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Abstract

Kernel based methods suffer from exceeding time and memory requirements when applied

on large datasets since the involved optimization problems typically scale polynomially in the

number of data samples. As a remedy, some least squares methods on one hand only reduce

the number of parameters (for fast training), on the other hand only work on a reduced set (for

fast evaluation). Departing from the Nyström based feature approximation, via the fixed-size

LS-SVMmodel, we propose a general regression framework, based on restriction of the search

space to a subspace and a particular choice of basis vectors in feature space. In the general

model both reduction aspects are unified and become explicit model choices. This allows to

accommodate kernel Partial Least Squares and kernel Canonical Correlation analysis for

regression with a sparse representation, which makes them applicable to large data sets, with

little loss in accuracy.
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1. Introduction

Over the last years one can see many learning algorithms being transferred to a
kernel representation [28,31]. The benefit lies in the fact that nonlinearity can be
allowed, while avoiding to solve a nonlinear optimization problem. In this paper we
focus on least squares regression models in the kernel context. By means of a
nonlinear map into a reproducing kernel Hilbert space (RKHS) [34] the data are
projected to a high-dimensional space.
Kernel methods typically operate in this RKHS. The high-dimensionality which

could pose problems for proper parameter estimation is circumvented by the kernel
trick, which brings the dimensionality to the number of training instances n and at
the same time allows excellent performance in classification and regression tasks.
Yet, for large data sets this dimensionality in n means a serious bottleneck, since the
corresponding training methods scale polynomially in n. Downsizing the system in
dimensions to size m5n is therefore needed. On the one hand, low-rank
approximations (e.g. [7,35]) offer reduction to smaller m � m matrices. On the other
hand reduced set methods work with a thin tall n � m system (e.g. [17,18,25,30,34]).
This work connects at the latter perspective.
We start from the Nyström approximation, delivering a direct approximation of

features, which, applied in an ordinary least squares model, leads to kernel principal
component regression (KPCR) and fixed-size LS-SVMs [31]. Compared to KPCR,
FS-LSSVM also only needs a small number of parameters, but additionally the
regression is done in the primal space leading to a sparse representation, unlike
estimation in the dual space as done in Gaussian Processes without having a sparse
representation [35,36]. Such a parsimonious model is highly desirable when dealing
with large data sets since it implies a substantial reduction in training and evaluation
time.
By formalizing the structure of the FS-LSSVM model, we then obtain a least

squares regression framework in which (i) we explicitly restrict the regression
coefficients to a subspace and (ii) we express the subspace in the basis formed by
mapped training data points. These model constraints respectively allow to control
the number of regression parameters and the number of kernels. Our general model
formulation introduces kernels in a natural manner into the model, yields a
complementary, unifying viewpoint on some other kernel methods and it comprises a
class of models. We especially focus on the expression in a subset m5n of features of
the RKHS. This scheme of LS subspace regression delivers a linear system that
consequently only needs polynomial training times in m.
Like KPCR was extended by FS-LSSVM with a sparse representation, we now

accommodate here also kernel partial least squares (KPLS) (together with some
variants [11]) and kernel canonical correlation analysis (KCCA) with a sparse
representation in a natural and efficient manner (different from [19], where
sparsification is induced via a multi-step adaptation of the algorithm with extra
computational burdens). Hereby we make their application possible for large scale
data sets. In the subspace regression model, the extension consists of using
alternative eigenspaces constructed by optimization of other (co)variance criteria. In
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some examples we finally show that these models perform well with little loss of
accuracy and can effectively manage large data sets.
This paper is organized as follows. In Section 2 we present some minimal

background on kernel methods in relation to reproducing kernel Hilbert spaces. In
Section 3 we deal with the Nyström approximation for features to recognize three
least squares models. In Section 4 we introduce subset based least squares subspace
restricted regression in feature space. In Section 5 we give an overview of some
alternative eigenspaces with which we can endow the model. In Section 6 we
illustrate the different methods by some results on an artificial and a three real-world
datasets, including a large scale example.
2. Reproducing kernel Hilbert space

The central idea for kernel algorithms within the learning theory context is to
change the representation of a data point into a higher-dimensional mapping in a
reproducing kernel Hilbert space (RKHS) Hk by means of a kernel function. When
appropriately chosen, the kernel function with arguments in the original space
corresponds to a dot product with arguments in the RKHS. This allows to
circumvent working explicitly with the new representation as long as one can express
the computation in the RKHS as inner products.
Assume data ffðxi; yiÞg

n
i¼1 2 Rp � Rg have been given. A kernel k provides a

similarity measure between pairs of data points

k : Rp � Rp ! R : ðxi;xjÞ7!kðxi;xjÞ: ð1Þ

Once a kernel is chosen, one can associate to each x 2 Rp a mapping
j : Rp ! Hk : x7!kðx; 
Þ, which can be evaluated at x0 to give jðxÞðx0Þ ¼ kðx; x0Þ.
One obtains a RKHS on Rp under the condition that the kernel is positive definite
[1]. Remark that the kernel function coincides with an inner product function and
hkðx; 
Þ; kðx0; 
Þi ¼ kðx;x0Þ, so it reproduces itself. It is also called a representer of f at
x because f ðxÞ ¼ hf ; kðx; 
Þi.
The RKHS has the property that every evaluation operator and norm of any

element in Hk is bounded [34]. This makes the elements of a RKHS well-suited to
interpolate pointwise known functions that must be smooth. In the context of
regularization one tries to do this by minimizing a pointwise cost function cð
Þ over
data and monotonic smoothness function gð
Þ:

min
f2Hk

cðxi; yi; f ðxiÞÞ þ gðkf kÞ: ð2Þ

The representer theorem [15] states that the solution is constrained to the subspace
spanned by the mapped data points:

f ðxÞ ¼
Xn

i¼1

wijðxiÞðxÞ ¼
Xn

i¼1

wikðxi;xÞ: ð3Þ
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Thus the solution can always be expanded as a linear function of dot products. The
wi coefficients are typically found by solving the optimization problem that involves
the specific regularization functional.
The Mercer–Hilbert–Schmidt theorem reveals more about the nature of j by

stating that for each positive definite kernel there exists an orthonormal set ffig
d
i¼1

with non-negative li such that we have following spectral decomposition:

kðx;x0Þ ¼
Xd

i¼1

lifiðxÞfiðx
0Þ ¼ hjðxÞ;jðx0Þi; ð4Þ

where dp1 is the dimension of the RKHS, and li and fi are the eigenvalues and
eigenvectors of the kernel operator, defined by the integral equationZ

kðx;x0ÞfiðxÞpðxÞdx ¼ lifiðx
0Þ; ð5Þ

on L2ðR
pÞ. This allows to formulate the inner product in terms of expansion

coefficients:

hf ; gi ¼
Xd

i¼1

aifi;
Xd

j¼1

bjfj

* +
¼
Xd

i¼1

aibi

li

; ð6Þ

where hfi;fji ¼ dij=li. A proper scaling of the basis vectors fi with factor
ffiffiffiffi
li

p
will

transform the inner product to its most simple canonical form of an Euclidean dot
product so that kðx;x0Þ ¼ jðxÞTjðx0Þ. Furthermore one can express each feature jðxÞ
in this basis so that the j mapping can be identified with a d � 1 feature vector

jðxÞ ¼ ½
ffiffiffiffiffi
l1

p
f1ðxÞ

ffiffiffiffiffi
l2

p
f2ðxÞ . . .

ffiffiffiffiffi
ld

p
fd ðxÞ�

T: ð7Þ

For regression purposes, just like one builds up a n � p data matrix X from the xi

inputs, one constructs with the mapped data points jðxÞ, an n � d feature matrix:

F ¼

jTðx1Þ

jTðx2Þ

..

.

jTðxnÞ

0
BBBB@

1
CCCCA ¼

ffiffiffiffiffi
l1

p
f1ðx1Þ

ffiffiffiffiffi
l2

p
f2ðx1Þ . . .

ffiffiffiffiffi
ln

p
fdðx1Þffiffiffiffiffi

l1
p

f1ðx2Þ
ffiffiffiffiffi
l2

p
f2ðx2Þ . . .

ffiffiffiffiffi
ln

p
fdðx2Þ

..

. ..
. . .

. ..
.

ffiffiffiffiffi
l1

p
f1ðxnÞ

ffiffiffiffiffi
l2

p
f2ðxnÞ . . .

ffiffiffiffiffi
ln

p
fdðxnÞ

0
BBBB@

1
CCCCA: ð8Þ

It is a difficulty that in general the elements of this feature matrix F are unknown
because the explicit expression for j is not available. The common approach to deal
with this issue is then to make use of the so-called kernel trick [28]. The need for a
direct expression is typically avoided by an ad hoc substitution such that scalar
products are formed and consequently kernels come into play. Thus, the element
jðxÞ may be not explicitly known, but the projection on any other jðx0Þ is simply
kðx;x0Þ, and then the unknown elements are eliminated.
Here we follow another approach in which we start from an approximate explicit

expression for jðxÞ, via the Nyström method. We will show how it leads to a least
squares regression model, FS-LSSVM, with a downsized number of parameters and
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a sparse kernel expansion. Such parsimonious models are necessary when dealing
with large data sets.
3. The Nyström approximation

The Nyström method dates back from the late 1920s [21]. It offers an approximate
solution to integral [3,23]. It became recently of interest in the kernel machine
learning community via Gaussian processes [35,36] and recognized as implicitly
present in the projection of features in the eigenspace produced by Kernel principal
component analysis (KPCA), introduced in [29]. More specifically, the technique
yields a simple approximation of the features for a predetermined subset of m5n

training points. These are then used on their turn as an interpolative, but quite
accurate, formula for the features in the remaining training points.

3.1. Approximation of eigenfunctions

One can discretize the integral of Eq. (5) on a finite set of evaluation points
fx1;x2; . . . ;xng, with simple equal weighing, yielding a system of equations:

1

n

Xn

j¼1

kðx;xjÞfiðxjÞ ¼ lðnÞi fðnÞ
i ðxÞ; ð9Þ

which can be structured as a matrix eigenvalue problem:

KUn ¼ UnLn; ð10Þ

where Kij ¼ hjðxiÞ;jðxjÞi ¼ kðxi;xjÞ are the elements of the kernel Gram matrix, Un

a n � n matrix of eigenvectors of K and Ln a n � n diagonal matrix of non-negative
eigenvalues in non-increasing order. (We emphasized the dimensions of matrices by a
subscript and for vectors it is indicated in the superscript, between brackets to avoid
confusion with powers.) Expression (9) delivers direct approximations of the
eigenvalues and eigenfunctions for the fxjg

n
j¼1 points:

fiðxjÞ �
ffiffiffi
n

p
u
ðnÞ
ji ; ð11Þ

li �
1

n
lðnÞi : ð12Þ

It was a key observation of Nyström to backsubstitute these approximations in (9) to
obtain an approximate of an eigenfunction evaluation in new points x0:

fiðx
0Þ ¼

ffiffiffi
n

p

lðnÞi

Xn

j¼1

kðx0;xjÞu
ðnÞ
ji ¼

ffiffiffi
n

p

lðnÞi

ðkðnÞðx0ÞÞTu
ðnÞ
i ; ð13Þ

where kðnÞðxÞ ¼ FjðxÞ ¼ ½kðx1; xÞ; kðx2;xÞ; . . . ; kðxn;xÞ�
T. As can be seen from (7), the

entries of features in a RKHS match the eigenfunctions, apart from a scaling factor,
so an approximate eigenfunction yields us an approximate feature.
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3.2. Feature approximation based on the complete training data set

Maximally n approximate eigenfunctions fi can be computed, since we have only
information in the given data points. The Nyström approximation allows to obtain
an explicit expression for the entries of the approximated feature vector:

jiðxÞ ¼
ffiffiffiffi
li

p
fiðxÞ (14)

¼ ðlðnÞi Þ
�1=2

Xn

j¼1

kðx;xjÞu
ðnÞ
ji (15)

¼ ðlðnÞi Þ
�1=2

ðkðnÞðxÞÞTu
ðnÞ
i : (16)

The approximation to a feature becomes a n � 1 vector:

jðxÞ � L�1=2
n UT

n k
ðnÞðxÞ: ð17Þ

At the same time we obtain also a n � n matrix approximation Fn of the n � d

regressor matrix (8):

F ¼

jTðx1Þ

jTðx2Þ

..

.

jTðxnÞ

0
BBBB@

1
CCCCA � KUnL�1=2

n ¼: Fn: ð18Þ

If we use this matrix in a least squares setting, we obtain a linear model in feature
space. More specifically we are then performing PCR, which has the advantage of
reducing the number of parameters if enough components are left out, but a sparse
kernel expansion is not obtained. In next section we show that this extra requirement
can be added.

3.3. Feature approximation based on a training data subset

In order to introduce parsimony in the number of kernels, we choose a subset of
m5n data points and then a likewise m-approximation can be made:

li �
1

m
lðmÞ

i ; ð19Þ

fiðxÞ �

ffiffiffiffi
m

p

lðmÞ

i

Xm

j¼1

kðx;xjÞuji ¼

ffiffiffiffi
m

p

lðmÞ

i

ðkðmÞðxÞÞTui: ð20Þ

Again one can obtain an explicit expression for the entries of the approximated
feature vector:

jiðxÞ ¼
ffiffiffiffi
li

p
fiðxÞ (21)

� ðlðmÞ

i Þ
�1=2

Xm

j¼1

kðxj ; xÞuji: (22)
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The approximation to the feature vector now becomes a m � 1 vector:

jðxÞ � L�1=2
m UT

mk
ðmÞðxÞ: ð23Þ

It yields the following approximation of the feature matrix:

Fn ¼ KnmUmL�1=2
m : ð24Þ

If this approximation is directly used in a LS model we obtain

f ðxÞ ¼ ðwðmÞÞ
TjðxÞ þ b (25)

¼
Xm

j¼1

wj

Xm

i¼1

ðlðmÞ

j Þ
�1=2u

ðmÞ

ij kðxi;xÞ

 !
þ b (26)

�
Xm

i¼1

bikðxi;xÞ þ b; (27)

where bi ¼
Pm

j¼1wjðl
ðmÞ

j Þ
�1=2u

ðmÞ

ij . This model, in conjunction with an entropy-based
selection procedure has been named Fixed-Size LS-SVM and proposed in [31]. It
delivers a sparse kernel expansion and at the same time the number of parameters of
w is kept equal to m.
3.3.1. Eigenvector/value approximations

Next to the above two models that resulted from the Nyström approximation, yet
another model can be identified. For this, consider the eigenvalues/vectors of the m-
points approximation and how they relate to the n-points approximation [36]:

lðnÞi ¼
n

m
lðmÞ

i ; ð28Þ

u
ðnÞ
i ¼

ffiffiffiffi
n

m

r
1

lðmÞ

i

Knmu
ðmÞ

i ; ð29Þ

where i ¼ 1; . . . ;m. And once again one can obtain an explicit expression for the m

entries of the approximate feature vector:

jiðxÞ ¼
ffiffiffiffi
li

p
fiðxÞ (30)

� ðlðnÞi Þ
�1=2

Xn

j¼1

kðx;xjÞu
ðnÞ
ji (31)

¼ ðlðmÞ

i Þ
�3=2

Xn

j¼1

kðx;xjÞ
Xm

l¼1

kðxj ;xlÞu
ðmÞ

li (32)

¼ ðlðmÞ

i Þ
�3=2

ðkðnÞðxÞÞTKnmu
ðmÞ

i : (33)

This approximation leads to a m � 1 feature vector

jðxÞ � L�3=2
m UT

mKT
nmk

ðnÞðxÞ ð34Þ
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and feature matrix

F ¼

jTðx1Þ

jTðx2Þ

..

.

jTðxnÞ

0
BBBB@

1
CCCCA � KKnmUmL�3=2

m ¼ K ~UnmL�1=2
m ; ð35Þ

where

~Unm ¼
Um

K ðn�mÞmUmL�1
m

� �
ð36Þ

is the approximation to the first m columns of the eigenspace of the kernel matrix K,
but is not a true left eigensubspace, since its columns are not orthogonal to each
other.
If this approximation is directly used in the least squares model we obtain the

kernel expansion:

f ðxÞ ¼ ðwðmÞÞ
TjðxÞ þ b (37)

¼
Xm

j¼1

wj ðlðmÞ

j Þ
�3=2

Xn

i¼1

kðx;xiÞ
Xm

l¼1

kðxi;xlÞu
ðmÞ

lj

 !
þ b (38)

¼
Xm

j¼1

wj ðlðmÞ

j Þ
�3=2

Xn

i¼1

kðx;xiÞKnmu
ðmÞ

j

 !
þ b (39)

�
Xn

i¼1

bi kðxi;xÞ þ b (40)

where bi ¼
Pm

j¼1wjðl
ðmÞ

j Þ
�1=2 ~uðnÞj ¼

Pm
j¼1wjðl

ðmÞ

j Þ
�3=2Knmu

ðmÞ

j . We do not obtain here a
sparse kernel expansion any more, but we do keep the sparseness in the number of
regression parameters of w.
With the above three models we are now in a position to generalize and identify in

the following section a least squares regression model with specific restrictions. The
properties of sparse kernel expansion and reduced number of parameters will
become explicit model choices and these three models will be just special cases.
4. The subspace regression model

The general goal is to obtain a parsimonious model (in both parameters and
kernels) of the underlying function between a set of independent variables and an
dependent variable, based on pointwise information: the data input/output instances
ffðxi; yiÞg

n
i¼1 2 Rp � Rg. Specifically we will firstly explicitize how to obtain reduction

of the model parameters and secondly how to obtain a reduction of the kernel
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expansion. In this section we discuss the regression model, confine it to a subspace
and restrain the choice of basis vectors.

4.1. Least squares regression

Consider the standard simple linear regression model in feature space

y ¼ FwðdÞ þ e; ð41Þ

where y represents a n � 1 vector of observations of the dependent variable, F is a
n � d matrix of regressors fjðxiÞg

n
i¼1, w

ðdÞ is the unknown d � 1 vector of regression
coefficients and e is a n � 1 vector of errors with zero-mean Gaussian i.i.d. values of
equal variance s2 (unknown). We will assume all mapped data variables have been
mean-centered.
To estimate the unknown model parameters, the elements of wðdÞ, we choose to

minimize the squared errors e by ordinary least squares (OLS) regression

min
wðdÞ2Rd

ky� FwðdÞk22; ð42Þ

with the least squares estimate of the coefficient vector

ŵ
ðdÞ
OLS ¼ ðFTFÞ�1FTy: ð43Þ

Additionally, one can also choose to add a regularization parameter (with
controlling coefficient g) to the optimization problem, which is the well-known case
of Ridge Regression (RR) [12]:

min
wðdÞ2Rd

ky� FwðdÞk22 þ
1

g
kwðdÞk22; ð44Þ

which introduces a bias, but may have the effect of variance reduction of the
regression coefficients estimate

ŵ
ðdÞ
RR ¼ FTFþ

1

g
I

� ��1

FTy: ð45Þ

4.2. Restriction to a subspace

A first difficulty in this feature space setup, is that d may be very large compared to
the number of data points n, even d ¼ þ1 potentially. This implies that also an
infinite number of regression coefficients will be necessary. But this infinite number
of degrees of freedom is not practical, nor sensible, since one can approximate any
function with an infinite number of parameters.
So in order to obtain a parsimonious model in the parameters one can reduce the

search for the estimate to a subspace of Rd�1, with finite dimension s5d. We can
gather linearly independent vectors fvig

s
i¼1 in the columns of a d � s transformation

matrix V, such that they span the subspace. This column space, denoted by
rangeðV Þ ¼ fwðdÞjwðdÞ ¼ VaðsÞ for any aðsÞg forms then a confined search space for the
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regression vector estimate and our OLS optimization is adapted as

min
wðdÞ2rangeðVÞ

ky� FwðdÞk22; ð46Þ

where the restricted OLS estimate is determined by s regression coefficients:

ŵ
ðsÞ
OLS ¼ V ðVTFTFV Þ

�1VTFTy: ð47Þ

Remark that this model comes down to a LS problem in transformed regressors. If
we express the jðxiÞ in the new coordinates zðxiÞ ¼ VTjðxiÞ

T, so that in matrix
notation Z ¼ FV , we obtain Z as a n � s matrix of transformed regressors. The
ði; kÞth element of Z is the value of the projection on the kth feature vector vk. The
resulting estimate from the (unrestricted) regression in Z would be ŵ

ðsÞ
OLS, and be

considered as a primal variable.
We also can modify the RR model with a penalisation of the magnitude of the

regression parameter vector,

min
wðdÞ2rangeðVÞ

ky� FwðdÞk22 þ
1

g
kwðdÞk22; ð48Þ

where the restricted RR estimate is determined by s regression coefficients

ŵ
ðdÞ
RR ¼ V VTFTFV þ

1

g
VTV

� ��1

VTFTy: ð49Þ

This RR model is a LS problem in transformed regression coefficients, and not in the
regressors, because for that, the term ð1=gÞVTV would be ð1=gÞI , which is plain RR
on some set of transformed features. If s ¼ d then a mere basis change is performed,
but when sod, then the solution is confined to a proper subspace. The particular
choice of the basis vectors will of course affect the quality of the model.

4.3. Choice of basis

A second difficulty is that in general the elements of matrix F are unknown
because the explicit expression for j is not available. An elegant and optimal
approach is to make use of the so-called kernel trick [28]. The need for a direct
expression is typically avoided by formal manipulation towards scalar products so
that kernels come into play. The element jðxÞ may be not explicitly known, but the
projection on any other jðx0Þ is simply kðx; x0Þ.
In order to insert kernels in our setup, we may choose for the subspace any linear

combination of jðxiÞ. If we select a (sub)set of mpn features, this can be achieved by
introducing a subspace decomposition V ¼ FT

mA with Fm a feature matrix in the m

input vectors. The m � s matrix A holds in fact the projections (scalar products or
loadings) of the s basis vectors vk onto the m (score) vectors jðxlÞ. This expression of
V in the column basis of FT

m allows to write Z ¼ FV ¼ FFT
mA ¼ KnmA and our

model equation becomes

y ¼ ZaðsÞ þ e ¼ ðKnmAÞaðsÞ þ e: ð50Þ
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Remark that the use of kernels requires in fact to represent the subspace spanning
vectors in the basis of the mapped datapoints. As such, the determination of V is
replaced by a determination of the m � s matrix A on the basis of the data. In next
subsection we will address the subspaces and loading matrices.
Some more general remarks:
�
 Once computed the s � 1 vector aðsÞ of regression coefficients, we can obtain an
estimate of y, and we can indeed express the linear model as an expansion of
kernels:

f ðxÞ ¼
Xm

i¼1

Xs

j¼1

aija
ðsÞ
j

 !
kðxi;xÞ �

Xm

i¼1

bi kðxi; xÞ: ð51Þ
�
 If we wish to evaluate the function after training in other (test) points, then for a
given test set ffðxj ; yjÞg

t
j¼nþ1g we have a t � d feature matrix Ft ¼ ðkðxi;xjÞÞij and a

corresponding t � n kernel matrix Kt ¼ FtFT
m so that the prediction in new points

is expressed as

ŷt ¼ ðKtmAÞaðsÞ þ e: ð52Þ
�
 Since we assumed that the data are centered, we need to adjust the expression jðxÞ
with jðxÞ � ð1=nÞ

Pn
i¼1jðxiÞ everywhere. For the kernel matrices this has the

consequence of replacing K by [29]

K :¼ In �
1

n
1n1

T
n

� �
K In �

1

n
1n1

T
n

� �
; ð53Þ

where In is the identity matrix and 1n a n � 1 vector of ones.

4.4. A complementary view

In Table 1 it is summarized how the three LS models of previous section appear as
special cases of the sparse restricted least squares kernel regression framework. But
also on some other common kernel methods the concept of restricted regression
offers a useful complementary view. As such, we do not present with our framework
one kernel version of one specific algorithm, but in fact a whole general class of
kernel models.
For example, if we confine the regression coefficients to a subspace V ¼ FT, then

the restricted RR model yields

ŵ
ðnÞ
RR ¼ FT K þ

1

g
I

� ��1

y; ð54Þ

where we made use of the fact that K is invertible and symmetric. In this estimate we
may readily recognize the kernel RR model solution, originally proposed in [27], and
which shows up also in Regularization Networks [6,8] and Gaussian Processes [20]
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Table 1

Interpretation of different LS models with Nyström based features, as special cases in the sparse restricted

least squares kernel regression framework

Method Subspace Sparsity

Subset Loading Kernels Parameters

KPCR FT
n UnL�1=2

n
No Yes

FS-LSSVM FT
m UmL�1=2

m
Yes Yes

low-rank FT
m K�1

mmKT
nm

Yes No
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context. If the model is enhanced with an additional bias term then it is related to the
Least Squares Support Vector Machine (LS-SVM) [31], which also emphasizes
primal-dual formulations of the problem.
Furthermore, to induce kernel sparseness, we could choose a reduced set of basis

vectors V ¼ FT
m and then we find:

ŵ
ðmÞ

RR ¼ FT
m KT

nmKnm þ
1

g
Kmm

� �
KT

nmy; ð55Þ

a model proposed in [25,30]. And if we set V ¼ FT in the restricted OLS model with
radial basis kernels, then we relate immediately to RBF-networks [22]. Some
commonly applied kernel based (least squares) methods can be interpreted as
implicitly restricting their regression coefficients to a particular subspace.
Another proposal for a subspace may turn out to be close to the Nyström

approximation. Suppose we plan to restrict to a subset of m basis vectors, then it
seems a reasonable idea to take those vectors in this subspace that are closest to the
other n � m training vectors. If we understand ‘closest’ -for example- in the least
squares sense, this suggests that we consider the so called ‘projection matrix’ of the
column space of FT

m,

Pm ¼ FT
mðFmFT

mÞ
�1Fm; ð56Þ

and take as the subspace the projected data points:

V ¼ PmFT ¼ FT
mðFmFT

mÞ
�1FmFT: ð57Þ

From the subspace regression point of view, we thus employ a loading matrix A ¼

K�1
mmKmn in the model

y ¼ ðKnmAÞwðnÞ þ e ð58Þ

and in this case we happen to arrive at the well-known Nyström low-rank
approximation for K:

~K ¼ KnmK�1
mmKmn: ð59Þ

This shows that the LS subspace regression view is a quite versatile framework which
links and complements smoothly to various other methods in the kernel methods
field. In specific, we have seen in previous section how KPCR and FS-LSSVM
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(with its favorable sparse kernel expansion) were related through the approximation
of features. The framework of this section gives a more formal general view on those
models where they appear to involve the choice of a particular subspace and basis. In
the next section we review in short some other sortlike models, correspond to
another choice of subspace, that we can then extend with a sparse representation.
5. Eigenvectors for the subspace

In this section we describe next to KPCA two other closely related methods that
deliver meaningful vectors to span the subspace. They have in common that it are
eigenvectors based on the data, constructed unsupervised or supervised. We only
treat here in short the basics of the kernelized versions and for a short summary from
the linear viewpoint we refer to Appendix A. From previous section it is clear then
that by choosing the particular subset and basis, the proposed framework in fact
directly allows to accommodate these with a sparse kernel representation in a natural
manner.
5.1. Kernel principal component analysis

Instead of the data points xi and the design matrix X from PCA, we just deal with
the features jðxiÞ and the feature matrix F in the kernel version. Starting from
criterion (A.2) we need to solve the eigenproblem

FTFv ¼ lv: ð60Þ

Again by lack of explicit expression of F, one resorts to the application of the kernel
trick to bring kernels into play. As was cleverly noted in the original paper [29], this
is possible because the above solutions v are exactly linear combination of the jðxiÞ

with coefficients Fv. Thus we may state v ¼ FTu and perform also a left
multiplication with F to obtain

FFTFFTu ¼ lFFTu: ð61Þ

which yields, using the fact that K is positive definite, the central eigendecomposition
of KPCA

Ku ¼ lu: ð62Þ

For a more principled derivation, with a primal-dual approach, we refer to [32],
where PCA was originally reported in a support vector machine formulation.
For the eigenvectors that should satisfy the PCA constraint vTv ¼ 1 a normal-

ization must be imposed:

v ¼ l�1=2FTu: ð63Þ
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Although we do not know V explicitly, the projection on the eigenvectors, which
serve as new variables, can be computed with kernels:

zkðxÞ ¼ jðxÞTvk ¼ l�1=2jðxÞTFTuk ¼ l�1=2ðkðxÞÞTuk ¼ l�1=2
Xn

i¼1

kðxi;xÞuik:

ð64Þ

Remark that these entries coincide with the entries of the feature vector in the
Nyström approximation based on the full training data set.
A natural way to parsimony in the LS regression with these KPCA features

follows from observing the least squares estimate of the regression vector

w ¼ ðZTZÞ
�1ZTy ¼ L�1ZTy ¼ L�1VTFTy ¼

Xn

i¼1

l�1i vTi F
Ty ð65Þ

and its corresponding variance–covariance matrix expression (assuming the output
corrupted with Gaussian noise of variance s2)

covðwÞ ¼ s2V ðZTZÞ
�1VT ¼ s2VL�1VT ¼ s2

Xn

i¼1

l�1i viv
T
i : ð66Þ

It is clear that the occurrence of small eigenvalues will introduce large variance of the
estimate. Therefore the common remedy is to leave out the eigenvectors
corresponding to the smallest eigenvalues. In the above expressions we take
therefore spn components. The price is that it introduces a bias, but that is
acceptable as long as it remains small in comparison to the variance.
As such the kernel PCA based model, or kernel principal components regression

(KPCR), on n training points, extended with a bias term, and s components,
becomes an expansion in kernels:

f ðxÞ ¼
Xs

j¼1

wjz
ðnÞ
j þ b ¼

Xs

j¼1

wj

Xn

i¼1

l�1=2j uij

 !
kðxi;xÞ þ b ¼

Xn

i¼1

aikðxi;xÞ þ b

ð67Þ

where ai ¼
Ps

j¼1l
�1=2
j uij .

If we only take a subset of m training data points, we have that the subspace
V ¼ FT

mA is the m � s eigenspace of FT
mFm and that the loading matrix

A ¼ UmsL�1=2
s , the n � s eigenspace of Kmm ¼ FmFT

m, with an eigenvalue scaling.
Taking all s ¼ m components corresponds to the Fixed Size LS-SVM model. In the
next subsections we take the same approach, but consider some other alternative
eigenspaces. We compute then these spaces on a reduced set to employ them likewise
in the LS subspace regression model.
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5.2. Kernel canonical correlation analysis

Starting from criterion (A.4), we can proceed likewise in feature space, but now
with v and w as d � 1 feature space vectors. To arrive at calculation with kernels
instead of feature vectors one typically expands the new basis vectors as follows

v ¼
Xn

i¼1

aijðxiÞ ¼ FTA ð68Þ

w ¼
Xn

i¼1

bijðyiÞ ¼ FTB: ð69Þ

By substitution in (A.4) and use of some algebra one arrives at the following
criterion

max
ab

aTKxxKyybffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTKxxa

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bTKyyb

q ð70Þ

where ½Kxx�ij ¼ jðxiÞ
TjðxjÞ and ½Kyy�ij ¼ jðyiÞ

TjðyjÞ are the kernel Gram matrices
and v and w were divided by their norm. Taking then derivatives with respect to a
and b and setting to zero leads to the following coupled system of equations

Kyyb ¼ lKxxa;

Kxxa ¼ lKyyb: ð71Þ

Again, a principled primal-dual derivation was proposed in the context of primal-
dual LS-SVM formulations, which leads to a more extended ‘regularized’ KCCA
variant [31]:

Kyyb ¼ lðn1Kxx þ IÞa;

Kxxa ¼ lðn2Kyy þ IÞb; ð72Þ

where n1 and n2 act as regularization parameters. A regularized KCCA was originally
reported by [16] and [2], in an independent component analysis (ICA) context. The
KCCA case where a linear kernel is used for the y variables was treated in [33] and
here included in the tests as the KCCA1 variant.
5.3. Kernel partial least squares

By direct substitution of (68)–(69) in the PLS criterion (A.8) and use of some
algebra one arrives at the following criterion

max
a;b

aTKxxKyybffiffiffiffiffiffiffiffi
aTa

p ffiffiffiffiffiffiffiffi
bTb

p : ð73Þ
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Taking then derivatives with respect to a and b and equating to zero leads to the
following coupled system of equations

Kyyb ¼ la;

Kxxa ¼ lb: ð74Þ

This variant is the nonlinear counterpart of PLS-SVD, for the other variants from
the appendix Section A we have the following expressions:
�
 For KPLS-WA we can substitute X by F1 and Y by F2. But because of the
unknown elements of F, we cannot directly obtain the SVD of ðFr

1Þ
TFr

2. The
NIPALS-PLS algorithm [37] allows to circumvent this issue and delivers the a and
b as first singular vectors of K ðrÞ

xxK ðrÞ
yy and K ðrÞ

yyK ðrÞ
xx. Then the deflation expressions

become for PLS-U at step r:

K ðrþ1Þ
xx ¼ Kxx � K2

xxArðA
T
r K3

xxArÞ
�1AT

r K2
xx

K ðrþ1Þ
yy ¼ Kyy � K2

yyBrðB
T
r K3

yyBrÞ
�1BT

r K2
yy: ð75Þ

The same is valid for KPLS-WA (which resembles the kernel version of PLS1 [26])
where we have:

K ðrþ1Þ
xx ¼ K ðrÞ

xx � ara
T
r K ðrÞ

xx � K ðrÞ
xxara

T
r þ ara

T
r K ðrÞ

xxara
T
r

K ðrþ1Þ
yy ¼ K ðrÞ

yy � brb
T
r K ðrÞ

yy � K ðrÞ
yybrb

T
r þ brb

T
r K ðrÞ

yybrb
T
r : ð76Þ
�
 The kernel version of PLS2 and PLS1 has been extensively studied in [26].

�
 For KPLSx and KPLSy we point out that its solutions can be considered in the
optimization context as special cases of the regularized KCCA variant of (72) if
one fixes the positive parameters ðn1; n2Þ respectively as ð1; 0Þ and ð0; 1Þ. In fact
even KPLS-SVD is a subcase, with ðn1; n2Þ ¼ ð0; 0Þ.

So all these closely related methods deliver us meaningful m � m subspaces spanned
by the column space of the loading matrix A (where we assume eigenvectors faig

m
i¼1

ordered corresponding to nondecreasing values of the eigenvalues li). For an
overview of the eigenvalue criterion for the methods (K)PCA, (K)CCA and some
(K)PLS variants, we refer to Tables 2 and 3.
6. Experiments

We perform some experiments on the LS subspace models on a reduced set of size
m, with each time a different eigenspace, as outlined in the previous section. We
assess whether there are severe differences in performance for prediction on an
independent test set. We do these tests of an artificial and two real-world data sets.
These data sets are rather of moderate size, instead of large, but it allows to compare
with a standard regressor solved on the full set, as an absolute reference. With a large
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Table 2

Independent test set performance in terms of mean square error (standard deviation in brackets) versus

subset size for different subset based least squares subspace regression models on the Boston housing data

set

Subset size 25 50 75 100 150 200 250 300

KPCR 0.476 0.407 0.271 0.251 0.196 0.187 0.173 0.161

(0.039) (0.054) (0.078) (0.054) (0.026) (0.027) (0.027) (0.028)

KPLS-SVD 0.505 0.437 0.327 0.303 0.209 0.195 0.194 0.192

(0.028) (0.050) (0.085) (0.041) (0.037) (0.040) (0.040) (0.040)

KPLSx 0.515 0.433 0.308 0.297 0.211 0.196 0.194 0.181

(0.043) (0.053) (0.062) (0.042) (0.034) (0.038) (0.038) (0.038)

KPLSy 0.504 0.418 0.329 0.297 0.211 0.201 0.192 0.192

(0.045) (0.046) (0.094) (0.046) (0.034) (0.036) (0.038) (0.036)

KPLS-WA 0.478 0.410 0.272 0.255 0.196 0.199 0.197 0.183

(0.039) (0.055) (0.077) (0.055) (0.026) (0.029) (0.029) (0.030)

KPLS-U 0.478 0.409 0.273 0.255 0.195 0.194 0.188 0.180

(0.039) (0.053) (0.078) (0.055) (0.025) (0.027) (0.028) (0.028)

KPLS1 0.476 0.407 0.271 0.252 0.195 0.187 0.173 0.161

(0.039) (0.054) (0.078) (0.054) (0.026) (0.026) (0.028) (0.027)

KCCA 0.503 0.420 0.316 0.291 0.203 0.198 0.194 0.192

(0.031) (0.054) (0.091) (0.043) (0.034) (0.035) (0.037) (0.035)

KCCA1 0.526 0.435 0.334 0.298 0.207 0.195 0.194 0.194

(0.050) (0.063) (0.092) (0.049) (0.038) (0.039) (0.042) (0.040)

LS-SVMsubset 0.646 0.543 0.422 0.388 0.289 0.268 0.220 0.219

(0.078) (0.070) (0.102) (0.039) (0.045) (0.045) (0.047) (0.046)
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scale data set example we demonstrate that the sparse kernel framework indeed can
manage where other methods fail.
6.1. Artificial data example

We applied the LS subspace model with the various subspace choices on a simple
sinc function. We considered a domain dataset of 200 equally-spaced points in the
interval ½�10; 10�. The corresponding output values were centralized. We used the
common Gaussian kernel (with width parameter h)

kðxi; xjÞ ¼ exp �
kxi � xjk

2
2

h2

� �
: ð77Þ

In Fig. 1 (top) a typical picture of the first three components qualitatively show a
good correlation with the target function. Non-equally-spaced sampling causes the
components to be more irregular and oscillatory, while prediction will be less
performant in undersampled regions and near boundaries. In Fig. 1 (bottom) we
show an approximation example on the same data, but with added Gaussian noise
with standard deviation s ¼ 0:2. The other methods give similar component profiles
and prediction results. This example shows that often with a very small subset very
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Table 3

Independent test set performance in terms of mean square error (standard deviation in brackets) versus

subset size for different subset based least squares subspace regression models on the Abalone data set

Subset size 25 50 75 100 150 200 250 300

KPCR 0.558 0.535 0.510 0.498 0.490 0.484 0.479 0.475

(0.028) (0.022) (0.013) (0.011) (0.008) (0.005) (0.005) (0.003)

KPLS-SVD 0.575 0.565 0.528 0.522 0.513 0.511 0.505 0.504

(0.035) (0.025) (0.016) (0.013) (0.015) (0.010) (0.005) (0.010)

KPLSx 0.582 0.565 0.528 0.522 0.517 0.506 0.503 0.502

(0.034) (0.028) (0.016) (0.012) (0.014) (0.013) (0.007) (0.007)

KPLSy 0.579 0.562 0.525 0.521 0.511 0.499 0.498 0.497

(0.022) (0.027) (0.013) (0.013) (0.020) (0.010) (0.014) (0.008)

KPLS-WA 0.570 0.544 0.515 0.504 0.494 0.490 0.483 0.481

(0.029) (0.026) (0.013) (0.014) (0.009) (0.005) (0.005) (0.005)

KPLS-U 0.577 0.545 0.522 0.508 0.496 0.490 0.484 0.479

(0.029) (0.023) (0.016) (0.017) (0.009) (0.008) (0.005) (0.007)

KPLS1 0.558 0.535 0.510 0.498 0.490 0.484 0.479 0.475

(0.028) (0.022) (0.013) (0.011) (0.008) (0.005) (0.005) (0.003)

KCCA 0.578 0.567 0.525 0.522 0.511 0.499 0.499 0.498

(0.022) (0.029) (0.015) (0.015) (0.022) (0.013) (0.011) (0.013)

KCCA1 0.578 0.567 0.526 0.524 0.510 0.498 0.498 0.498

(0.022) (0.022) (0.022) (0.014) (0.018) (0.011) (0.017) (0.019)

LS-SVMsubset 0.901 0.806 0.742 0.728 0.678 0.650 0.617 0.602

(0.058) (0.019) (0.027) (0.025) (0.033) (0.018) (0.018) (0.017)
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good approximations can be made, with performance close to the one of methods
that make use of information on the full training set.
We compared for the methods for different subset sizes with each 20 trials on sinc

data sets (noise added with standard deviation s ¼ 0:2 and subset sizes
m ¼ 1; 2; . . . ; 50). Parameter h2 2 fe�4, e�3:5,. . ., e10g was determined by 10-fold
cross-validation (CV). From Fig. 2 (top) we see only one representer for all methods
because they took virtually the same value of mean square error (MSE) on an
independent test data set, and have comparable variance.
For reference we included the solutions of a state-of-the-art regression solver, the

standard LS-SVM for regression, using the LS-SVMlab software from http://
www.esat.kuleuven.ac.be/sista/lssvmlab/. The LS-SVM was trained
on the full set and also on the subset only, which corresponds to best case and
worst case performances respectively. From a subset size m ¼ 6 on, the difference
with the full set solution vanishes. Intuitively, we might say that the more
redundancy in the data, the quicker a reduced set method will reach the optimal
performance.
As for the KCCA parameters n1 and n2 we conclude that the regression result is

fairly insensitive to n2, but that large values of n1 cause overfitting, we further just
took unity values. The use of other kernels, like the polynomial or the sigmoidal
kernel, did not produce such good results as the Gaussian kernel.

http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
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Fig. 1. (top): Visualisation of the features of the LS PLS-SVD subspace regression model on a sinc

artificial data set sample. The subset consists of 5 points. It are linear combinations of these clearly

nonlinear features that will fit the original curve; (bottom): Visualization of the LS KPCA subspace

regression model, leading to a sparse representation, on sinc artificial data set sample. The subset consists

of 5 points, marked with a ‘+’ on the figure.
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6.2. Real world data examples

The Boston Housing data set [10] consists of 506 cases having p ¼ 13 input
variables. The aim is to predict the housing prices. We standardized the data to zero
mean and unit variance. We picked at random a training set of size n ¼ 400 and a
test set of size t ¼ 106.
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We performed 10-fold CV to estimate the kernel width parameter. After CV the
best model was evaluated on an independent test set. The randomization trials were
repeated 20 times and the subset size over the values ð25 : 25 : 300Þ is shown in Fig. 2
(middle). In the plot we show the MSE versus subset size. For the corresponding
numeric overview of the MSE performances of the different methods, we refer to
Table 2. The full set LS-SVM solution, achieved a best MSE¼ 0:1381 with
regularization parameter g ¼ 32:3517 and kernel width h2 ¼ 15:9694, determined by
CV.
On this data set the different methods yield more different results than on the sinc,

and for clarity we show the worst LS subspace regression result and the best; all
other methods take their values in this band. Yet, a Wilcoxon rank sum test [24] at a
significance level of a ¼ 0:05 shows no difference of the mean values between the
methods relative to the standard deviations. Apart from this nondifference, we must
remark that the mean of the KPCA based model is approximately equal to the mean
of the KPLS1 model.
The Abalone data set is another benchmark from the same UCI repository [4],

consisting of 4177 cases, having p ¼ 7 input variables. The aim is to predict the age
of abalone fish from physical measurements. We picked at random a training set of
size n ¼ 3000 and a test set of size t ¼ 1117. The same tests were repeated. The full
set LS-SVM solution achieved a best MSE ¼ 0:4476 with regularization parameter
g ¼ 9:768 and kernel width h2 ¼ 12:276, both determined by CV.
For the numeric overview of the MSE performances of the different methods, we

refer to Table 3. As can be seen from Fig. 2 (bottom), on this data set the methods
start to perform with difference from around m ¼ 75 on. Again we show a band of
the worst (KPLSx), with in between the other methods (KPLS-SVD, KPLSy,
KCCA, KCCA1), till the best (KPLS-U, KPLS-WA, KPLS1, KPCR). Yet, relative
to the standard deviation, we may conclude that the difference is not too large in fact
either. Again we note that KPLS1 coincides practically with the kernel principal
component regression (KPCR) solution.
6.3. Large scale example

In general, from the computational side our approach achieves overall a much
smaller OðnmÞ memory cost, compared to the typical Oðn2Þ and a computational
complexity of Oðnm3Þ compared to the typical Oðn2Þ.
The ADULT UCI data set [4] consists of 45 222 cases having 14 input variables.

The aim is to classify if the income of a person is greater than 50K based on several
Fig. 2. (top): Plot of mean square error on independent test set versus subset size for the sinc artificial data

set. It suffices to choose a subset of 6 data points to approximate the original function to a proper

accuracy; (middle): Plot of mean square error on independent test set versus subset size for the Boston

housing data set. In between the best and worst bounds, the other methods take their mean performance

values on the randomization sets; (bottom): Plot of mean square error on independent test set versus

subset size for the Abalone data set. In between the best and worst bounds, the other methods take their

mean performance values on the randomization sets.
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census parameters, such as age, education, marital status, etc. We standardized the
data to zero mean and unit variance. We picked at random a training set of size
n ¼ 33 000 and a test set of size t ¼ 12 222. We used the common Gaussian kernel
with width parameter h2 ¼ 29:97 derived from preliminary experiments. We
performed 10-fold cross-validation to estimate the optimal number of components.
After cross-validation the best model was evaluated on the independent test set. The
randomization trials were repeated 20 times, and this for subset sizes over different
values in the range [25,1000]. Training and evaluation time per model is typically of
the order of minutes (12 s to 5m) for a modest number of components of order 100
(on a Pentium 2GHz pc).
In Fig. 3 we show the averaged misclassification rate (in percent) versus subset size

m on the test set. We show the two best results, namely FS-LSSVM and sparse
KPLS1. The LS-SVM was trained and cross-validated each time only on the subset
data of size m, because it is computationally not possible to take into account the
information of the entire training set. Qualitatively both the FS-LSSVM and sparse
KPLS1 outperform LS-SVM (on subset) with a considerable amount of at least 4%.
A Wilcoxon rank sum test [24] at a significance level of a ¼ 0:01 shows no difference
of the mean values between the two sparse methods relative to the standard
deviations. Other tests on smaller benchmark datasets all confirm that KPLS equals
FS-LSSVM in performance.
It is remarkable that already with a subset size of 75 a favorable classification is

obtained. The lowest rate was reached at a subset size of m ¼ 400, after which we
found no further improvements. Compared with results from literature, a correct test
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set classification rate of 84:7ð�0:3Þ% ranks among the best of results delivered by
other current state-of-the-art classifiers [31]. The use of other kernels, like the
polynomial or the sigmoidal kernel, did not produce such good results as the
Gaussian kernel.
7. Conclusions

In large scale applications a model must be able to process a large number of
datapoints. Most kernel methods are simply not adequate for this task. In this paper
we started from the Nyström feature approximation which bears in a least squares
regression context the KPCR and the Fixed-Size LS-SVM model. The latter operates
in primal space and has two important advantages: a small number of regression
coefficients (which allows a fast training) and a sparse kernel expansion (which
allows fast evaluation).
Extending FS-LSSVM with supervised counterparts, we presented a regression

framework in which these two advantages are distinct model choices, through a
restriction of the search space to a subspace and a particular choice of basis vectors
in feature space. We showed that our model is not just a kernelization of a single
model, but comprises a whole general class of least squares kernel models at once.
We focused then on restricted models using only a small subset of basis vectors

and chose eigenspaces, derived from covariance optimization criteria, that have
yielded feasible models in a non-reduced setting before, like KPLS and KCCA, plus
some common variants. As such, we obtain sparse KPLS and sparse KCCA models,
enhanced to deal with large data sets.
From experiments we may conclude that the feasibility carries over well to the

reduced setting, with a limited loss of accuracy. Taking the Nyström or KPCA based
subset model as reference, some methods, like KPLS1, KPLS-U, KPLS-WA show
on some test cases to perform equally well, while others perform close to it. On a
large scale example we show that a sparse restricted regression model is effectively
capable of dealing with a large dataset.
In future work there are certainly some issues that need more investigation: how to

choose or construct optimal subspaces, how to choose the right subspace size, what
basis vectors should one choose, which kernel is best suited for the dependent
variables, etc. Partially they are classical questions, partially they are specific to this
nonlinear context. Nevertheless, the formulated framework of subspace regression
with a reduced set of basis functions offers a more algebraically motivated,
complementary view and renders sparse models, capable of dealing effectively with
large scale data sets.
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Appendix A. Subspace construction

Basically, we need to find directions in the variable space that form a new basis,
upon which we can project. Several criteria can be chosen to arrive at a subspace to
confine the regression. We take an overview of two important criteria and an
intermediate one.

A.1. Minimization of within-space correlation

A more common name for within-space correlation is multicollinearity, the degree
of covariance between the data vectors in x space. It occurs often when using
multiple regression on data that one has collected that one has no full control over
the design of the experiment. A high degree of multicollinearity produces
unacceptable uncertainty (large variance) in regression coefficient estimates.
The commonly used tool for the purpose of multicollinearity reduction is principal

component analysis (PCA). For a broad and thorough overview of this technique a
standard reference is [13]. PCA is mostly stated as a problem in which one maximizes
the variance of the new variables s ¼ vTx:

max
v

varðvTxÞ ¼ vTCxxv ðA:1Þ

subject to kvk ¼ 1 and VTV ¼ Ip, with Cxx ¼ XTX the p � p sample covariance
matrix. This involves a diagonalization procedure which requires solving an



ARTICLE IN PRESS

L. Hoegaerts et al. / Neurocomputing ] (]]]]) ]]]–]]] 25
eigenvalue problem

Cxxv ¼ lv: ðA:2Þ

From the viewpoint of dimension reduction one can also describe PCA as the search
for a best fitting subspace in a least squares sense. So PCA is equivalent to successive
minimization of

JPCAðvÞ ¼
Xn

i¼1

kxi � vvTxik
2; ðA:3Þ

subject to the constraints.

A.2. Maximization of between-space correlation

On the other hand, the goal is maximization of between-space correlation. For the
purpose of prediction one wishes to select subspace input vectors that have strong
correlation with the target vectors.
The specific method that implements this criterion is canonical correlation analysis

(CCA) [9]. Here, one considers the p � q sample covariance matrix Cxy ¼ XTY between
two spaces. To minimize the cross-covariances, again diagonal elements are maximized

max
v;w

corrðvTx;wTyÞ ¼
vTCxywffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vTCxxv
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wTCyyw
p ðA:4Þ

subject to varðvTxÞ ¼ vTCxxv ¼ 1 and varðwTyÞ ¼ wTCyyw ¼ 1. Essentially this
requires the solution of the system

Cxyw ¼ lCxxv ðA:5Þ

Cyxv ¼ lCyyw: ðA:6Þ

The new basises in both spaces are chosen such that the vector components
(projections) of all data maximally coincide. In CCA one successively minimizes

JCCAðv;wÞ ¼
Xn

i¼1

kvTxi � wTyik
2 ðA:7Þ

subject to the constraints. Thus the difference between the cosine of angles of lines in
both spaces is minimized.

A.3. An intermediate criterion

The two above criteria can be taken as two extremes, and an optimal subspace
choice may involve a trade-off. The partial least squares (PLS) [37] method can be
positioned in between these two. PLS is a multivariate technique that delivers an
optimal basis in x-space for y onto x regression. Reduction to a certain subset of the
basis introduces a bias, but reduces the variance.
In general, PLS is based on a maximization of the covariance between successive

linear combinations in x and y space, hv;xi and hw; yi, where coefficient vectors are
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normed to unity and constrained to be orthogonal in x space:

max
v;w

cov ðvTx;wTyÞ ¼ vTCxyw ðA:8Þ

subject to kvk ¼ 1 ¼ kwk and VTV ¼ Ip. Solutions can be obtained by using
Lagrange multipliers, which leads to solving the following system

Cxyw ¼ lv; ðA:9Þ

Cyxv ¼ lw: ðA:10Þ

As a least squares cost function, PLS turns out to be a sum of the least squares
formulation of each of the above methods:

JPLSðv;wÞ ¼ JPCAðvÞ þ JCCAðv;wÞ þ JPCAðwÞ ðA:11Þ

subject to the constraints. Indeed, by simplifying this expression, we obtain the
covariance term only: the two variance minimizations of the CCA criterion are
compensated by the PCA variance maximizations.
The above PLS version may be called PLS-SVD since the variables v;w are the

integral eigenspaces of CxyCyx. Imposing other constraints, results in other PLS
variants. From the plethora of possible modified PLS constructs, we mention here a
few transparant ones:
�
 The original version of Wold, PLS-WA, computes consecutively the first left and
right singular vectors of ðX ðrÞÞ

TY ðrÞ, after which each time the data matrices are
deflated (projected into the complement of the space spanned by the previous
found new variables, or scores):

X ðrþ1Þ ¼ X ðrÞ � brðb
T
r brÞ

�1bTr X ðrÞ with br ¼ X ðrÞvr

Y ðrþ1Þ ¼ Y ðrÞ � arða
T
r arÞ

�1aTr Y ðrÞ with ar ¼ Y ðrÞwr: ðA:12Þ

As such the orthogonality of the scores is guaranteed in both spaces.

�
 The directly adapted most used variant of PLS-WA has resulted in PLS2
(multivariate) or PLS1 (univariate), where y-space is being deflated with the x-
space score instead [14].
�
 We included PLS-U, which is PLS-WA, not with an orthogonality constraint, but
more strongly, uncorrelatedness with the previously found coefficients:

VT
r CxxVr ¼ Ip ðA:13Þ

WT
r CyyW r ¼ Iq: ðA:14Þ

By Lagrange multipliers one arrives after some lengthy calculation again at an
eigenproblem with deflations:

X ðrþ1Þ ¼ X ðrÞ � ðCxxV rÞððCxxVrÞ
T
ðCxxV rÞÞ

�1
ðCxxV rÞ

TX ðrÞ

Y ðrþ1Þ ¼ Y ðrÞ � ðCyyW rÞððCyyW rÞ
T
ðCyyW rÞÞ

�1
ðCyyW rÞ

TY ðrÞ: ðA:15Þ



ARTICLE IN PRESS

L. Hoegaerts et al. / Neurocomputing ] (]]]]) ]]]–]]] 27
�
 The PLS least squares interpretation allows to add immediately two more
variants. Leaving out the compensating PCA term in x space, we obtain PLSx
from CCA, with consequently Cxx ¼ Ip. By symmetry, also a PLSy version can be
obtained. These versions may be useful especially when dealing with many dummy
variables, such that the PCA contribution does not make much sense.

For a generic overview, partly inspired by [5], of the criteria for the methods PCA,
CCA and some PLS variants, we refer to Tables 4 and 5.
Table 4

PCA, CCA and 3 PLS-SVD variants summarized in their (co)variance and least squares formulation

Covariance maximization Least squares minimization

PCA max
v

varðvTxÞ

ðvTvÞ min
v

Pn
i¼1

kxi � vvTxik
2

PLS max
v;w

½covðvTx;wTyÞ�2

ðvTvÞðwTwÞ min
v;w

Pn
i¼1

kvvTxi � xik
2 þ kvTxi � wTyik

2 þ kwwTyi � yik
2

PLS a max
v;w

½covðvTx;wTyÞ�2

ðvTvÞvarðwTyÞ min
v;w

Pn
i¼1

kvvTxi � xik
2 þ kvTxi � wTyik

2

PLS b max
v;w

½covðvTx;wTyÞ�2

varðvTxÞðwTwÞ min
v;w

Pn
i¼1

kvTxi � wTyik
2 þ kwwTyi � yik

2

CCA max
v;w

½covðvTx;wTyÞ�2

varðvTxÞvarðwTyÞ min
v;w

Pn
i¼1

kvTxi � wTyik
2

Table 5

(K)PCA, (K)CCA and 3 (K)PLS-SVD variants summarized in their generalized eigenvalue formulation,

where M½v;w� ¼ lQ½v;w� represents the linear version with solutions in primal space and L½a; b� ¼ lR½a; b�
the nonlinear kernel version, with solutions in dual space

Linear (primal) Kernel (dual)

M Q L R

(K)PCA Sxx I Kxx I

(K)PLS 0 Cxy

Cyx 0

� �
I 0

0 I

� �
0 KxxKyy

KyyKxx 0

� �
I 0

0 I

� �
(K)PLSx 0 Cxy

Cyx 0

� �
I 0

0 Cyy

� �
0 KxxKyy

KyyKxx 0

� �
I 0

0 K2
yy

 !

(K)PLSy 0 Cxy

Cyx 0

� �
Cxx 0

0 I

� �
0 KxxKyy

KyyKxx 0

� �
K2

xx 0

0 I

 !

(K)CCA 0 Cxy

Cyx 0

� �
Cxx 0

0 Cyy

� �
0 KxxKyy

KyyKxx 0

� �
K2

xx 0

0 K2
yy

 !
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