and optimize only the rows that are

likely to be nonzero in W (λ[t+1]). Next we present an active

set strategy for this purpose, but before going further, a word

of caution is in order. If (2) is nonconvex, the path of global

minimizers may be noncontinuous as a function of λ. Then it

is possible to stick to a locally optimal path for some time.

Taking the norm of both sides of (4), we find that ‖gi(λ)‖
equals λp′0(‖wi(λ)‖) for i ∈ I(λ). Combining this to (5), we

note that ‖gi(λ)‖ is at most λp′0(‖wi(λ)‖) ∀i. Thereby, it is

natural to consider those curves ‖gi(λ)‖ active that are close

to their upper bounds λp′0(‖wi(λ)‖). Particularly, we define

A(λ[t+1])= {i : ‖gi(λ
[t])‖≥ (λ[t]−δ)p′0(‖wi(λ

[t])‖)}. (12)

Note that I(λ[t]) ⊆ A(λ[t+1]) holds for all δ ≥ 0. A large

value of δ has the effect of including extra indices to the set

A(λ[t+1]). This makes the active set strategy more stable, be-

cause the desired property I(λ[t+1]) ⊆ A(λ[t+1]) becomes

more probable. In general, a suitable value of δ depends on

the step length λ[t+1] − λ[t]. The choice δ = 0.1λ[0] is a safe

rule of thumb for most purposes, and it is used in [7].

We may define W (λ[0]) = 0, G(λ[0]) = −XT Y ,

λ[0] = max
1≤i≤m

{‖gi(λ
[0])‖/p′0(‖wi(λ

[0])‖)}, (13)

A(λ[0]) = {i : ‖gi(λ
[0])‖/p′0(‖wi(λ

[0])‖) = λ[0]}, (14)

because W (λ) = 0 holds for λ ≥ λ[0] according to (4)–(5).

In the subsequent steps, the MM algorithm (11) updates only

the rows that belong to the active set (12). This means that the

inverse operation in (11) concerns an |A(λ[t+1])|×|A(λ[t+1])|
matrix in the step λ[t+1], so computational burden lightens.

3. EXPERIMENTS

Next we present numerical experiments, where a penalty func-

tion of the form p0(s) = c log(1 + s/c) is used. As the pa-

rameter c > 0 decreases, the degree of concavity increases.

The MM algorithm (11) is applied and the parameter µ is de-

creased exponentially from 10−5 to 10−10 in the process of it-

eration. The active set strategy (12) has the value δ = 0.1λ[0].

The first experiment analyzes the tobacco leaf data set,

which is also used, for example, in [7]. The data set has

the dimensions n = 25, m = 6, and q = 3. All the vari-

ables are normalized to zero mean and unit variance before

the analysis. The primary purpose of the experiment is il-

lustration, but we also computed cross-validation errors (not

shown). The best models are equally accurate, but the smaller

values of c lead to more accurate highly penalized models.

This is explained by the fact that the row norms tend to in-

crease rapidly with a small c, which indicates weaker regular-

ization, see Fig. 1. Note that the rows are considered active a

bit before they become nonzero according to our strategy.

The second experiment uses simulated data with the di-

mensions n = 50, m = 100, and q = 5. Input data fol-

low the distribution xi ∼ N(0,ΣX), where the covariances

are [ΣX ]ij = 0.9|i−j|. Error data follow the distribution

ei ∼ N(0,ΣE), where [ΣE]ij = 0.22 · 0.6|i−j|. The ma-

trix W has 20 randomly chosen nonzero rows. The jth ele-

ment of the ith row (assumed nonzero) follows the distribu-

tion wij ∼ N(0, σ2
i ), where σi ∼ Exp(1). The matrix W is

normalized W ← Wdiag(W T
ΣXW )−

1
2 after sampling so

that the scales of the response variables are comparable [7].

Fig. 2 shows the results, which are calculated from 500

replicates of simulation. The lowest prediction errors are more

or less the same while the most accurate model has the value

c = 0.4. Again, small values of c lead to better accuracy for

large values of λ, but the situation is the opposite for small

values of λ. Differences are bigger in terms of sparsity, since

decreasing c strengthens parsimony. The number of correct

nonzero rows is roughly the same in all cases, but the ratio of

correctness is higher when c is small.

4. EXTENSIONS

The proposed approach can be extended in many ways. Firstly,

the one-step Newton update [10] is applicable with a general

differentiable loss function, which enriches the feasible model

family. Secondly, nondifferentiable loss functions can be ma-

jorized in the same way as the penalty function is handled in

the present article. This would enable various forms of ro-

bust regression and quantile regression. Thirdly, it is possible

to have several penalty functions p(i)

0 (s), which vary between

the rows of the coefficient matrix. Fourthly, the proposed MM

algorithm is directly applicable to any task, where blockwise

sparsity [12], not just row sparsity, is required.
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Fig. 1. Row norms (left) and illustrations of the active set

strategy (right) for the tobacco leaf data set. The dashed line

shows the decision boundary of the active set. A curve lying

above this line indicates that the corresponding row is active.
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