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Abstract—Independent component analysis (ICA) is a recently
developed, useful extension of standard principal component
analysis (PCA). The ICA model is utilized mainly in blind
separation of unknown source signals from their linear mixtures.
In this application only the source signals which correspond to
the coefficients of the ICA expansion are of interest. In this paper,
we propose neural structures related to multilayer feedforward
networks for performing complete ICA. The basic ICA network
consists of whitening, separation, and basis vector estimation
layers. It can be used for both blind source separation and
estimation of the basis vectors of ICA. We consider learning
algorithms for each layer, and modify our previous nonlinear
PCA type algorithms so that their separation capabilities are
greatly improved. The proposed class of networks yields good
results in test examples with both artificial and real-world data.

Index Terms—Blind source separation, independent component
analysis, neural networks, principal component analysis, signal
processing, unsupervised learning.

I. INTRODUCTION

M ANY meaningful information processing operations
can be accomplished using simple neural networks,

whose input–output mappings become linear after learning [3].
Several unsupervised learning algorithms of such networks are
neural realizations [10], [15], [18], [42] of the widely used
statistical technique principal component analysis (PCA). PCA
is defined by the eigenvectors of the covariance matrix of the
input data. However, these networks are able to perform other
tasks [3] such as singular value decomposition, decorrelation,
and discriminant analysis, to mention a few. In this paper,
we introduce a class of neural networks for independent
component analysis (ICA).

ICA is a useful extension of PCA that has been devel-
oped in context with blind separation of independent sources
from their linear mixtures [13], [19], [24]–[26]. Such blind
techniques are needed for example in various applications of
array processing, communications, medical signal processing,
and speech processing [32]. In a sense, the starting point
of ICA is the uncorrelatedness property of standard PCA.
Roughly speaking, rather than requiring that the coefficients
of a linear expansion of the data vectors be uncorrelated, in
ICA they must be mutually independent (or as independent as
possible). This implies that higher order statistics are needed
in determining the ICA expansion. It also implies that some
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suitable nonlinearities must be used in the learning phase, even
though the final input–output mapping is still linear. As will be
seen later on, ICA provides in many cases a more meaningful
representation of the data than PCA. This can be utilized for
example in linear projection pursuit techniques.

More generally, a recent trend in neural-network research is
to study various forms of unsupervised learning beyond PCA.
Such techniques are often called “nonlinear PCA” methods
[30]. The main reason for this interest is that even though
standard PCA is optimal in approximating the input data in the
mean-square error sense, the representation that it provides is
often not the most meaningful in describing some fundamental
characteristics of the data. In PCA, the data are represented in
an orthonormal basis determined merely by the second-order
statistics (covariances) of the input data. Such a representation
is adequate for Gaussian data. However, non-Gaussian data
contain a lot of additional information in its higher order
statistics. This should be somehow utilized if possible.

Various nonlinear PCA methods (including ICA) have the
advantage over standard PCA that they take into account
higher order statistics at least implicitly. In nonlinear PCA
approaches, a closed-form solution is usually not possible,
which makes neural learning algorithms computationally at-
tractive [27], [28], [30]. While PCA is a fairly standardized
technique, nonlinear or robust PCA type methods can be
developed from various starting points, usually leading to
mutually different solutions. In our previous papers [27],
[28], [30], [52], [53], we have derived several robust and
nonlinear extensions of PCA starting either from maximization
of the output variances or from minimization of the mean-
square representation error. Some other authors have proposed
neural extensions of PCA by choosing optimization of some
information-theoretic criterion as their starting point; see [14],
[18], [48] for further information. Though generally different,
these approaches have relationships to ICA. In particular, we
show later on in this paper that some of our previous nonlinear
or robust PCA algorithms can be applied to estimating ICA
on certain conditions.

In this paper, we introduce neural networks that can be used
for both blind source separation and estimation of the basis
vectors of ICA. The remainder of this paper is organized as
follows. The next section presents in more detail the necessary
background on ICA and source separation. In Section III, we
introduce and justify the basic ICA network model and its
variants. Section IV deals with learning algorithms for each
of the three layers of the proposed ICA network. Section V
provides mathematical analysis justifying the separation ability
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of a nonlinear PCA-type learning algorithm. In Section IV,
we present experimental results for both artificial data and
real image and speech data. The last section contains the
conclusions of this study, and outlines some possibilities for
extending the basic linear data model.

II. I NDEPENDENT COMPONENT ANALYSIS

AND BLIND SOURCE SEPARATION

A. The Data Model

In the following, we present the basic data model used
in defining both ICA [13], [26] and the source separation
problem [26], [35] for linear memoryless channels, and discuss
the necessary assumptions. A precise mathematical discussion
of ICA is given in Comon’s recent fundamental paper [13].
It also contains many references and a numerical batch-type
algorithm for estimating the ICA expansion.

Assume that there exist zero mean source signals
that are scalar-valued and

mutually statistically independent for each sample value.
The independence condition is formally defined so that the
joint probability density of the source signals must be the
product of the marginal densities of the individual sources

(1)

More concretely, the source signals could be sampled speech
waveforms; for different speakers the sources are then at
least approximately independent. In this case, the index
represents discrete time. In another example, the source signals
are two-dimensional discrete images. Here, the indexin the
source stands for each of the images, while the two-
dimensional index denotes the pixels. A concrete example
of image sources is given in context with experimental results
in Section VI.

We assume that the original sources are unobservable,
and all that we have are a set of noisy linear mixtures

, with

(2)

The coefficients are unknown; however, we assume that
the mixtures are all different. Such mixtures arise in several
practical situations like speech separation or antenna array
processing.

Denote now by the -
dimensional th data vector made up of the mixtures (2)
at discrete time (or point) . By (2), we can write the ICA
signal model in vector form as follows:

(3)

Here is the source vector consisting
of the source signals (independent components)

at the index value . is

a constant “mixing matrix” whose columns are
the basis vectors of ICA, and denotes possible corrupting
additive noise. The noise term is often omitted from (3),
because it is usually impossible to distinguish noise from the
source signals.

We shall consider in more detail the following two related
problems. In the first problem, source separation, the task is
merely to find the waveforms of the sources, knowing
only the data vectors and the number of the sources. The
second problem is to estimate the complete ICA expansion,
including also the basis vectors of ICA.

The assumptions typically made in ICA and source separa-
tion on the model (3) can be listed more precisely as follows
[9], [35].

1) is a constant matrix with full column rank. Thus
the number of sources is at most equal to , the
dimension of the data vectors . Usually is assumed
to be known in advance. If and there is no noise,
the data vectors lie in the -dimensional subspace
spanned by the basis vectors of ICA.

2) The source signals (coefficients)
must be mutually statistically independent at each sam-
ple value , or in practice as independent as possible.
The degree of independence can be measured using
suitable contrast functions [13].

3) Each source signal is a stationary zero-mean
stochastic process. Only one of the source signals
is allowed to have a Gaussian marginal distribution. This
restriction essentially follows from the fact that linear
combinations of Gaussian source signals are Gauss-
ian. Thus it is impossible to separate several Gaussian
sources from each other.

Note that very little prior information is assumed on the
matrix . Therefore, the strong independence assumptions are
required in determining the ICA expansion (3). Even then, only
the directions of the ICA basis vectors , are
defined, because their magnitudes and the amplitudes of the
source signals can be interchanged in the model (3). To
get a more unique expansion (3), one can normalize the basis
vectors to unit length and arrange the terms according
to the powers E of the rescaled source signals in a
similar way as in standard PCA.

B. ICA, PCA, and Projection Pursuit

At this point, it is useful to compare ICA to standard PCA.
In PCA, the data model has the same form (3), but instead
of independence the coefficients are required to have
sequentially maximal variances (powers) , and the
basis vectors are constrained to be mutually orthonormal.
Usually the basis vectors of ICA are not mutually
orthogonal. A simple example illustrating the differences of
ICA and PCA is given in Fig. 1. The data vectors are assumed
to be uniformly distributed inside the parallelogram. The solid
lines show the two basis vectors of ICA, and the dashed
lines the respective orthogonal basis vectors of PCA. Clearly,
the basis vectors of ICA characterize better the data. Other
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Fig. 1. The theoretical basis vectors of ICA (solid lines) and PCA (dashed
lines). In this example, the data vectors are uniformly distributed inside the
parallelogram.

examples on comparing PCA with ICA are given in [25] and
[26].

On the other hand, the basis vectors of ICA are consid-
erably more difficult to estimate, and their use in technical
representation or approximation of the data is not as handy
as in PCA because of the nonorthogonal basis. Assume for
a while that the basis matrix in (3) would be known.
The standard least-squares solution minimizing the squared
modeling error is then , yielding
the least-squares approximation

(4)

of . The projection formula (4) holds for any subspace
defined by the columns of . For PCA, , where

denotes unit matrix, leading to the simpler
expression .

The basis vectors of ICA should be especially useful in lin-
ear projection pursuit and in extracting characteristic features
from natural data [5], [6], [21], [32]. In projection pursuit [16],
[20], one tries to describe the structure of high-dimensional
data by projecting them onto a low-dimensional subspace and
looking for the structure of the projection. In practice, when
the data are projected onto a given direction (one-dimensional
subspace), the distribution of the projected data is in most
cases almost Gaussian. Therefore such directions which give
as non-Gaussian projections as possible are often considered
to be the most interesting ones, describing well the properties
of high-dimensional data. Various indices have been designed
for measuring the deviation of a distribution from the Gaussian
one. The index used in ICA, maximal independence of the
data projected onto a direction, describes well the fundamental
characteristics of the data. Projections of the data onto the ICA
basis vectors are typically non-Gaussian.

To our knowledge, the use of ICA in projection pursuit has
not yet been explicitly considered. However, recently Fyfe
and Baddeley [17] have applied a nonlinear (robust) PCA
algorithm suggested and derived by us earlier in [27], [41]
to finding projection pursuit directions from prewhitened data.

In the next sections it will become clear that in [17], the
basis vectors of ICA have actually been estimated without an
explicit mention. The good results achieved in [17] compared
to some other neural projection pursuit algorithms justify the
usefulness of ICA in this application.

C. Blind Source Separation

During the last years, techniques called blind source (or
signal) separation have been studied especially in signal pro-
cessing. In blind source separation, one tries to extract the
waveforms , of the independent source
signals in (3) from the data vectors . Here the unknown
ICA basis vectors are usually not of much interest. Such
blind techniques are useful for example in array processing,
speech enhancement, and communications. If the structure of
the matrix were known from the problem statement exclud-
ing some parameters, more efficient subspace or maximum
likelihood type methods [49] are available for estimating the
unknown parameters. Both batch type and data-adaptive source
separation algorithms have been suggested. With a neural
realization in mind, adaptive algorithms that are as simple as
possible but yet provide sufficient performance are of primary
interest to us.

In adaptive source separation [9], [26], [35], an
separating matrix is updated so that the -vector

(5)

becomes an estimate of the original independent
source signals. Under the assumptions 1–3) made before, the
estimate of the th source signal may appear in any
component of . It is also impossible to determine
the amplitudes of the source signals from the model
(3) without additional assumptions. Instead of normalizing the
basis vectors , in source separation it is often assumed [9],
[35] that each source signal has unit variance.

In several blind separation algorithms, the data vectors
are first preprocessed by whitening (sphering) them, so

that their covariance matrix becomes the unit matrix. Various
whitening methods are discussed in more detail later on. After
prewhitening, the separating matrix in (5) can be taken
orthogonal: . This auxiliary constraint which pre-
serves the whiteness property makes the subsequent separating
algorithms simpler, and also normalizes the variances of the
estimated sources automatically to unity.

A practical difficulty in designing source separation and
ICA algorithms is reliable verification of the independence
condition (1). It is impossible to do this directly or measure
the degree of independence using mutual information because
the involved probability densities are unknown. Therefore,
approximating contrast functions which are maximized by
separating matrices have been introduced in [13]. Even these
contrast functions require fairly intensive batch type com-
putations using the estimated higher order statistics of the
data, or lead to complicated adaptive separation algorithms.
Fortunately, it is often sufficient to use the simple higher order
statistics called kurtosis, which is a fourth-order cumulant
with zero time lags. For theth source signal , the



KARHUNEN et al.: NEURAL NETWORKS FOR INDEPENDENT COMPONENT ANALYSIS 489

(unnormalized) kurtosis is defined by

(6)

If is Gaussian, its kurtosis . Source signals
that have a negative kurtosis are often called sub-Gaussian
ones. Typically, their probability distribution is “flatter” than
Gaussian, for example bimodal [17]. Sources with a positive
kurtosis (super-Gaussian sources) have usually a distribution
which has longer tails and a sharper peak than standard
Gaussian distribution [4], [17].

The division of sources into sub-Gaussian and super-
Gaussian ones is important, because the separation capability
of many algorithms crucially depends on this property. In
particular, for prewhitened input vectors it can be shown [37]
that the relatively simple contrast function

(7)
is maximized by a separating matrix in the model (5), if the
sign of the kurtosis (6) is the same for all the source signals

. For prewhitened input vectors and
orthogonal separating matrices, the output powers E

, implying that cum . Thus the criterion
(7) is maximized if the sum of the fourth moments

(8)

is minimized for sources that have a negative kurtosis, and
maximized for sources with positive kurtosis. We use the
criterion (8) in this paper, because it is simple enough, and
can be applied in a straightforward way to our nonlinear PCA
type neural learning algorithms.

Instead of optimizing some contrast function, one can use
other type of neural algorithms for achieving separation. Most
of them have been introduced quite recently. We refer to
the tutorial paper [31], where various neural approaches are
reviewed. Roughly speaking, neural blind source separation
algorithms are often some modifications of the seminal Her-
ault–Jutten (HJ) algorithm [26], [10]. This heuristic algorithm
is attractive because it is simple and can be realized locally, but
it may fail in separating more than two independent sources.
A few new neural separating algorithms [1], [4], [14] have
been derived from information theoretic concepts. Also some
adaptive blind separation algorithms proposed in the field of
signal processing, such as the equivalent adaptive separation
via independence (EASI) (or PFS) algorithm [9], [35], can be
interpreted as learning algorithms of a neural network.

The performance of a separation algorithm can be studied
in test simulations where the mixing matrix is known to
the user (but not to the learning algorithms) by inspecting
the separation results visually. A more quantitative way is
to use some performance measure. In [1] the authors define
a performance index which measures the difference of the
matrix from a permutation matrix. If the basis vectors
of ICA are estimated, too, one can for example compute the
angles between the true and respective estimated basis vectors.

However, in practical situations it is very difficult to assess
the results quantitatively, because the true source signals and
basis vectors of ICA are unknown.

Generally, it is impossible to separate the possible noise
in the input data from the source signals [31]. In practice,
noise smears the results in all the separation algorithms. If
the amount of noise is considerable, the separation results are
often fairly poor. There is not yet any good solution available
to this problem. Some of the noise can usually be filtered out
using standard PCA if the number of mixtures is larger than
the number of sources.

III. T HE NETWORK MODEL

A. The ICA Network Structures

Consider now neural estimation of the complete ICA ex-
pansion (3). Let us denote the estimated expansion by

(9)

Here, the matrix denotes the estimate of the
ICA basis matrix is the estimate of the source (or
independent component) vector, and is the noise or
error term. The first task is always separation of the sources,
or estimation of the vector . As discussed before, this can be
done by learning the separating matrix in (5) using some
suitable algorithm. After this, the components of the vector

should be as independent as possible. For learning the
matrix , we then simply minimize the mean-square error
E with respect to .

This estimation procedure can be realized using the two-
layer feedforward network shown in Fig. 2. Theinputs of
the network are the components of the vector(not counted
as a layer). In the hidden layer there areneurons, and the
output layer consists again of neurons. Let denote for
clarity the weight matrix between the inputs and the
hidden layer, and , respectively, the weight matrix
between the hidden and output layers. Based on above, the ICA
expansion (3) can be estimated using the network of Fig. 2 in
two subsequent stages as follows.

1. Learn an weight matrix for which the
components of are as independent as possible.

2. Learn an weight matrix which minimizes the
MSE error E .

If prewhitening is used, the first stage is further divided into
two subsequent parts. First, the data (input) vectorsare
whitened by applying the transformation

(10)

where denotes the th whitened vector, and is an
whitening matrix. If simultaneously reduces the
dimension of the data vectors from to . After this, the
sources (independent components) are separated

(11)

Here denotes for clarity the orthonormal ( )
separating matrix that the network should learn. Fig. 3
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Fig. 2. The linear feedforward network structure. When used as an ICA net-
work, the outputs of the hidden layer are required to be mutually independent.

Fig. 3. The proposed ICA network. The network consists of whitening,
separation, and basis vector estimation layers. The respective weight matrices
areV; WT

; andQ.

shows the ensuing three-layer ICA network structure, where
now .

In the ICA networks of Figs. 2 and 3, the number of sources
is often equal to , the dimension of the input vectors.

In this case, no data compression takes place in the hidden
layer, but the independence constraint anyway provides an
ICA solution. As usual, feedback connections (not shown)
are needed in the learning phase, but after learning these
networks become purely feedforward if the data is stationary.
Even though the input–output mappings of the proposed ICA
networks are linear after learning due to the linear data model
(3), nonlinearities must be used in learning the separating
matrix or . They introduce higher order statistics into
computations, which is necessary in achieving independence.
Second-order statistics, which are used in standard PCA, can
provide decorrelation only.

The network of Fig. 3 is used in context with our robust or
nonlinear PCA learning algorithms, which require whitening of
the input data for yielding good separation results. Each of the
three layers performs one of the processing tasks required for
complete ICA: 1) whitening; 2) separation; and 3) estimation
of the basis vectors of ICA. Any of these three tasks can be
done either neurally or conventionally. Various possibilities are
discussed in the next section. In some separating algorithms
the separating matrix tries to perform the tasks of
whitening, reducing the dimension, and separating the sources
simultaneously. One can then use the simpler original network
of Fig. 2, but on the other hand the learning algorithms tend to
be more complicated. If the task is merely source separation,

the last ICA basis vector estimation layer is not needed in
these networks.

Before proceeding, we point out that Burel and Rondel have
independently proposed a network similar to that in Fig. 2
for blind source separation in [8]. However, their network
is intended for array processing applications, and the mixing
matrix as well as the separating matrixhave a constrained
parametric form.

B. Connection to Linear Autoassociative Network

In this subsection, we try to further clarify the basic ideas
behind the introduced ICA networks by studying their connec-
tions to the linear autoassociative network [2] which realizes
standard PCA.

Consider encoding and decoding of the data vectorsby
using the network of Fig. 2 in autoassociate mode. Here, we
first only assume that and are and constant
matrices, respectively. If , data compression takes place
in the hidden layer, and the output of the network
is generally an approximation of the input vector. Assume
that the autoassociative network is trained by minimizing the
mean-square approximation (representation) error

using for example the backpropagation
algorithm. It is well known [2] that the optimal solution is
given by any matrix of the form , where
the columns of span the -dimensional PCA subspace
of the input vectors . This subspace is defined by the
principal eigenvectors of the data covariance matrix E
(assuming that has zero mean). It should be noted that the
projection operator onto the PCA
subspace is unique, even though the columns ofconstitute
some arbitrary linearly independent basis of the PCA subspace.

Assume now that the noise term in (3) is standard zero-
mean white noise with covariance matrix E ,
where is the common variance of the components of the
vector , and that is uncorrelated with the sources .
Under these assumptions, it is easy to show (see, for example,
[49]) that the covariance matrix of the data vectors (3) is

(12)

From the structure of the data covariance matrix (12) one
can deduce that the basis vectors , of
ICA theoretically lie in its -dimensional PCA subspace
[49]. Usually the basis vectors of ICA are some (unknown)
linear combinations of the first PCA eigenvectors, and
vice versa. The PCA and ICA basis vectors coincide only
if the basis vectors of ICA happen to be
mutually orthonormal, and the variances of the sources
are different. In this very specific case, PCA alone can provide
separation.

In the ICA networks, we utilize the extra freedom in
choosing the matrix (and ). This is done by forcing the
network to converge to such a minimizing solution where
the columns of not only lie in the PCA subspace, but
also coincide with the directions of the desired basis vectors

of ICA. Note that if



KARHUNEN et al.: NEURAL NETWORKS FOR INDEPENDENT COMPONENT ANALYSIS 491

, which is exactly the ICA approximation
formula (4). Naturally, the estimated basis vectors need not
appear in in the same order as the true ones in, and their
norms can be different.

Clearly, ICA solution can be obtained by imposing the
following additional constraint:the components of the output
vector of the hidden layer in the network of Figs. 2
or 3 must be mutually independent (or as independent as
possible). This is the central idea of our ICA networks. Often

, in which case no data compression takes place.
Furthermore, if the networks of Figs. 2 and 3 are used for
blind separation only, minimization of the mean-square error
is not needed in any phase. In any case, we need not explicitly
use the structure in the proposed ICA
networks.

IV. L EARNING

A. Whitening

Prior to inputting the data vectors to the ICA networks,
they are made zero mean by subtracting the mean, if neces-
sary. This normalizes the data with respect to the first-order
statistics. Furthermore, the effects of second-order statistics
to the nonlinearities can be removed by whitening the data
using the transformation (10). The components of the whitened
vectors must be mutually uncorrelated and normalized in
such a way that they have unit variance. This is equivalent
to requiring that the covariance matrix E is the unit
matrix . Uncorrelatedness is a necessary prerequisite for
the stronger independence condition; so after prewhitening the
separation task becomes usually somewhat easier. There exist
(infinitely) many ways to decorrelate and subsequently whiten
the input data (provided that ). Let us briefly discuss
some relevant possibilities.

Standard PCA is often used for whitening, because one can
then simultaneously compress information optimally in the
mean-square error sense and filter possible Gaussian noise.
The PCA whitening matrix is given by

(13)

Here the diagonal matrix ,
and the matrix , with de-
noting the th largest eigenvalue of the data covariance matrix
E , and the respectiveth principal eigenvector.
PCA whitening is easy to do using standard software. This
is a preferable way in practice if is not small and high
accuracy is required.

A further advantage of PCA whitening is that standard
PCA provides a convenient means for estimating the number

of the sources or independent components. This can be
done by estimating all the eigenvalues of the covariance
matrix E . From the theoretical expression (12) of the
covariance matrix it is easy to see [49] that the largest
eigenvalues of E are some linear
combinations of the source signal powers E added
to the noise power . The remaining eigenvalues
correspond to noise only, and are all theoretically equal to

. If the signal-to-noise ratio is good enough, the largest
“signal” eigenvalues are clearly larger than the remaining
“noise” eigenvalues. From this, one can deduce the number

of the sources.
Instead of using standard numerical software, one can esti-

mate the principal eigenvectors adaptively. For this purpose,
many well-established neural learning algorithms based on the
single-unit PCA rule [38] are available [3], [10], [15], [18],
[42]. Assuming that theth weight vector of a PCA
network at step is a roughly normalized estimate of , the
respective eigenvalue can be adaptively estimated using
the simple algorithm [40]

(14)

where is usually a small constant. Recently, Plumbley
[45], [46] has introduced neural algorithms that simultane-
ously whiten the input data and compress them into the
PCA subspace. In [46], these approaches are related to the
maximization of mutual information in a linear network.

A simple algorithm for learning the whitening matrix
neurally is

(15)

This stochastic approximation algorithm has been indepen-
dently proposed in [35] and [47], and it is used as a part of the
EASI (PFS) separation algorithm [9], [35]. In (15), can be
an matrix with . However, the algorithm (15)
does not have any optimality properties in data compression,
and it sometimes suffers from stability problems. It can be
justified by observing that after convergence the vectors
should satisfy the whiteness condition E .

Generally speaking, separation algorithms using
prewhitened data converge faster and have often better
stability properties. On the other hand, whitening can make
separation of sources more difficult or even impossible if the
mixing matrix is ill-conditioned or if some of the sources
are weak compared to the others [9], [31].

B. Separating Algorithms

The core part and most difficult task in ICA is learning
of the separating matrix in (5). Recall that can be
sought either directly, or using prewhitening in the form

, where is the orthogonal separating
matrix applied to the whitened vectors . During the last
years, many neural blind separation algorithms have been
proposed. For a brief review, see [31]. In the following, we
discuss and propose separation algorithms which are suitable
for learning the matrix or in PCA-type networks.

In [41], one of the authors proposed two nonlinear exten-
sions of his PCA subspace learning rule which can be applied
to learning the orthogonal separating matrix . Consider
first so-calledrobust PCA subspace rule

(16)

Here and later on denotes a vector whoseth component
is , where is a nonlinear function. In all these
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algorithms, the function is usually chosen to be odd for
stability and separation reasons. The learning parameteris
usually positive, and slowly tends to zero or is a small constant.

In [27], we have shown that (16) is a stochastic gra-
dient algorithm which tries to maximize the criterion

under the constraint that is orthonormal.
The function in (16) is related to the criterion function

so that it is the derivative of . Thus
by choosing with , (16) could be
used for maximization of the sum of the fourth moments
(8), leading to separation of super-Gaussian sources. In
principle, the robust PCA subspace rule could be applied to
the respective minimization problem by using the negative
stochastic gradient with , but the algorithm is
then not stable. However, the sum of fourth moments
can be approximately minimized by using the nonlinearity

in (16) with . This follows from the
Taylor series expansion
where the cubic nonlinearity is dominating if the data are
prewhitened [17]. This can be seen by noting that in the
Taylor series expansion of the respective criterion function

the
second-order term is on an average constant due to
the whitening.

In our simulations, the robust PCA subspace rule (16)
often worked satisfactorily for two sub-Gaussian sources using

and , but usually not in the case of three
sources. The reason is that the algorithm is originally intended
for seeking a subspace, or for matrices with .
If is a square matrix, it tends to unit matrix, and the
orthonormalizing term in the square brackets in (16) becomes
almost zero before the algorithm learns a separating matrix.

This problem can be circumvented at least in two ways.
Instead of (16), we can use the nonlinear PCA subspace rule
introduced by one of the authors in [41]; see also [27] and [30]

(17)

The update formula (17) differs slightly from (16), but the
nonlinearity inside the square brackets enables in practice the
application of this algorithm also to square weight matrices

. The columns of are now not exactly orthonormal.
We can anyway justify that the nonlinear PCA subspace rule
(17) converges to a separating matrix . This analysis is
presented in the next section. Otherwise, the same remarks on
minimization and maximization of the sum of fourth moments
as for the robust PCA subspace rule hold for (17), too.

We have recently developed another so-calledbigradient
algorithm [52], [53], which is applied for learning the or-
thonormal separating matrix as follows:

(18)

Here is another gain parameter, usually about 0.5 or one
in practice. The bigradient algorithm is again a stochastic
gradient algorithm for maximizing or minimizing the criterion

under the constraint that the weight matrix
must be orthonormal. However, the orthonormalization

constraint is realized in (18) in an additive way instead

of multiplying the gradient as in (16). This has
two distinct advantages. First, if is an approximately
orthonormal square matrix, this does not nullify
the effect of gradient learning. Second, (18) can be used
directly for the respective minimization problem, because
the algorithm is stable also when is negative. Thus the
bigradient algorithm (18) is a better choice than the robust
PCA subspace rule in separation. Its disadvantage is that two
gain parameters are needed. The algorithm (18) is derived and
discussed in more detail in [52] and [53].

In all the above algorithms, the gradient is essen-
tially responsible for learning the separating matrix. It can be
interpreted as a nonlinear Hebbian learning term. The other
terms appearing in the algorithms (16)–(18) have the role of
stabilizing and normalizing the matrix .

Cardoso and Laheld recently introduced so-calledEASI (or
PFS) algorithm[9], [35], where the total separating matrix is
computed from the formula

(19)
The scalar terms in the denominator are needed to stabilize the
learning rule (19) in practice, if the nonlinearity grows
faster than linearly. Otherwise, they can usually be omitted
provided that is not too large. A similar stabilization can
be applied to the other separation algorithms described in this
subsection if necessary. In [9] and [35], the EASI algorithm
(19) is actually derived by first whitening the data vectors; this
yields the “linear” whitening part in (19). After this,
separation is achieved by minimizing . After
heavy approximations, this yields the nonlinear separating
part , where . These parts
are combined in (19) in an elegant way. In practice, other
nonlinearities than just are often able to learn a
separating matrix in (19).

The learning rule (19) is introduced in [9] and [35] as an
adaptive source separation algorithm without any reference to
neural networks. However, especially in its unstabilized form
(19) can directly be used as a learning algorithm of a PCA type
network. For introducing even more higher order statistics, we
can use another odd nonlinear function in (19). This leads
to a kind of generalized EASI (or PFS) algorithm

(20)
which is stabilized in a similar way as (19) if necessary. A
heuristic justification to the algorithm (20) is that it should after
convergence satisfy on an average the conditions E

(whiteness) and E (a kind
of independence condition).

The mutual performance of the separation algorithms dis-
cussed above depends on a number of factors such as the
mixing matrix, source signals, chosen parameters, and non-
linearities. In our experiments, the bigradient algorithm often
converged faster than the nonlinear PCA subspace rule, but it
seems to be more sensitive to the choice of gain parameters.
An advantage of the nonlinear PCA subspace rule is that it
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can be realized fairly easily using hardware, for example by
modifying slightly the implementation presented in [34] for
the standard PCA subspace rule. The EASI learning algorithm
(and its generalization) usually perform rather similarly than
the other learning rules, but it can separate the sources even
though the mixing matrix is ill-conditioned provided that there
is no noise [9], [31].

A practical, ever-present problem with the above type of
simple stochastic algorithms is the choice of the learning
parameter(s). Some hints on how to do this are given in
[27]. Generally, the learning parameters should be the smaller
the larger is the relative magnitude of the update term. For
nonlinearities growing faster than linearly, special measures
like the denominator terms in (19) are often needed to ensure
the stability of the algorithm. For the robust PCA subspace
rule (16), the first author has derived a bound ensuring the
stability of the algorithm in [29]. This can be applied as a
good approximation to the nonlinear PCA subspace rule (17),
too. Quite recently, we have introduced in [33] adaptive least-
squares type algorithms for minimizing the same criterion
function from which the nonlinear PCA subspace rule (17) has
been derived in [27]. These algorithms are somewhat more
complicated than the simple stochastic gradient algorithms
discussed above. Their great advantage is that the learning
parameter is determined automatically from the input data so
that it is roughly optimal, resulting in a fast convergence [33].

Another problem that is often encountered in practice is that
the input data are not stationary. Either the source signals may
be nonstationary or the mixing matrix changes with time or
both. We have made some simulations on this situation, too,
showing that the presented algorithms are able to track at least
slow changes in the data provided that the learning parameters
are chosen suitably. More detailed results on this case will be
presented elsewhere.

Finally, we emphasize thatany suitable algorithm can be
used for learning the separating matrix in the network of
Fig. 3 or the matrix in the network of Fig. 2. The above
algorithms have been proposed and discussed because they
can be regarded neural, are applicable in PCA type networks,
and are among the simplest available to our knowledge. All
these algorithms require that the original source signals have
a kurtosis with the same sign: sgn(cum or
for . This condition can be mildened in the EASI
algorithm somewhat so that the sum of kurtosises for any pair
of two sources must have the same sign [9]. This means that
the kurtosis of one source may have an opposite sign if its
absolute value is the smallest. The same condition seems to
hold for the other discussed algorithms in practice.

The condition on the signs of the kurtosis has been recently
removed in one-unit learning algorithms [22], [23] that are able
to find one source signal at a time, and have computationally
efficient fixed-point variants.

C. Estimation of the Basis Vectors of ICA

The task of the last layer in the networks of Fig. 3 or Fig. 2
is to estimate the basis vectors , of ICA. We
first present the standard nonneural solution to this problem
and then a neural learning algorithm for the weight matrix.

Assuming that the matrix has converged to a separating
solution , the basis vectors of ICA can be estimated by using
the theory of pseudoinverses. If is solved directly from (5),
in the general case there exist infinitely many possible
solutions. They all can be represented in the form

(21)

where is an arbitrary vector having the same dimension
as . Clearly, the part of the general solution (21) is not
interesting, because it does not depend on the estimated source
vector , and represents the portion of possible solutions that
lie in the subspace orthogonal to the rows of. Setting
in (21) yields the remaining meaningful part, which is the
unique minimum-norm (pseudoinverse) solution

(22)

Here denotes the th column of the matrix
. Comparing this with the ICA expansion

(3), we see that the vectors are the desired estimates of
the basis vectors of ICA. They can be normalized and ordered
suitably.

If PCA whitening (13) is used, the estimated ICA basis
matrix can be simplified to the form

(23)

Thus the unnormalizedth basis vector of ICA is
, where is the th column of , and its

squared norm becomes . Due to the
diagonality of the eigenvalue matrix , these expressions
are somewhat easier to compute than (22), but still require
square rooting and knowledge of the principal eigenvalues and
-vectors of the covariance matrix of the input data.

A completely neural algorithm for estimating the basis
vectors of ICA which does not require any inversion of
matrices or square rooting can be developed as follows. Recall
from Section III that the columns of the weight matrix
become estimates of the basis vectors of ICA, if the mean-
square error E is minimized under the constraint
that the components of the vectorare statistically mutually
independent. Assume now that as a result of the whitening and
separation stages, the matrix has converged to a separating
solution , and the components of are as independent as
possible. Then it suffices to search for the matrixwhich
minimizes the mean-square error.

Omitting the expectation, the gradient of with
respect to is , which in a standard way yields
the stochastic gradient algorithm

(24)

for learning the matrix . Here the coefficient 2 has
been absorbed in the learning parameterfor convenience.
This algorithm can be used for estimating the basis vectors
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of ICA in context with any suitable separation algorithm.
Naturally, the matrix could be learned by minimizing the
MSE error using more complicated but faster converging
algorithms. In large dimensional problems or in cases where
the directions of the some of the basis vectors of ICA are close
to each other, it may be better to use the nonneural formulas
(22) or (23) for achieving sufficient accuracy.

Finally, consider estimation of the basis vectors of ICA
in the specific situation where the data are already white:
E . Then , which yields
due to the orthonormality of . Thus the basis vectors of
ICA are directly the columns of the separating matrix for
whitened data. This explains the good exploratory projection
pursuit results achieved in [17]. The authors first take whitened
multidimensional Gaussian data, then make the data non-
Gaussian in some direction, and finally estimate this direction
using the robust PCA subspace rule (16). From the above
discussion, we can conclude that the found direction is nothing
but a basis vector of ICA. In these experiments, the projection
of the data onto this direction is furthest from the Gaussian
distribution.

Quite recently, the basis vectors of ICA have been estimated
for real-world image and sound data in [5], [6], and [21],
showing their relevance in characterizing natural data.

V. MATHEMATICAL ANALYSIS

The bigradient algorithm (18) [as well as the robust PCA
subspace rule (16)] has been derived by optimizing the crite-
rion under orthonormality constraints, and
so it can be expected to converge to an orthogonal matrix

that will minimize or maximize the criterion (depending
on the sign of the learning parameter). We have presented
mathematical analysis supporting this in [52], showing that
in the standard PCA/MCA case in which ,
the asymptotic convergence points are indeed the desired
eigenvectors. The EASI algorithm (19) has been analyzed in
[9]. However, the nonlinear PCA subspace rule (17) is only
indirectly related to an optimization criterion [30], and so a
convergence analysis should be given. This section provides
some results on the asymptotic solutions of the nonlinear PCA
subspace rule. We first present a mathematical theorem, and
then study in more detail two interesting special cases, where
the function is either a polynomial or a sigmoid.

A. Asymptotic Analysis of the Nonlinear PCA Subspace Rule

We start from the learning rule (17)

with . The input vectors are whitened:
E , and we assume that there exists a square
separating matrix such that the vector has
independent elements and also unit variances: E .
This implies that the separating matrix must be orthogonal.
Because our aim is to show that the weight matrix
converges to a separating matrix (transposed), we do not make
any prior assumptions on the separation properties ofhere.

To make the analysis easier, we multiply both sides of the
learning rule (17) by . We obtain [43]

(25)

where we have used the fact that . Denoting for the
moment and using the definition
given above, we have

(26)

This equation has exactly the same form as the original one.
Geometrically the transformation by the orthogonal matrix
simply means a rotation to a new set of coordinates such that
the elements of the input vector expressed in these coordinates
are statistically independent. If tends to a scaled version of
the unit matrix, then in the original nonlinear PCA subspace
rule (17) tends to a similarly scaled version of
the separating matrix .

To show this, the difference equation (26) can be further
analyzed by writing down the corresponding averaged differ-
ential equation; for a discussion of this technique, see e.g.,
[39]. The limit of convergence of the difference equation is
among the asymptotically stable solutions of the averaged
differential equation. Taking averages in (26) with respect to
the density of , and using as the continuous-time
counterpart of the transformed weight matrix, we obtain

(27)

with

(28)

(29)

The expectations are over the (unknown) density of vector.
We are ready to state the main result of this section, which
is a simplified version of a more general theorem originally
presented by one of the authors in [43]

Theorem: In the matrix differential equation (27), assume
the following.

1) The random vector has a symmetrical density with
E .

2) The elements of , denoted here , are sta-
tistically mutually independent and all have the same
density.

3) The function is odd, that is for all
, and at least twice differentiable everywhere.

4) The function and the density of are such that the
following conditions hold:

(30)

where is the derivative and is a scalar
satisfying

(31)
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5) The following condition holds:

(32)

Then the matrix

(33)

is an asymptotically stable stationary point of (27),
where is the positive solution to (31).

The proof is given in [43].
Note 1: We only consider a diagonal matrix as the

asymptotically stable solution. However, any permutation of
can be shown to be an asymptotically stable solution, too, by
making another orthogonal rotation of the coordinate axes that
will permute some of them. This simply means reindexing of
the vector elements . Mathematically, by replacing with

, where is a permutation (an orthogonal matrix), an
analogous differential equation is obtained, and the conditions
of Theorem 1 are unaltered.

Note 2: Conditions 4) and 5) are the technical requirements
for asymptotic stability. Clearly, substituting matrix (33) into
the fixed point condition gives (31). The
inequalities (30) and (32) are sufficient for asymptotic stability,
as shown in [43].

Note 3: Due to the oddity of function , the signs of the
cannot be determined from (31); if is a solution, then so

is also . If the weight matrix of (26) converges to ,
then asymptotically theth element of the vector
is the th element of the vector multiplied by . The sign
has no influence on the absolute magnitude. For the negative

, a similar result to the above holds.
Note 4: Theorem 1 allows nonmonotonic learning func-

tions. However, if is monotonic, then (31) in fact implies
that it must be an increasing function. If were monoton-
ically decreasing and odd, then the left-hand side would be
negative for positive and positive for negative ; but then
there could not be any solution because E .

The Theorem 1 will now be illustrated for two specific
types of nonlinear learning functions: polynomial functions

, with an odd positive integer, and sigmoidal
functions , with a positive slope parameter.
All these functions obviously satisfy the condition 3) of the
Theorem. For more details, see [43].

B. Special Case: Polynomials

The family of odd polynomial functions

(34)

is interesting in the present context because all the relevant
variables in the conditions 4) and 5) of Theorem 1 will become
momentsof for any probability density. These functions
include the linear function for which .

First, we get from (31) for

(35)

Substituting this in (30), we find that the condition 4) is always
satisfied.

The stability condition 5) of Theorem 1 now becomes

(36)

Consider first the case

(37)

Clearly, the condition (36) is not satisfied.The linear function
never gives asymptotic stability. Consider next the case

(38)

Now (36) gives

(39)

This expression is exactly thekurtosis or the fourth-order
cumulant of . If and only if the density ispositively kurtotic
or super-Gaussian, this condition is satisfied and the cubic
polynomial gives asymptotic stability.

Likewise, for we get the condition

(40)

and so on.

C. Special Case: Hyperbolic Tangents

Consider then the sigmoidal learning function
where . It asymptotically approaches

the hard-limiting function sign as . Assuming
, the stability condition 5) of the Theorem 1 becomes

E . For the hyperbolic tangent,
has a peak around the origin and decreases to both sides,
while is zero at the origin and increases to both sides.
In this case it is clear that a peaked super-Gaussian density of

makes E large and E small, while a flat
sub-Gaussian density does just the opposite. The latter case
is then more stable.

A simple example of a sub-Gaussian density is the uniform
density on the interval [1,1]. Let us assume this for the
elements of the vector to illustrate the Theorem 1. Condition
1 of Theorem 1 is then satisfied. It remains to check the
stability conditions 4) and 5) of Theorem 1. Now, a closed
form solution for in (31) is not feasible, and numerical
methods must be used. It turns out that condition 5) holds
for (for details, see [43]), and condition 4) is always
satisfied. The conclusion is thatfor the uniform density the
sigmoidal function gives asymptotic stabilitywhen .

Asymptotic stability is a local effect, and Theorem 1 does
not say anything about the basin of attraction of the asymp-
totic solution, that is,global stability. We have tested the
global stability of the differential equation (27) numerically.
In these simulations the input data were three-dimensional,
each element having an identical uniform density, the sigmoid
parameter had the value , and the initial deviation of

from the theoretical limit was varied. For this value of,
and the uniform densities used, . The deviation was
increased up to 100.0 and the algorithm converged invariably
to the asymptotically stable solution predicted by Theorem
1 or to its variation. This means that when the initial deviation



496 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

is increased, it may happen that the asymptotic limit for
will not be but a permutation with possibly
changed signs. Thus for example for the initial value

(41)

the asymptotic value turned out to be

(42)

which is a permutation of matrix . Note also the negative
sign in two of the nonzero elements.

The overall conclusion of this section is that, while the
nonlinear PCA subspace rule (17) is not directly a gradient
learning algorithm for a cost function, its limits of convergence
are nevertheless separating matrices, if the nonlinear learning
function is adapted to the original densities of the source
signals, especially to the sign of the kurtosis.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the ICA
network of Fig. 3 using both artificial and real-world data.
Artificially generated data is useful because it makes possible
to compare the estimation results with theoretically correct
values. In Section IV, several alternative learning algorithms
or estimation procedures were given for each of the three
layers in the network. We have not tested all combinations of
them; however, at least two different learning methods have
been used for each layer for confirming the generality of the
proposed structure.

Comon’s Data: Consider first a test example used earlier
by Comon [12]. Here, the three original source signals

and in (3) consist of uniformly distributed noise,
a ramp signal, and a pure sinusoid. Fig. 4 shows 100 samples
of them. Actually two of the source signals are deterministic
waveforms, allowing easy visual inspection of the separation
results. All the three sources have a negative kurtosis. Fig. 5
depicts the respective components of the three-dimensional
data vectors , which are linear mixtures of the source sig-
nals. They were formed using the linear ICA model (3), where
the true normalized basis vectors of ICA were

and
and the noise term

was zero.
We chose the simplest learning algorithms, so that (15) was

used for whitening, the nonlinear PCA subspace rule (17)
for separation, and (24) for estimating the basis vectors of
ICA. The 100 data vectors were used 60 times sequentially in
teaching the ICA network of Fig. 3. The learning parameter

was 0.01 both in (15) and (17). The learning function was
. After teaching, the data vectors

, were inputted to the network of Fig. 3. Fig. 6
shows the separated signals and (outputs
of the second layer), which are good estimates of the original
source signals. In the last layer of the ICA network, the

Fig. 4. One hundred samples of three source signals in Comon’s example:
Uniformly distributed noise, a ramp signal, and a pure sinusoid.

Fig. 5. Components of the 100 data vectors used in the simulation. They are
linear combinations of the source signals shown in Fig. 4.

algorithm (24) learned a matrix whose normalized columns
,

, and
estimate well the true basis vectors of ICA.

The results were roughly similar, when the bigradient al-
gorithm (18) was used for estimating the separating matrix

with the same learning function and parameters, or
alternatively using the learning function and learning
parameter . The other parameter was 0.9. Also
the EASI (PFS) algorithm (19) performs well with suitable
choices.

Parallelogram Data: As a second example, consider the
performance of the generalized EASI-type algorithm (20) in
estimating the basis vectors of ICA in a simple but illustrative
test case. In Fig. 7, the dots are data vectors uniformly
distributed inside the parallelogram, and the solid lines are
the true basis vectors of ICA. In this case, the independent
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Fig. 6. The separated signalsyk(1), yk(2), andyk(3) after learning.

Fig. 7. The parallelogram data and the basis vectors of ICA (solid lines)
and DCA (dashed lines).

components (projections of the data vectors onto the basis
vectors of ICA) have a negative kurtosis. The dashed lines
in Fig. 7 represent basis vectors which define a kind of
opposite of ICA: when the data vectors are projected onto
these directions, their components are maximally dependent.
Let us call this solution dependent component analysis (DCA).
In a sense, the DCA directions describe the data as well as the
ICA directions. In this simple example, the first DCA basis
vector happens to be the same as in PCA (see Fig. 1), pointing
to the corner which is in the direction of maximum variance.
However, the second DCA basis vector differs from the second
PCA basis vector, which is restricted to be orthogonal to the
first one.

Depending on the choice of the functions and ,
the generalized separation algorithm (20) converges either to
the ICA or to the DCA solution. The basis vectors were
estimated using either the nonneural formula (22) or the neural
learning rule (24). Table I shows the results for some choices
of and . In all these experiments, was a small
constant, and a similar stabilization as in (19) was used for
the cubic nonlinearity. Note that interchanging and
is equivalent to changing the signs of the nonlinear terms
in (20). The results also show that it is possible to use the
nonlinearity in the EASI algorithm (19). This
has the advantage that the stabilizing terms in the denominator
are not needed. If the sources are super-Gaussian (the kurtosis

TABLE I
TYPE OF THE SOLUTION PROVIDED BY THE GENERALIZED EASĪ-TYPE

ALGORITHM WITH DIFFERENT CHOICES OF THENONLINEAR

FUNCTIONS g(t) AND h(t) IN THE PARALLELOGRAM EXAMPLE

is positive), (19) provides separation; if the sources are sub-
Gaussian (negative kurtosis), the signs of the nonlinear terms
should be changed when is used in (19) for
achieving separation.

Image Data: Here we present a larger scale experiment
with image data. The nine source signals were the digital
images shown in Fig. 8. The first three source images (S1–S3)
describe natural objects, the next three (S4–S6) are Brodatz
textures, and the three last ones (S7–S9) are artificially gen-
erated. More specifically, S8 is a two-dimensional sinusoidal
signal and S9 uniformly distributed noise. We have not tested
the mutual independence of these sources in any way. All
the sources except S3 had a negative kurtosis; the kurtosis of
S3 had a small positive value, so that the sum of pairwise
kurtoses for any two sources was always negative. The size
of the source images was 387 306; they were coded as
vectors with 118 422 elements. Each nine-dimensional source
vector in the ICA model (3) contained theth components
of the vectorized source images. These were multiplied by a
nonorthogonal full-rank 9 9 ICA basis matrix , yielding
the 118 422 data vectors used in the simulation. The nine
components of the mixtures are depicted in the subimages
of Fig. 9; they look almost similar, revealing not much about
the structure of original source images.

Each of the nine images in Fig. 10 contains one component
of the whitened vectors . In this exper-
iment, we used the PCA whitening matrix (13), which was
computed using standard numerical software. These images
already show some structure, but are still far from the original
sources. For separation, we used the nonlinear PCA subspace
rule (17). The data vectors were used 20 times sequentially,
and the gain parameter decreased slowly from its initial
value 0.0005. The learning function was .
Fig. 11 shows the component images of the vectors

. These were obtained as responses to the data
vectors , inputted to the ICA network
after learning. The component images in Fig. 11 have been
rescaled so that their gray level range is the same as in the
original images in Fig. 8, and in some cases their sign has been
changed to opposite. The separation results are good, even
though some mixing is still visible especially in the subimages
corresponding to the natural scenes S1–S3 in Fig. 8.

It is obvious that some of the original source images
were not truly independent. However, experience shows that
it is in practice often possible to achieve adequate blind
separation results even though the sources are not statistically
independent. Furthermore, the images S1–S3 are not even
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Fig. 8. The nine source images used in the image separation experiment.

stationary. The separation results could probably be improved
by adding to the network of Fig. 3 another separation layer
where a different nonlinearity is used for introducing more
higher order statistics [11].

We also estimated the basis vectors of ICA using
the formula (22). Fig. 12 shows the evolution of the average
absolute error in the elements of the estimated mixing matrix

(basis vectors) during learning. After a clear initial decrease,
the error stabilizes to a roughly constant value. Furthermore,
we computed the angles between the true and estimated basis
vectors of ICA after learning. These angles were 0.0, 0.0,
0.8, 3.6, 4.8, 9.4, 15.3, 17.2, and 27.6. It is apparent that
the large angles correspond to the basis vectors of the natural
images S1–S3 which are not truly independent and for which
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Fig. 9. The component images of the data vectors. They are linear mixtures of the source images in Fig. 8.

the separation results in Fig. 11 are not perfect. The smallest
angles correspond to the artificial sources S7–S9; they are
roughly independent and separated almost perfectly.

This example clearly demonstrates the usefulness of nonlin-
earities in PCA-type learning algorithms. The definitely poorer
results in Fig. 10 show what standard PCA is typically able
to achieve in this application.

Speech Data:In all the simulations described above, the
sources were sub-Gaussian with a negative kurtosis. However,

we have applied especially the bigradient algorithm (18) to
super-Gaussian sources, too. In [53], an example similar to
Comon’s data is presented, where (18) successfully separates
three artificially constructed super-Gaussian sources.

Furthermore, we have managed to separate up to ten real
speech signals from their mixture using the bigradient algo-
rithm. The speech signals are typically super-Gaussian [4].
In this experiment, we recorded 10 s of speech from ten
different speakers. The sampling rate was 8 kHz, yielding
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Fig. 10. The component images after PCA whitening.

80 000 samples of each speech waveform. These waveforms
were preprocessed by normalizing their amplitudes. The input
vectors were generated from (3) by using a 1010 mixing
matrix whose elements were uniformly distributed random
numbers. The noise term was zero. Using the
nonlinearity and the parameters , the
bigradient algorithm (18) converged to an acceptable separa-
tion result with 10 000 training samples. This required about 5
min computing time on a SiliconGraphics INDY workstation

using MATLAB code. The bigradient algorithm converges in
general quickly provided that the learning parameters have
been chosen appropriately.

Finally, we emphasize that preprocessing the input data
by whitening them is essential for achieving good separation
results using nonlinear PCA-type learning algorithms. Without
whitening, the algorithms are able to separate sinusoidal
signals somehow [27], but usually not other type of sources.
The obvious reason is that without whitening, the algorithms
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Fig. 11. The component images after separation. The separating matrix was learned using the nonlinear PCA subspace rule.

still largely respond to the second-order statistics in spite of
using nonlinearities.

VII. CONCLUSION AND REMARKS

In this paper, we have introduced a class of neural networks
for performing ICA. After learning, the networks have a stan-
dard feedforward structure. The basic ICA network consists
of whitening, separation, and basis vector estimation layers. It
can be used for both source separation and estimation of the

basis vectors of ICA, which is useful for example in projection
pursuit. We have presented several alternative learning proce-
duces for each layer, and modified our previous nonlinear PCA
type learning algorithms so that their separation capabilities are
greatly improved. The proposed class of networks yields good
results in test examples.

Some new results continuing the work described in this
paper can be found in [21]–[23], [32], [33],and [51]. In [22]
and [23] computationally efficient, accurate fixed-point algo-
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Fig. 12. The average absolute error of the elements of the estimated mixing matrix in the image data example during learning. The horizontal axis shows
the number of epochs. During each epoch, the whole input data were used once in learning the separating matrix.

rithms have been introduced for estimating the independent
components or source signals one at a time. These algorithms
have been applied to large-scale practical problems in [21],
[32], and [51]. Fast converging least-squares type adaptive or
neural blind separation algorithms have been developed for a
nonlinear PCA criterion in [33].

In any of the three layers of the complete ICA network,
it is possible to use either a neural or a nonneural learning
method. In practice, it may be advisable to learn neurally only
the critical part, source separation, because efficient standard
numerical methods are available for whitening and estimation
of the basis vectors of ICA. On the other hand, simple truly
neural learning algorithms can be used in each layer if desired.

Another remark concerns the linear ICA model (3), which
is relatively simple. It would be of interest to extend the
results of this paper to more general models, where the data
are nonstationary, or the data model is nonlinear, or contains
time delays, to mention a few possibilities. For example time
delays should be included in the data model in practical speech
separation. Some attempts to extend blind source separation
and ICA into these directions have already been made for
example in [7], [14], [36], [44], and [50]. A more detailed
discussion and additional references can be found in the
tutorial review [31].
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