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Abstract—In this paper, we consider an extension of inde- In standard linear ICA, the index can be dropped out,
pendent component analysis (ICA) and blind source separath  pecause the order of the data vect(s) is not important

(BSS) techniques to several related data sets. The goal is 10 ang can even be random. This assumption is valid if the
separate mutually dependent and independent components or

source signals from these data sets. This problem is importa dgta_ vegtors are samples from some multivariate stgﬂlstlca
in practice, because such data sets are common in real-world distribution. However, the data vectox$t) have often im-
applications. We propose a new method which first uses a portant underlying temporal structure, if they are subsetju

generalization of standard canonical correlation analyss (CCA)  samples from a vector-valued time series which is temporall

for detecting subspaces of independent and dependent compo whi .
nents. Any ICA or BSS method can after this be used for final correlated (non-white). Standard ICA can be applied to

separation of these components. The proposed method perfos such t_|me SEries, too, bu.t It Is sgbopﬂmal bepause it does
well for synthetic data sets for which the assumed data model NOt utilize this temporal information. Alternative metreod

holds, and provides interesting and meaningful results foreal- have been developed for extracting the source signals or
world functional magnetic resonance imaging (fMRI) data. The  independent components in such cases. They usually uti-

method is straightforward to implement and computationally ize ejther temporal autocorrelations directly or assutre t
not too demanding. The proposed method improves clearly the

separation results of several well-known ICA and BSS methcsl the variances O,f the source signals are nonstationary but
compared with the situation in which generalized CCA is not Smoothly changing; see for example [1], [8], [9], [11].

used. The application domains and assumptions made in these
three major groups of BSS techniques vary to some extent
. INTRODUCTION [1], [11]. In standard ICA, it is assumed that all the indepen
A. Independent component analysis and blind source sep#ent components have non-Gaussian distributions except fo
ration possibly one, and they are mutually statistically indememnd

H.]. Then standard ICA methods are able to separate their
aveforms, leaving however the order, sign, and scaling of
e separated components ambiquous. The scaling indeter-

minacy is usually fixed by normalizing the variances of the

separated independent components to unity. The most widely
used standard ICA method is currently FastICA [1], [13] due
s to its efficient implementation and fast convergence which

x(t) = As(t) = Zsi(t)ai (1) makes it applicable to higher dimensional problems, too.

=1 We have used in our experiments the freely downloadable

Thus each data vectsi(t) is expressed as a linear combinaFfastICA Matlab software package [21].

tion of independent components or source sigrals), i = Methods based on temporal autocorrelations of the source

1,2,...,m, which multiply the respective constant basis vecsignals require that different sources have at least sofme di

tors a;. The source vectos(t) = [s1(t), s2(t),...,s,(t)]T  ferent non-zero autocorrelations. Contrary to standaw, IC

contains the source signals, and the mixing matix= they can then separate even Gaussian sources, but on the

[a1, a9,...,a,] the basis vectora;. They are in general other hand they fail if such temporal autocorrelations do no

linearly independent but non-orthogonal. They depend en ttexist, while standard ICA can even in this case separate non-

available data seX = [x(1),...,x(N,)] but once they have Gaussian sources. In our experiments the TDSEP method
been estimated, they are the same for all the data vectors[#2] performed best of this type of methods that we have

X. The indext in the source signals;(t) may denote time, tried. Temporal autocorrelation methods have been redlewe

position (especially in digital images), or just the numbein [15].

of the sample vector. For simplicity, we assume here that BSS methods based on nonstationary smoothly changing

Independent component analysis (ICA) and related blin
source separation (BSS) methods [1], [8], [9] are nowada
well understood techniques for blind extraction of useful i
formation from vector-valued datawith many applications.

The data model used in standard linear ICA is simply

both the data vectok(t) = [x1(t), z2(t),..., 2., (t)]T and variances have been introduced for example in [18], [19]. If
the source vectas(t) are zero meam-vectors, and that the the assumptions made in them are valid, they can separate
mixing matrix A is a full-rank constantn x m matrix. even Gaussian temporally uncorrelated (white) sources tha

ICA and temporal autocorrelation methods are not able to

The agthors are with_ the Department_ of Information and Comhgndle appropriately.Afourth class of BSS methods employs
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00076 Aalto, Espoo, Finland. Emaiffirstname.lastnam&@aalto.fi. URL: time'frequency representatjons_(see Chapter 11 in [9), bu
http://research.ics.tkk.fifica/. we shall not discuss them in this paper.



Some attempts have been made to combine different typedn general, the extension of ICA and BSS for separating
of BSS methods so that they would be able to separate widdgependent and independent source signals from related data
classes of source signals. In [14], Hyvarinen developed a®ts has not been studied as much as many other extensions
approximate method which tries to utilize both higher-erdeof ICA and BSS mentioned above, but some research on this
statistics, temporal autocorrelations, and nonstatipnaf  topic has been carried out.
variances. Only the autocorrelation coefficient corresiiog |5 [17], Yiipaavalniemi et al. have carried out their anddys
to a single time lag equal to 1 is used there, but the methed piomedical fMRI sources in reverse order compared with
seems anyway to be able to separate different types @fir method. They first apply standard ICA to the two related
sources. We have used also this method called UniBSS it sets separately. Then they connect dependent sources
its Matlab code [22] in our experiments. ~ (independent components) in these data sets using CCA.

ICA and BSS have been generalized into many directionghe method performs pretty well but it has a theoretical
from the simple linear noiseless model (1) [1], [8], [9]. INyeakness: ICA assumes that the sources are non-Gaussian
this paper, we consider a generalization in which one trig§,t CCA can be derived from a probabilistic latent variable
to find out mutually dependent and independent componerig,de| where all the involved random variables (vectors) are
from different but related data sets: Consjdering first tmd Gaussian [20]. The authors of the paper [17] have improved
such data sets, data vectyr&) of dimensionm, belonging  their method in two later papers. In [23], they apply to the
to the related data s& = [y(1),...,y(IV,)] are assumed regyits first provided by ICA a nonparametric CCA type

to obey a similar basic linear ICA data model model where Gaussian distributions are not assumed. In
my another more theoretical paper [24] the authors show on a
y(t) =Br(t) = Zn(t)bi (2) general level how to apply a probabilistic CCA type model
i=1 without assuming Gaussian distributions.

as the data vectossg(t) in (1). The assumptions that we make In [16], the authors use standard CCA and its extension to
on them,-dimensional basis vectots; and source signals multiple data sets for the analysis of medical imaging data,
r;(t) are exactly the same as those made on the basis vectdigcussing the advantages of such approaches and comparing
a; and source signals;(t) in context with Eq. (1). More their performances to standard ICA that has been succhssful
generally, we havé/ such data setX;,Xo,...,X,,. The applied to this type of problems. This tutorial review paper
dimensionalitiesn; of the data vectors belonging to thesds largely based on the research papers [29], [28].

data sets can be different, but the number of data veéfors  Koetsier et al. have presented in [25] an unsupervised

in them must be the same for canonical correlation analysigural algorithm called Exploratory Correlation Analyfois
and its generalizations. If this is not the case, obviousty Whe extraction of common features in multiple data sources.

selectVequal to the minimum number of data vectors inThis method is closely related with canonical correlation
these data sets. The respective data vectors in each datagsgilysis.

should corr_esp(_)nd to each other, for example being taken atGutmann and Hyvarinen [27] have recently introduced a
the same time instant.

) o ._method based on nonstationary variances for finding depen-
In our method, we first apply a generalization of canonical .
. : . nt sources from related data sets. Their method as well
correlation analysis (CCA) to find subspaces of dependen .
. . as most other methods assume that in each of these data
and independent sources in the data $€{sXo, ..., X,. . . .
. ets there is one source signal that is dependent on one
The data sets are then projected onto these subspaces. Aftéer . . .
. . .~ source signal in the other data sets, while these sources are
this, any suitable ICA or BSS method can be used for fina )
independent of all other sources. Our method is more general

izﬁrsaetgg'nour method is described in more detail in thaend does not suffer from such a restrictive model assumption

Akaho and his co-authors [10] have considered an ICA
B. Related work style generalization of canonical correlation analysigcivh

The first author considered the problem of finding deperii€y call multimodal independent component analysis. In
dent components from two related data sets already in [2], pipeir method, standard linear ICA is first apphe_d to bothadat
the method introduced there suffers from a theoretical weaRetSx andy separately. Then the corresponding dependent
ness. We modified this method and got rid of its weakness fPmponents of the two ICA expansions are identified using
[3]. The method presented in that paper performs much bet@matural gradient type learning rule.
than plain BSS and ICA methods applied directly to the data Furhermore, several authors have developed constrained
sets without using canonical correlation analysis. NotyonlICA methods for extracting source signals which are con-
are the signal-to-noise ratios of the separated sources oftstrained to be similar to some reference signals. This re-
clearly higher, but the method is able to separate difficutjuires, however, some prior knowledge on the reference
sources for which plain ICA and BSS methods fail. In thesignals. In [26], Van Hulle introduces three ways to perform
current paper, we generalize this method for more than tweonstrained ICA. In one of them he tries to find dependent
data sets, and present a successful real-world applicationcomponents between two data sets by generalizing CCA,
fMRI data. with a small-scale biomedical application.



I[I. CANONICAL CORRELATION ANALYSIS x andy. These non-zero singular values are just the non-
Canonical correlation analysis (CCA) [4], [5] is an oldZero canonical correlations. If the cross-covariance imatr

statistical technique which has during the last decade b€y has full rank, their number is the smaller one of the
come popular in various signal processing and data analy$§l§nensions of the data vectossandy.

applications, because it often provides in practice quitedy
and meaningful results. Standard CCA measures the linear
relationships between two multidimensional datagétand We first preprocess the data vectorss X andy € Y

Y using their second-order statistics, autocovariances ahgt subtracting their mean vectors from them if they are non-
cross-covariances. It finds two bases, one for b¥tland zero. After this, these data vectors are whitened sepgratel
Y, in which the cross-correlation matrix between the data
setsX andY becomes diagonal and the correlations of the

diagonal are maximized. We use standard principal component analysis (PCA) for
In CCA, the dimensions of the data vectare X andy € computing the whitening matrice€,, and V, as discussed

Y can be different, but they are assumed to have zero meapsgection 6.4 in [1]. We then estimate the cross-covariance
The number of the data vectors¥randY must be the same. - uix C of the whitened data vectors, and v, in
VxVy Yy

The exact conditions r_equired fpr the car_10nica| corretestio ¢t ndard manner:

and the problem solution are discussed in [4], [5], see also N

our earlier paper [3]. It turns out these canonical corietest G _ 1 Z v (OVT (1) (®)
can be computed by solving the eigenvector equations V=Vy TN po XAy

Ill. OUR METHOD FOR TWO RELATED DATA SETS

vx = VxX, vy =V,y (7

-1 -1 _ 2
Cix Cxy Cyy CyxWix = p Wi (3) After this, we perform singular value decomposition (SVD)

C;yInyC;,foyWy = p*wy of the estimated cross-covariance mai€ix...,, quite sim-
ilarly as for Cyy in (5). Inspecting the magnitude of the
singular values in the pseudodiagonal matklx we then
givide the matricedU and V of singular vectors into two
gbmatrices:

where Cyx = E{yx’}. The eigenvalueg?® are squared
canonical correlations and the eigenvectess and w, are
normalized CCA basis vectors. Only non-zero solutions t
these equations are usually of interest, and their number$
equal to the smaller of the dimensions of the vectorand U=[U,Uy], V=[V;V, 9)
y.
The solution (3) can be simplified if the data vecterand There U; and V; correspond to dependent components
y are prewhitened [1], which is the usual practice in manfor which the respective singular values are larger than
ICA and BSS methods. After prewhitening, boffy, and 0.5, and U, and V, to the independent components for
Cyy become unit matrices, and noting th@§, = CL, Eqs. which the respective singular values are smaller. We have
(3) become found experimentally that the threshold valué is suitable.

The data are then projected using these submatrices into
” ) (4) subspaces corresponding to the dependent and independent

CyxCyxwy = pwy components by computing
But these are just the defining equations for the singulareval
decomposition (SVD) [30] of the cross-covariance matrix
Cxy: 5 wherei( = [x(1), - ,x(N,)] agldY = [y(1),... ,y(]?}fy)gi.
Finally, we a any suitable ICA or BSS method sep-
=1

T 2
nynyWx = p Wy

Uulx, uUlx, viy, Vviy (10)

arately to each of these 4 projected data sets for separating
the source signals contained in these subspaces. It should
ThereU andV are orthogonal square matricdS{U =1, be noted that contrary to the customary use of SVD we
VTV = 1) containing the singular vectors; and v;. In include in the submatrice¥J; and V. also the singular
our case, these singular vectors are the basis veetgys vectors corresponding to small or even zero singular values
and w,; providing canonical correlations. In general, thefor being able to separate all the sourcesXnand Y. In
dimensionalities of the matricdd and'V and consequently the following, we present several somewhat intuitive and
the singular vectorsi; and v; are different corresponding heuristic justifications to the proposed method which arywa
to different dimensions of the data vectatsand y. The in our opinion largely explain its good performance.

pseudodiagonal matrix First, let us denote the separating matrices after the white
D o ing step in (7) byW)f for v, and respectively byW for
=10 o (6) v,. A basic result in the theory of ICA and BSS [1] is that

) _ ) . after whitening the separating matricés, andW,, become
consists of a diagonal matri> containing the non-zero grthogonallWIw, = I, WIW, =L Thus

singular values appended with zero matrices so that the
matrix ¥ is compatible with the different dimensions of S=WIV,x=WIV,As = P,Dgs (11)



The vectors on the left hand side contains the estimatednly for separation, while standard ICA algorithms such as
sources. A basic ambiguity in the blind ICA and BSSFastICA use for separation higher-order statistics ontgraf
methods is that they can appear in different order and hatlee data has been normalized with respect to their second-
different scales than the original sources [1]. This hasmbe®rder statistics by whitening them. Combining both second-
taken into account in Eq. (11) by multiplying the sourceorder statistics and higher-order statistics by first penfog
vectors on the right-hand side by a diagonal scaling matrixCCA and then post-processing the results using a suitable
D and a permutation matri®g, which changes the order ICA or BSS method can be expected to provide better results
of the elements in the column vecthr;s [34]. than using solely second-order or higher-statistics ooly f
Assuming that there are as many linearly independesgparation.
mixtures x as sources, so that the mixing matrixA is Our third justification is that dividing the separation prob
a full-rank square matrix, we get from the two last equationem into subproblems using the matrices in (10) probably
of (11) helps. Solving two lower dimensional subproblems is easier
A = (WTV,)"'P.D, = V-'W,P.D (12) than solving a higher dimensional separation problem. And
- x 'x sts T Tx TEx%ss if the mixtures consist of several types of sources, which
due to the orthogonality of the matriW,. Quite similarly, could be super-Gaussian, sub-Gaussian, Gaussian, tetppora

we get for the another mixing matri in (2) a similar result correlated, or nonstationary sources, the complexity ef th
sources in the subproblems to be solved can be reduced.

B = (ngy)flprDr = V;IWyPrDr (13) We can somewhat heuristically modify the SVD based
method introduced above to include temporal correlations
into the computations by using instead of the plain cross-
covariance matrixCy, v, = E{vxv;f } the generalized cross-

whereD,. is the diagonal scaling matrix arfd, the permu-
tation matrix associated to the estimatef the source vector
r. . .
Consider now the cross-covariance matrix after whiteningovariance matrices
Itis Gy,v, = E{vx(t)vg(t)—|—vx(t—d)vz:(t)—i-vx(t)vz:(t—d)}
Cy.v, = ViE{xyT}VT = V,AQB"VT (14 (16)
vy <Elxy }Vy <AQ y (14 whered is the chosen time delay. In our experiments, we have
Here the matrixQ = E{sr’} is a diagonal matrix, if the found that a suitably chosen time del&jn (16) can improve
sources signals in the source vecterandr are pairwise the separation results for temporally correlated sources.
dependent but otherwise independent of each other. Ingerti

A andB from Eqgs. (12) and (13) into (14) yields IV. EXTENSION TO SEVERAL DATA SETS

- . In a pioneering paper [31], Kettenring introduced and dis-
Cu.vy, = (WxPs)(DsQD; ) (W Pr) (15)  cussed five different generalizations of standard CCA teghr

But this is exactly the same type of expansion as the singul@f more data sets, albeit only two of them were completely
value decomposition (5) of the whitened cross-covariand¥W- These generalizations are based on somewhat different
matrix C....,. First, W, P, is a product of an orthogonal optimization criteria and orthggonahty constraints, baem
matrix W, and permutation matriPs, which here changes N practical experiments to.y|§ld pretty S|m|lar result$1§T
the order of the columns in the matii [34]. ThusW P most po_pulgr of these criteria is so-called maximum vaganc
i still an orthogonal matrix having the same column vectorgeéneralization of CCA [31], [32]. It can be optimized and
as W, but generally in different order. The matrW P the respectllve cgnonlcal vector; est|n.1at.ed using the proce
corresponds to the orthogonal matii% in (5), and quite dure described in _[31], [32]. This opt|m|z§t|on method is,
similarly the orthogonal matridW, P, corresponds to the however, com_putatlonally_ somewhat compllcated: _It reEglir
orthogonal matrixV in (5). Finally, the matrixDsQD7 is first computation of the singular value decompositions bf al
a product of three diagonal matrices and hence a diagorfdf M data setsXy, k = 1,..., M. From them, anl x L
matrix which corresponds to the diagonal matixin (5). ~ Matrix is formed where

Thus on the assumptions made above the SVD of the M
whitened cross-covariance matrix provides a solutiontiaat L= Z my (17)
the same structure as the separating solution. Even though k=1
we cannot from this result directly deduce that the SVD ois the sum of the dimensionalies of the data vectors in the
the whitened cross-covariance matrix (that is, CCA) wouldetsXy, £ = 1,..., M. The desired generalized canonical
provide a separating solution, this seems to hold in simpheectors are then computed from the eigenvectors offitid,
cases at least as shown by our experiments in [3]. At leastatrix.
CCA when applied to the data se¥ and Y using (10) We do not discuss this procedure in more detail because an
provides already partial separation, helping several ICA easier solution is available. Via, Santamaria, and Peree ha
BSS methods to achieve clearly better results in difficultonsidered in [32] a generalization of CCA to several data
cases. sets within a least-squares regression framework, andrshow

Another justification is that CCA, or SVD of whitened that it is equivalent to the maximum variance generalizatio
data vectors, uses second-order statistics (cross-ameas) Their computational method does not require singular value



decompositions of the data sets. In the following, we presers a “supervector” formed by stacking theth canonical

and use this method as a part of our method. vectors of the M data sets, and the respective block matrices
Assume that we have at our disposdl data setsX;, are
k =1,...,M having the same numbéy of data vectors. Cy ... Ciu

The data vectors appear as column vectors in these data sets,

and their dimensionalitiesn;, are in general different for C= : : (26)
each sefX. Denote the successive (generalized) canonical Cu1 ... Cum
vectors byh”’ and canonical variables ") = X7h'", and
the estimated cross-correlation matricas Cy,; = XkX'f. Ciyi ... 0

The least-squares type generalization of CCA can then be D=| : . : (27)
formulated as the problem of sequentially maximizing the 0 ' C]\;M

generalized canonical correlation
v ThusD is an L x L block diagonal matrix whose diagonal

p(i) _ 1 Zp(i) (18) blocks are the autocorrelation matric€s;, i = 1,..., M,

M P k of the M data sets. The matriC — D is an L x L block

off-diagonal matrix which contains all the cross-corriglat

where matricesCy;, k # [, of the M data sets but not their auto-
@ 1 M (i) 19 correlation matrices. The solutions for this least-sqsiare
P = =1 Z Pri (19) maximum variance generalization of CCA are obtained as the

I=Lizk eigenvectors associated with the largest eigenvalues&f (2

and Pz(fz) - hl(ci)TCklhl(i). In this case, the energy constraintThese eigenvectors can be computed also using a deflation

which is needed for avoiding trivial solution is [32] type neura! recursive least-squares algorithm introdiaet
discussed in [32].
1 M T @ A couple of notes are in order here. First, the equations
i th Cirh;,” =1 (20)  (3) defining standard CCA for two data sets can be written
k=1 in the form (24) after some manipulation, see [32], [5]. Then
in (24) h(i) = [wZ,, wl]7. If we denote the matrix on the

The orthogonality constraints are foe4 j (
g Y %J left-hand side of (24) byD (off-diagonal), (24) is equivalent

20720 = (21) to the non-symmetric eigenproblem
| M D 'Oh® = pn® (28)
B — (@) 22
z M I;Z’“ ' (22) which could in principle have complex-valued eigenvectors

and -values. However, the equation (28) can be written as
This least-squares generalization of CCA can be rewritten , , .
1/21y-1N01/2 1/2y, (4 4 1/21, (%
as a function of distances. For extracting itth CCA eigen- o'/?D~'0Y (Y /?n )) = pl )(O /1 )) (29)

vector, the generalized CCA problem consists of minimizingich is a symmetric eigenproblem for the eigenvector
with respect to thé/ canonical vectorhgj) the cost function 1/2,). Hence the eigenvalues and -vectors of (24) are

M real-valued.
J® = - Z Hth;(:) _ thl(i)”z Our method forM related datf_zl seXy, k= 1,....,.M
2M(M —1) 4= proceeds now as follows. We first estimate all the cross-
M (23)  correlation matrice€y;, k,l =1,..., M similarly as in (8)
1 Z | 2 |2 —p® and form from them estimates of the matric€sand D.
M 1 We then compute thd principal generalized eigenvectors
_ _ o ~ h®W ... 'h(@ corresponding to thel largest eigenvalues,
subject to the constraints (20) and (21), which implE8  from (24) or (28). Herel < min(my, ..., mas). From these
=1-p0. ) ) ) stacked eigenvectors we get the vecﬂmfg, . ,hfcd) corre-
The solutions of this generalized CCA problem can bgponding to each data s&t,. We then orthonormalize these
obtained using the method of Lagrange multipliers [32].sThiyectors yielding vectorg(i) i =1,...,d, and orthogonal
leads to the generalized eigenvector problem projection operator b Y
1 _ _ _
———(C—D)h = yDh (24) Ppi =g, ...g\"] (30)
onto the subspace spanned by them, corresponding to the
where :
, AT + (DT aT dependent components in the dataXgt The data sets are
h(l) — [h( ) h( ) h( ) ]T (25) !
L o2 o M then mapped to these basis vectors,

1The scaling factorl /N can be omitted here P:,SJCX;C, k=1,....M (31)



and the dependent components (sources) of each data setaare fourth source are Gaussian. The first and third source
found by applying any suitable ICA or BSS method to thénad identical temporal autocovariances, and similarly the
projected data sets (31). second and fourth source. The fifth and sixth source have
A question now arises how to estimate the independesmoothly changing variances. Furthermore, we generated 3
components (sources) in each data set. A first idea is to us®re sources in a similar manner, so that one of them was
the generalized eigenvectors corresponding to the srhallesiper-Gaussian, one temporally correlated Gaussian,rad o
eigenvalues in a similar manner as above. However, if wead a smoothly changing variance. Due to the construction
have for example 3 data seXs, X, andX; of data vectors of these difficult source signals, almost all ICA and BSS
having respectively the dimensionalities; = 5, ms = 4, methods fail to separate all of them from their mixtures.
andmgs = 6, L = 15 and the equation (28) has 15 stackednly the approximative UniBSS method should be able to

eigenvectorsh(i), i = 1,...,15. From them we get 15 separate all of them [14].
vectorsh,(j) for each data seX,. These vectors are clearly From these 9 source signals we constructed threeXsgts
linearly dependent. X5, and X3 of 5-dimensional data vectors using randomly

Therefore a better solution is to construct a subspagdosen mixing matrices. In each of these data sets there
which is orthogonal to the subspace defined by the projectiovere 3 same sources, namely sources 1 and 2 which were
operatorP p . in (30) for each data sé& .. An orthonormal super-Gaussian and source 5 which has a smoothly changing
basis for this subspace can be computed for example bgriance. Sources 3 and 4 in each data set were different
takingmy, —d random vectors of dimension,. and orthonor- and independent of all the other sources. We used 2000
malizing them against thd vectorsg,(j) in (30) and each data vectors and source signal values (., 2, .. .,2000) for
other. The resulting vectors are used to define a projectigoviding enough data especially to the UniBSS and TDSEP
operator methods.

P, = [g](cd“)’ o 7gl(€mk>] (32) Because the results can vary a lot for different statistical
) _ ) realizations of these sources and their mixtures, we coaput
corresponding to the independent componentXin The  the averages of the signal-to-noise ratios of the separated

data is then mapped onto these subspaces: sources over 100 random realizations of the sources and the
P’ X, k=1,....M (33) data sets_. The signal-to-noise ratios (SNR’S) of_the esdcha
’ source signals were computed for each realization of thee dat
and the independent components are estimated by applyiéts and each source from the formula
any suitable ICA or BSS method to the projected data sets 1 ZN si()?
(33). SNR(i) = 10l0g, ) ——F=———— (34)
N = [8i(t) — 8:(1)]?

V. EXPERIMENTAL RESULTS ) ,
. where the numerator is the average power of the i:th source
A. Simulated data si(t) over the N samples, and the denominator is the
Experiments with synthetically generated data are usefidspective power of the differeneg(t) — 5,(t) between the
and necessary, because the true source signals are knowsolirce signak;(t) and its estimate; ().
is then possible to assess the performance of the methods
using a suitable criterion. For real-world data, the true (= RATlOS(JQ;B"C;E é'lFFERENT ETHODS FOR THE
sources are usually unknown, and the results can be assessed SOURCE SIGNALSS1-S5IN THE SECOND DATA SETX .
qualitatively only.

[ Method | SI ] S2 ] S3 [ S4 [ S5 |
TABLE | GCCA 46 | 47 ] 99 | 98 | 45
SIGNAL-TO-NOISE RATIOS(DB) OF DIFFERENT METHODS FOR THE FastiCA 17.3 16.1 5.4 6.9 53
SOURCE SIGNALSS1-S5IN THE FIRST DATA SETX1. TDSEP 77 17.9 79 8.7 81
UniBSS 26.0 | 283 | 11.1 | 185 | 10.7
[ Method [ SI | S2 | S3 | S4 ] S5 GCCA+FastiCA| 26.1| 258 | 124 | 12.3 | 23.8
GCCA 46 | 47 | 102 10.2] 45 GCCA+TDSEP | 164 | 22.1| 191 | 193 | 17.6
FastICA 183 | 168 | 99 | 6.1 | 6.9 GCCA+UNBSS | 31.8 | 33.3 | 21.7 | 219 | 27.7
TDSEP 155 | 188 | 10.2 | 10.2 | 16.8 Method in [27] | 25.1 | 28.6 | 17.5 | 21.2 | 24.9
UniBSS 275 | 26.4 | 31.7 | 24.8| 239 Method in [29] | 6.2 | 58 | 25 | 2.3 | 4.9
GCCA+FastiCA| 26.1 | 25.7 | 155 | 15.2 | 23.8
GCCA+TDSEP | 164 | 22.1 | 103 | 105 17.6
GCCA+UNBSS | 325 335 | 259 | 24.2 | 28.3 The results for the data seB;, X,, and X3 are pre-
Method in [27 250 271 | 6.9 6.7 | 24.7 . . !
Method 1291 T 62 T 58 1 62 [ 61 [ 49 sented in Tables I, I, and lll, respectively. Based on Visua

inspection, we set the border value of SNR for a successful
separation to 10 dB. Even an SNR of a few decibels means
We used the 6 source signals defined in the Matlab code practice progress towards separation, often consitkerab
UniBSS.m [22] and explained in [14]. The four first sourcedn this case, some parts of the respective source signals are
are generated using a first-order autoregressive model sften well separated while others not. Poor results with no
that the two first of them are super-Gaussian and the thixdsible separation have typically an SNR value around 0 dB.



TABLE Il .
SIGNAL-TO-NOISE RATIOS(DB) OF DIFFERENT METHODS FOR THE some of the sources when the number of samples is 500 or

SOURCE SIGNALSS1-S5IN THE THIRD DATA SET X3. 1000.
[_Method [ S1] S2 ] S3 ] S4] S5 B. Real-world fMRI data
GCCA 46 | 47 | 10.2] 10.1| 45
FastICA 1471138 41 | 38 | 39 We tested the usefulness of our method with data from
TDSEP 1191 88 | 91 | 90 | 88 a functional magnetic resonance imaging (fMRI) study [7],
UniBSS 259 | 27.6 | 13.8 | 12.9 | 10.6 g ) . X
GCCAEastiCAT 2611 258 [ 101 102 | 238 where it is described in more deta_ll. We used th_e mea-
GCCA+TDSEP | 16.4 | 22.1 | 25.1 | 245 | 17.6 surements of two healthy adults while they were listening
%C&A;U_n”?;s 2421'2 gg-g 199-92 ig-‘z‘ gi-; to spoken safety instructions in 30 s intervals, interléave
ethod In . . . . . . . . .
Method n 25T T 62 1 58 T 88 92 149 with 30 s resting periods. In these experiments we used

slow feature analysis (SFA) described in detail in [6] for
post-processing the results given by CCA, because it gave
better results than FastICA. All the data were acquired at
On the first row of the tables are the results of théhe Advanced Magnetic Imaging Centre of Aalto University,
generalized CCA (GCCA) without any postprocessing. ltsing a 3.0 Tesla MRI scanner (Signa EXCITE 3.0 T; GE
shows some progress towards separation, and the resiidgalthcare, Chalfont St. Giles, UK).
for the independent 3rd and 4th source are around theFigures 1 and 2 show the results of applying our method
separation border already. FastICA [1], [13], [21], based oto the two datasets and separating 11 components from
non-Gaussianity, is able to separate the non-Gaussian fitlse dependent subspacksl and V1. The consistency of
and second sources in all the data sets, but fails for othttre components across the subjects is quite good. The first
types of sources as expected. The TDSEP method [12] basginponent shows a global hemodynamic contrast, where
on temporal autocorrelations is able to marginally separalarge areas inside the brain have negative values and the
all the 5 sources in the first data S€¢, but fails though not surface of the brain is positive. The clear contrast coud al
badly for most sources in the other two data skts and be a scanning related artifact or an effect produced by the
X3. The UniBSS method [14], [22] is able to separate alftandard fMRI preprocessing of the datasets.
the sources, though some of them rather marginally. It may The activity in the second component is focused on the pri-
benefit from the construction of the sources using a firselordmary auditory cortices. The time-course of the activityoals
autoregressive model as its uses just the first autocdomelat closely follows the stimulation blocks. The third compohen
Preprocessing using generalized canonical correlatiehows a weakly task-related activity, with positive region
analysis (GCCA) improves the separation results for mostround the anterior and posterior cingulate gyrus. Thesgsar
sources and all the tested methods, FastICA, TDSEP, ahdve been identified in many studies to be part of a bigger
UniBSS. Not only are the SNR’s of separated sources oftaretwork related with novelty of the stimulus, introspentio
much higher but GCCA preprocessing helps FastICA anahd default-state-network. The areas of activation in the
TDSEP to separate sources that they alone are not ableféairth component partly overlap with those in the third one.
separate. These results are qualitatively similar as in otdowever, in this case the activation is positive in the d@ater
earlier paper [3] using plain CCA preprocessing for two datpart and negative in the posterior. This clearly shows tiat t
sets and the FastICA and UniBSS methods. activity of these areas is too complex to be described by a
In this paper, we also compare our method with twsingle component.
methods introduced by other authors for the same problem.The rest of the components are not directly stimulus re-
The first compared method [27] assumes that the dependéated, but the activated areas have been consistentlyifigeint
sources in the data sets are active simultaneously. Framthe earlier studies. Some of them appear to be well-known
Tables I-lll one can see that it performs quite well for thesupplementary audio and language processing areas in the
dependent first, second, and fifth source in all the three dataain.
set, but fails for the independent third and fourth source These results are promising and in good agreement with
in the first data seiX;, and lies at separation border forthe ones reported in [7]. Generally, the activated areas
these sources in the third data 3&§. The second compared identified by our method are the same as, or very close to, the
method [29] uses multiset canonical correlation analylsis. ones previously reported. There are some differences when
makes some progress towards separation for most sourcesmpared to the earlier FastICA results, as the method seems
but fails at least marginally for all of them in this difficult to enhance contrasts within the components. There are both
separation task. strongly positive and negative values in each component.
We tested also the dependence of the methods on tRarthermore, the first component has not been identified by
number of samplesV in the data sets. Generalized CCAusing FastICA. Future experiments are needed with multiple
(GCCA) performs in practice equally well using 500 sampledatasets for interpreting the found components more thor-
(data vectors) only, but the other methods FastICA, TDSEBughly, and a more extensive comparison with existing ICA
and UniBSS provide much better results when the number ahd BSS methods using real-world data should be carried
samples increases. Even the UniBSS method fails to separats.
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Fig. 1. Experimental results with fMRI data. Each row showe of the Fig. 2. Experimental results with fMRI data. Componentsfrithe second
11 separated components. The activation time-course wihstimulation dataset.
blocks for reference, shown on the left, and the correspansipatial pattern
on three coincident slices, on the right. Components froenfitst dataset.
and sub-Gaussian source signals. Thus one should know
or somehow be able to estimate how many super-Gaussian
VI. Discussion and sub-Gaussian sources the data set contains, otherwise
After writing the paper [3], we tested our method forthe UniBSS methods fails to separate some sources. In our
two data sets with several other methods than FastICA araperiments with synthetically generated data this wasanot
UniBSS. The results were good especially for the TDSEProblem because all the sources were either super-Gaussian
method, and CCA prepocessing improved them also far Gaussian. However, FastiCA and TDSEP methods do not
the well-known algebraic ICA method JADE [33], which suffer from this limitation. In practice, using them togeth
is based on non-Gaussianity included into computationgith CCA or generalized CCA is often a preferable choice
explicitly by higher-order statistics. However, the rasudf over using the UniBSS method.
the CCA followed by JADE method were not as good as Canonical correlation analysis is based on second-order
for FastiICA, TDSEP, and UniBSS. We tested several othstatistics, that is, autocovariances and cross-covatané
ICA and BSS methods, too, and found that if a method failthe two related data sets. Furthermore, like PCA it can be
completely in a separation task providing results around @erived from a probabilistic model in which all the involved
dB, CCA preprocessing does not any more help it to achievandom vectors are Gaussian [20]. We are not aware of a
better results. probabilistic model for the least-squares generalizatbn
Even though the UniBSS method performed well in thes€CA that we have used, but it also uses second-order statis-
experiments, it has some drawbacks. First, it requiresaat le tics only, collected into the matrices (26) and (27). In our
of the order of 1000 samples to perform appropriately, whilenethod, this is not so great limitation as one might expect,
for example FastICA needs less samples for providing prettyecause all the information including higher-order stias
good estimates of the sources if there are just a few aihd non-Gaussianity contained in the two related data sets
them. Second, the UniBSS method requires many iteratioase retained in mapping them to the subspaces corresponding
and it does not converge uniformly. It may already providéo their dependent and independent components in (31) and
good estimates but then still with more iterations move faf33).
away from a good solution, giving then rather poor estimates The division into these subspaces is now based on in-
of the source signals. This can happen several times urgpection of the magnitudes of singular values of the cross-
the method eventually permanently converges to a goawvariance matrix of whitened data sets. One could argue tha
solution. A third drawback of the UniBSS method is thatalso higher-order statistics should be taken into account i
just like well-known the natural gradient algorithm [1],][8 determining these subspaces. However, even this is often no
it requires different types of nonlinearities for supers@sian critical because the final goal is to separate all the sources



in the related two data sets irrespective of how dependent@#] A. Hyvarinen, “A unifying model for blind separatiorf independent

independent they are from each other and in which way they, sources, Signal Processingvol. 85, no. 7, pp. 1419-1427, 2005.
.. . 5] A. Yeredor, “Second-order methods based on color”. gi#ra7 in P.
are divided into these SUbSpaceS' Comon and C. Jutten (Edshandbook of Blind Source Separation:
Independent Component Analysis and Applicatiohsademic Press,
2010, pp. 227-279.
. . [16] N. Correa, T. Adali, Y.-Q. Li, and V. Calhoun, “Canoniczorrelation
In this paper, we have introduced a method based on analysis for data fusion and group inferencd€EE Signal Processing

least-squares generalization of standard canonicallatioe Magazine vol. 27, no. 4, July 2010, pp. 39-50.

. . . 7] J. Ylipaavalniemi et al., “Dependencies between slirand spatially
anaIySIS (CCA) for blind source separation from relateél independent fMRI sources: towards brain correlates ofrabhstimuli”,

data sets. The goal is to separate mutually dependent and Neurolmage vol. 48, 2009, pp. 176—185.
independent components or source signals from these d& D--T. Pham and J.-F, Cardoso, "Blind separation of dnineous

sets. We use this generalization of CCA for first detecting U;'f“ﬂgesn%f gonlgga?tf’fgg Sgggcle$EEE Trans. on Signal Processing

subspaces of independent and dependent components. AW A. Hyvarinen, “Blind source separation by nonstatidty of variance:
ICA or BSS method can after this be used for final separation & cumulant-based approachZEE Trans. on Neural Networksol. 12,

VII. CONCLUSIONS

of these components. The proposed method performs qutﬁ%] F. Bach and M. Jordan, “A probabilistic interpretatimf canon-

no. 6, pp. 1471-1474, 2001.

well for synthetic data sets for which the assumed data “ical correlation analysis”. Technical Report 688, Dept. Sfatis-

model holds exactly. It provides interesting and meanihgfu

results for real-world functional magnetic resonance imgg

(fMRI) data. The method is straightforward to implemen

{21] A. Hyvarinen et al.,

tics, Univ. of California, Berkeley, CA, USA, 2005. Availeb at
http://www.di.ens.fri-fbach/ .

“The FastICA package for Matlab”,
Helsinki Univ. of Technology, Espoo, Finland, 2005. Avala at

and computationally not too demanding. The proposed http:/iresearch.ics.tkk filica/fastica/ .

method improves clearly the separation results of seve
well-known ICA and BSS methods compared with the

situation in which generalized CCA is not used.
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