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A Class of Neural Networks for Independent
Component Analysis

Juha Karhunenyiember, IEEEErkki Oja, Senior Member, IEEH,iuyue Wang, Ricardo Vigrio, and Jyrki Joutsensalo

Abstract—independent component analysis (ICA) is a recently suitable nonlinearities must be used in the learning phase, even
developed, useful extension of standard principal component though the final input—output mapping is still linear. As will be
analysis (PCA). The ICA model is utilized mainly in blind — gean |ater on, ICA provides in many cases a more meaningful

separation of unknown source signals from their linear mixtures. . - .
In this application only the source signals which correspond to representation of the data than PCA. This can be utilized for

the coefficients of the ICA expansion are of interest. In this paper, €xample in linear projection pursuit techniques.
we propose neural structures related to multilayer feedforward More generally, a recent trend in neural-network research is

networks for performing complete ICA. The basic ICA network g study various forms of unsupervised learning beyond PCA.
consists of whitening, separation, and basis vector estimation Such techniques are often called “nonlinear PCA” methods

layers. It can be used for both blind source separation and . o .
estimation of the basis vectors of ICA. We consider learning [30]. The main reason for this interest is that even though

algorithms for each layer, and modify our previous nonlinear Standard PCA is optimal in approximating the input data in the
PCA type algorithms so that their separation capabilites are mean-square error sense, the representation that it provides is

greatly improved. The proposed class of networks yields good pften not the most meaningful in describing some fundamental
results in test examples with both artificial and real-world data. characteristics of the data. In PCA, the data are represented in
Index Terms—Blind source separation, independent component an orthonormal basis determined merely by the second-order
analysis, neural networks, principal component analysis, signal statistics (covariances) of the input data. Such a representation
processing, unsupervised learning. is adequate for Gaussian data. However, non-Gaussian data

contain a lot of additional information in its higher order

I. INTRODUCTION statistics. This should be somehow utilized if possible.

ANY meaningful information processing operations Various nonlinear PCA methods (including ICA) have the

M i@dvantage over standard PCA that they take into account

can be accomplished using simple neural networks; > e )
whose input—output mappings become linear after learning [ gher order statistics at least implicitly. In nonlinear PCA

Several unsupervised learning algorithms of such networks &RProaches, a closed-form solution is usually not possible,
neural realizations [10], [15], [18], [42] of the widely used"’h'c_h makes neural Iearnlr_lg algont_hms c_omputatmna!ly at-
statistical technique principal component analysis (PCA). PCfgctive [27], [28], [30]. While PCA is a fairly standardized

is defined by the eigenvectors of the covariance matrix of thgchnique, nonlinear or robust PCA type methods can be
input data. However, these networks are able to perform otifi§veloped from various starting points, usually leading to
tasks [3] such as singular value decomposition, decorrelatigiutually different solutions. In our previous papers [27],
and discriminant analysis, to mention a few. In this papd?8l: [30], [52], [53], we have derived several robust and
we introduce a class of neural networks for independeﬁ?”“”ear extensions of PCA starting either from maximization
component analysis (ICA). of the output variances or from minimization of the mean-

ICA is a useful extension of PCA that has been devefduare representation error. Some other authors have proposed

oped in context with blind separation of independent sourcBgural extensions of PCA by choosing optimization of some
from their linear mixtures [13], [19], [24]-[26]. Such blind information-theoretic criterion as their starting point; see [14],
techniques are needed for example in various applications[&8l, [48] for further information. Though generally different,
array processing, communications, medical signal processittgse approaches have relationships to ICA. In particular, we
and speech processing [32]. In a sense, the starting pdiRPW later on in this paper that some of our previous nonlinear
of ICA is the uncorrelatedness property of standard PCA! robust PCA algorithms can be applied to estimating ICA
Roughly speaking, rather than requiring that the coefficierf® certain conditions.

of a linear expansion of the data vectors be uncorrelated, inln this paper, we introduce neural networks that can be used
ICA they must be mutually independent (or as independent 8 both blind source separation and estimation of the basis
possible). This implies that higher order statistics are needégctors of ICA. The remainder of this paper is organized as

in determining the ICA expansion. It also implies that somi@llows. The next section presents in more detail the necessary
background on ICA and source separation. In Section I, we
Manuscript received November 18, 1995; revised July 12, 1996 amdatroduce and justify the basic ICA network model and its
December 29, 1996. o variants. Section IV deals with learning algorithms for each
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of a nonlinear PCA-type learning algorithm. In Section IVa constantZ x M “mixing matrix” whose columnsa(¢) are

we present experimental results for both artificial data arlde basis vectors of ICA, and;, denotes possible corrupting
real image and speech data. The last section contains #uelitive noise. The noise termy, is often omitted from (3),
conclusions of this study, and outlines some possibilities foecause it is usually impossible to distinguish noise from the

extending the basic linear data model. source signals.
We shall consider in more detail the following two related
Il. | NDEPENDENT COMPONENT ANALYSIS problems. In the first problem, source separation, the task is
AND BLIND SOURCE SEPARATION merely to find the waveformgs (i)} of the sources, knowing
only the data vectors;, and the numbe#/ of the sources. The
A. The Data Model second problem is to estimate the complete ICA expansion,

) i including also the basis vectosgs)(s = 1,---, M) of ICA.
In the following, we present the basic data model usedthe assumptions typically made in ICA and source separa-

in defining both 1CA [13], [26] and the source separatioflon on the model (3) can be listed more precisely as follows
problem [26], [35] for linear memoryless channels, and discu 35].

the necessary assumptions. A precise mathematical discussioj
of ICA is given in Comon’s recent fundamental paper [13].
It also contains many references and a numerical batch-type
algorithm for estimating the ICA expansion.

Assume that there exisfi/ zero mean source signals
sp(D),- -+, s, (M), k = 1,2,---, that are scalar-valued and
mutually statistically independent for each sample value
The independence condition is formally defined so that the
joint probability density of the source signals must be the
product of the marginal densities of the individual sources

A is a constant matrix with full column rank. Thus

the number of sourced/ is at most equal td., the

dimension of the data vectoxs,. Usually M is assumed

to be known in advance. B/ < L and there is no noise,

the data vectors; lie in the A/-dimensional subspace

spanned by the basis vectors of ICA.

2) The source signals (coefficients)(:)(i = 1,---, M)
must be mutually statistically independent at each sam-
ple valuek, or in practice as independent as possible.
The degree of independence can be measured using

M suitable contrast functions [13].
p[Sk(l),---,Sk(M)]IHpi[Sk(i)]- 1) 3) Each source signak(i) is a stationary zero-mean
i=1 stochastic process. Only one of the source sigsg$)

More concretely, the source signals could be sampled speech i allowed to have a Gaussian marginal distribution. This

waveforms; for different speakers the sources are then at restriction essentially follows from the fact that linear

least approximately independent. In this case, the index combinations of Gaussian source signals are Gauss-
represents discrete time. In another example, the source signals 1@n- Thus it is impossible to separate several Gaussian
are two-dimensional discrete images. Here, the indiexthe sources from each other.

sourcesy (i) stands for each of the images, while the two- Note that very little prior information is assumed on the
dimensional index: denotes the pixels. A concrete exampléatrix A. Therefore, the strong independence assumptions are
of image sources is given in context with experimental resulgquired in determining the ICA expansion (3). Even then, only
in Section VI. the directions of the ICA basis vectaa$i),: = 1,---, M, are

We assume that the original sources are unobservalslefined, because their magnitudes and the amplitudes of the
and all that we have are a set of noisy linear mixturegource signals; (i) can be interchanged in the model (3). To
(1), -, z5(L), with get a more unigue expansion (3), one can normalize the basis
vectorsa(i) to unit length and arrange the terms according

M . .
o P . to the powers Es;(i)?} of the rescaled source signals in a
w(f) = z_; sw(@)alij) +ni(j) @) Similar way as in standard PCA.
The coefficientsi(z5) are unknown; however, we assume that
the mixtures are all different. Such mixtures arise in several I .
practical situations like speech separation or antenna ar leA’ PCA, and Projection Pursuit
processing. At this point, it is useful to compare ICA to standard PCA.
Denote now by x; = [zx(1),--,zx(L)]¥ the L- In PCA, the data model has the same form (3), but instead

dimensionalkth data vector made up of the mixtures (2pf independence the coefficientz(i) are required to have
at discrete time (or pointk. By (2), we can write the ICA sequentially maximal variances (poweiS) s (i)?}, and the
signal model in vector form as follows: basis vectora(z) are constrained to be mutually orthonormal.

u Usually the basis vectora(¢) of ICA are not mutually

N orthogonal. A simple example illustrating the differences of
Xp, = Asp+ 1y, = Z sk(D)a(?) + ng. 3) ICA a%d PCAis gi\?en in Fig.pl. The datag\]/ectors are assumed

=t to be uniformly distributed inside the parallelogram. The solid

Heresy, = [si(1),- -+, sx(M)]* is the source vector consistinglines show the two basis vectors of ICA, and the dashed
of the M source signals (independent componerig))(: = lines the respective orthogonal basis vectors of PCA. Clearly,

1,---,M) at the index valuek. A = [a(l),---,a(M)] is the basis vectors of ICA characterize better the data. Other
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L5 : , , ; : ! In the next sections it will become clear that in [17], the

: : : : basis vectors of ICA have actually been estimated without an
explicit mention. The good results achieved in [17] compared
to some other neural projection pursuit algorithms justify the
usefulness of ICA in this application.

0.5

C. Blind Source Separation

During the last years, techniques called blind source (or
signal) separation have been studied especially in signal pro-
--4  cessing. In blind source separation, one tries to extract the
waveforms {s;(¢)},k = 1,---, of the independent source
signals in (3) from the data vectoss,. Here the unknown
ICA basis vectorsa(¢) are usually not of much interest. Such

: 5 5 5 : : blind techniques are useful for example in array processing,
a5 0 w05 o 05 1 15 > speech enhancement, and communications. If the structure of
Fig. 1. The theoretical basis vectors of ICA (solid lines) and PCA (dashége matrixA were known from th(.e PrOblem statement exc'.Ud_
lines). In this example, the data vectors are uniformly distributed inside tHdd SOme parameters, more efficient subspace or maximum
parallelogram. likelihood type methods [49] are available for estimating the

unknown parameters. Both batch type and data-adaptive source
examples on comparing PCA with ICA are given in [25] anaepgrat_ion _algqrithms ha_ve been_ suggested. With a neural
[26]. reallgatlon in mind, a_daptlve_ glgorlthms that are as S|mple as

Bpssmle but yet provide sufficient performance are of primary

I

On the other hand, the basis vectors of ICA are consiéﬁterest 0 US
erably more difficult to estimate, and their use in technic o :
representation or approximation of the data is not as hand n acti_aptlve ts_())];rce se;()jartat(;on [tgg t[%%f [35],t i x L
as in PCA because of the nonorthogonal basis. Assume peParating matrixs;. 1S updated so tha -vector
a while that the basis matribA in (3) would be known yi = Bixy, (5)
The standard least-squares solution minimizing the squared

modeling errorfjn, || is thens; = (ATA)~'A%x,, yielding  pecomes an estimatg, = ; of the original independent

the least-squares approximation source signals. Under the assumptions 1-3) made before, the
%1 = A(ATA)TATx,, 4) estimate §;(¢) qf the ith source signal may appear in any

componenty;(j) of yx. It is also impossible to determine

of x;. The projection formula (4) holds for any subspacthe amplitudes of the source signalg(i) from the model

defined by the columns cA. For PCA,ATA = I,;, where (3) without additional assumptions. Instead of normalizing the

I,; denotesM x M unit matrix, leading to the simpler basis vectora(z), in source separation it is often assumed [9],

expressionk;, = AATx;. [35] that each source signa).(¢) has unit variance.

The basis vectors of ICA should be especially useful in lin- In several blind separation algorithms, the data vectors
ear projection pursuit and in extracting characteristic features are first preprocessed by whitening (sphering) them, so
from natural data [5], [6], [21], [32]. In projection pursuit [16],that their covariance matrix becomes the unit matrix. Various
[20], one tries to describe the structure of high-dimensionahitening methods are discussed in more detail later on. After
data by projecting them onto a low-dimensional subspace am@whitening, the separating matrB; in (5) can be taken
looking for the structure of the projection. In practice, whenrthogonalB;Bi = I,,. This auxiliary constraint which pre-
the data are projected onto a given direction (one-dimensiosatves the whiteness property makes the subsequent separating
subspace), the distribution of the projected data is in madgorithms simpler, and also normalizes the variances of the
cases almost Gaussian. Therefore such directions which gastimated source$,(¢) automatically to unity.
as non-Gaussian projections as possible are often considere8l practical difficulty in designing source separation and
to be the most interesting ones, describing well the properti€3A algorithms is reliable verification of the independence
of high-dimensional data. Various indices have been designazhdition (1). It is impossible to do this directly or measure
for measuring the deviation of a distribution from the Gaussidhe degree of independence using mutual information because
one. The index used in ICA, maximal independence of thke involved probability densities are unknown. Therefore,
data projected onto a direction, describes well the fundameraplproximating contrast functions which are maximized by
characteristics of the data. Projections of the data onto the IGAparating matrices have been introduced in [13]. Even these
basis vectors are typically non-Gaussian. contrast functions require fairly intensive batch type com-

To our knowledge, the use of ICA in projection pursuit hagutations using the estimated higher order statistics of the
not yet been explicitly considered. However, recently Fyfdata, or lead to complicated adaptive separation algorithms.
and Baddeley [17] have applied a nonlinear (robust) PCRortunately, it is often sufficient to use the simple higher order
algorithm suggested and derived by us earlier in [27], [4F}atistics called kurtosis, which is a fourth-order cumulant
to finding projection pursuit directions from prewhitened datavith zero time lags. For theth source signals(i), the



KARHUNEN et al: NEURAL NETWORKS FOR INDEPENDENT COMPONENT ANALYSIS 489

(unnormalized) kurtosis is defined by However, in practical situations it is very difficult to assess
e " 2112 the results quantitatively, because the true source signals and
cum[s(z)"] = E{s(¢)*} — 3[E{s(4)"}]". (6)  basis vectors of ICA are unknown.

Generally, it is impossible to separate the possible noise

If s(i) is Gaussian, its kurtosisim[s()*] = 0. Source signals . ; . .
that have a negative kurtosis are often called sub-Gaussiarfne Input data from the source signals [31]. In practice,

ones. Typically, their probability distribution is “flatter” than/0!S€ smears th? re§ults n all the separation glgorlthms. I
Gaussian, for example bimodal [17]. Sources with a positi\ge amount of noise is considerable, the separation results are

kurtosis (super-Gaussian sources) have usually a distribut hen_ fairly poor. There is not ye_t any good solution _available
é?gth's problem. Some of the noise can usually be filtered out

using standard PCA if the number of mixtures is larger than
he number of sources.

which has longer tails and a sharper peak than stand
Gaussian distribution [4], [17].

The division of sources into sub-Gaussian and supé
Gaussian ones is important, because the separation capability

of many algorithms crucially depends on this property. In ll. THE NETWORK MODEL
particular, for prewhitened input vectors it can be shown [37]
that the relatively simple contrast function A. The ICA Network Structures

M M Consider now neural estimation of the complete ICA ex-
Ji(y) = Z leum[y(i)*]] = Z |E{y(i)*} — 3[E{y(4)?}]?]  pansion (3). Let us denote the estimated expansion by
=1 =1

(7) Xy, = Qyy, + 0y 9)
is maximized by a separating mati in the model (5), if the

sign of the kurtosis (6) is the same for all the source signdli€re: the L x M matrix Q denotes the estimate of the

sp(i),i = 1,---,M. For prewhitened input vectors and ICA basis matrix A,y is the estimate of the source (or

orthogonal separating matrices, the output poweg(&2} = independent component)_vects;;, and nj, i_s the noise or
1, implying that cunfiy(¢)4] = E{y(i)*} — 3. Thus the criterion 0" term. The first task is always separation of the sources,
(7') is maximized if the sum of the fourth moments or estimation of the vectay;. As discussed before, this can be

done by learning the separating matixin (5) using some
M 4 suitable algorithm. After this, the components of the vector
J2(¥) :ZE{?J('L) } (8) y. should be as independent as possible. For learning the
=1 matrix Q, we then simply minimize the mean-square error
is minimized for sources that have a negative kurtosisd E{||n}||?} = E{||xx — Qy,||?} with respect toQ.
maximized for sources with positive kurtosi/e use the  This estimation procedure can be realized using the two-
criterion (8) in this paper, because it is simple enough, atyer feedforward network shown in Fig. 2. Teinputs of
can be applied in a straightforward way to our nonlinear PCiye network are the components of the vectoot counted
type neural learning algorithms. as a layer). In the hidden layer there dwe neurons, and the
Instead of optimizing some contrast function, one can usgtput layer consists again df neurons. LetR denote for
other type of neural algorithms for achieving separation. Moslarity the A/ x L weight matrix between the inputs and the
of them have been introduced quite recently. We refer fidden layer, andy, respectively, thel x A weight matrix
the tutorial paper [31], where various neural approaches dretween the hidden and output layers. Based on above, the ICA
reviewed. Roughly speaking, neural blind source separatiexpansion (3) can be estimated using the network of Fig. 2 in
algorithms are often some modifications of the seminal Hgwo subsequent stages as follows.
ault-Jutten (HJ) algorithm [26], [10]. This heuristic algorithm 1. Learn anM x L weight matrixR = B for which the
is attractive because it is simple and can be realized locally, but components of = Rx are as independent as possible.
it may fail in separating more than two independent sources.2. Learn anL x M weight matrix@ which minimizes the
A few new neural separating algorithms [1], [4], [14] have MSE error E||x — Qy/|*}.

been derived from information theoretic concepts. Also someprewhitening is used, the first stage is further divided into
adaptive blind separation algorithms proposed in the field gfq subsequent parts. First, the data (input) vectorsare

signal processing, such as the equivalent adaptive separafigfikened by applying the transformation
via independence (EASI) (or PFS) algorithm [9], [35], can be

interpreted as learning algorithms of a neural network. Vi = VXy (10)
The performance of a separation algorithm can be studied ) )

in test simulations where the mixing matrik is known to Wnerevx denotes théth whitened vector, an¥ is anM x L

the user (but not to the learning algorithms) by inspectin

the separation results visually. A more quantitative way

to use some performance measure. In [1] the authors defif¥!

a performance index which measures the difference of the vi = Wlvp. (11)

matrix BA from a permutation matrix. If the basis vectors

of ICA are estimated, too, one can for example compute thiere W denotes for clarity the orthonormaW* w = I,,)

angles between the true and respective estimated basis vectfs A1 separating matrix that the network should learn. Fig. 3

hitening matrix. If L > M, V simultaneously reduces the
mension of the data vectors froi to A4. After this, the
rces (independent components) are separated
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ReB Q the last ICA basis vector estimation layer is not needed in
these networks.

/09 Before proceeding, we point out that Burel and Rondel have
independently proposed a network similar to that in Fig. 2
for blind source separation in [8]. However, their network
is intended for array processing applications, and the mixing

matrix A as well as the separating matiixhave a constrained
parametric form.

y \O» B. Connection to Linear Autoassociative Network

In this subsection, we try to further clarify the basic ideas
Fig. 2. The linear feedforward network structure. When used as an ICA ”Btiehind the introduced ICA networks by studying their connec-
work, the outputs of the hidden layer are required to be mutually independent. . . . .
tions to the linear autoassociative network [2] which realizes
standard PCA.

Consider encoding and decoding of the data veckotyy
using the network of Fig. 2 in autoassociate mode. Here, we
first only assume tha@ andR are L x A andM x L constant
matrices, respectively. B/ < L, data compression takes place
in the hidden layer, and the outpkit= QRx of the network
is generally an approximation of the input vectar Assume
that the autoassociative network is trained by minimizing the
mean-square approximation (representation) eff6f), R) =
E{|lx — QRx|?*} using for example the backpropagation
algorithm. It is well known [2] that the optimal solution is

_ _ __given by any matrix of the fornrR = (Q7Q)~*Q*, where
Fig. 3. The proposed ICA network. The network consists of whitenin

separation, and basis vector estimation layers. The respective weight matﬂga% COI_umnS ofQ span theM-dlmenspnal F_)CA subspace
areV, W and Q. of the input vectorsx. This subspace is defined by thd

principal eigenvectors of the data covariance matr{x&’}

h th ing th | ICA network struct h &)assuming thak has zero mean). It should be noted that the
f]OSVWfS{ _eBeniu;r;?TVree— ayer network structure, Wh€lfojection operatorQR = Q(QTQ)*QY onto the PCA

. subspace is unique, even though the column&afonstitute
lr.] the ICA networks of F|g§. 2 anq 3, the number of SOUCtHme arbitrary linearly independent basis of the PCA subspace.
M is often equal toL, the dimension of the input vectors.

In thi q . K I i the hid Assume now that the noise temn, in (3) is standard zero-
n this case, no data compression takes place in the hidqgR, \hite noise with covariance matri¥dgn} } = 021,
layer, but the independence constraint anyway provides

. _ Hereo? is the common variance of the components of the

ICA solutlon._ As usual, feedback connections (not_ showQ/ ctorny, and thatny, is uncorrelated with the sources(s).
are needed in the learning phase, k_)Ut after '9"’“”'”9 th?j;ﬁder these assumptions, it is easy to show (see, for example,
networks become_ purely feedforwar(_j if the data is statlonarytg]) that the covariance matrix of the data vectors (3) is
Even though the input—output mappings of the proposed ICA
networks are linear after learning due to the linear data model T M N2V s T o
(3), nonlinearities must be used in learning the separating E{xix} | = ZE{Sk('L) ta(ia(i)" + oI (12)
matrix B or W% They introduce higher order statistics into =1
computations, which is necessary in achieving independenseom the structure of the data covariance matrix (12) one
Second-order statistics, which are used in standard PCA, eaim deduce that the basis vectet&),i = 1,---,M, of
provide decorrelation only. ICA theoretically lie in its M-dimensional PCA subspace

The network of Fig. 3 is used in context with our robust gj49]. Usually the basis vectors of ICA are some (unknown)
nonlinear PCA learning algorithms, which require whitening dinear combinations of thel/ first PCA eigenvectors, and
the input data for yielding good separation results. Each of thize versa. The PCA and ICA basis vectors coincide only
three layers performs one of the processing tasks required ifothe basis vectorsa(1),---,a(M) of ICA happen to be
complete ICA: 1) whitening; 2) separation; and 3) estimatiomutually orthonormal, and the variances of the sourggs)
of the basis vectors of ICA. Any of these three tasks can lee different. In this very specific case, PCA alone can provide
done either neurally or conventionally. Various possibilities aseparation.
discussed in the next section. In some separating algorithms$n the ICA networks, we utilize the extra freedom in
the separating matrilB = R tries to perform the tasks of choosing the matrix (andR). This is done by forcing the
whitening, reducing the dimension, and separating the sourcegtwork to converge to such a minimizing solution where
simultaneously. One can then use the simpler original netwdhie columns ofQ not only lie in the PCA subspace, but
of Fig. 2, but on the other hand the learning algorithms tend &dso coincide with the directions of the desired basis vectors
be more complicated. If the task is merely source separatiait]),---,a(M) of ICA. Note that if Q = A, x = QRx =
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A(ATA)"tATx, which is exactly the ICA approximation 2. If the signal-to-noise ratio is good enough, the largest
formula (4). Naturally, the estimated basis vectors need Hsignal’ eigenvalues are clearly larger than the remaining
appear inQ in the same order as the true onesAinand their “noise” eigenvalues. From this, one can deduce the number
norms can be different. M of the sources.

Clearly, ICA solution can be obtained by imposing the Instead of using standard numerical software, one can esti-
following additional constraintthe components of the outputmate the principal eigenvectors adaptively. For this purpose,
vectory = Rx of the hidden layer in the network of Figs. 2many well-established neural learning algorithms based on the
or 3 must be mutually independent (or as independent sigle-unit PCA rule [38] are available [3], [10], [15], [18],
possible) This is the central idea of our ICA networks. Ofterf42]. Assuming that theth weight vectorw; (i) of a PCA
M = L, in which case no data compression takes plaaeetwork at steg is a roughly normalized estimate of:), the
Furthermore, if the networks of Figs. 2 and 3 are used foespective eigenvalug(:) can be adaptively estimated using
blind separation only, minimization of the mean-square errtite simple algorithm [40]

is not needed in any phase. In any case, we need not explicitl o ) o 12
use the structurERy:p (QTQ)—leT in the proposed IC?A Y M (1) = (1= i) () + pur [, Wi (3)] (14)
networks. wherep;, > 0 is usually a small constant. Recently, Plumbley
[45], [46] has introduced neural algorithms that simultane-
IV. LEARNING ously whiten the input data and compress them into the
PCA subspace. In [46], these approaches are related to the
A. Whitening maximization of mutual information in a linear network.
A simple algorithm for learning the whitening matri¥;

Prior to inputting the data vectoss, to the ICA networks, .
. : neurally is
they are made zero mean by subtracting the mean, if neces-
sary. This normalizes the data with respect to the first-order Viqt1 = Vi — pig [vkvf - I]Vk. (15)

statistics. Furthermore, the effects of second-order statistics, . . . . .
to the nonlinearities can be removed by whitening the daé Is stochastic approximation algorithm has been indepen-

using the transformation (10). The components of the whiten antly proposed in [:_35] and [.47]’ and it is used as a part of the
vectorsv, must be mutually uncorrelated and normalized iﬁASI (PFS) separa_tlon algorithm [9)], [35]. In (15%;? can be
such a way that they have unit variance. This is equivalefﬁri'M x L matrix with M <_L' Howev_er, t_he algorithm (15).

to requiring that the covariance matrix{f, v} } is the unit does_ not hav.e any optimality properties in data compression,
matrix I,;. Uncorrelatedness is a necessary prerequisite d. .'t sometimes S uffers from stability problems. It can be
the stronger independence condition; so after prewhiteningt! ét'f'ed bY observmg_ that after cpnverger;ce the vectqrs
separation task becomes usually somewhat easier. There i&“ld satisfy the whiteness conditiof v, } = L.

(infinitely) many ways to decorrelate and subsequently whitenGen_erally speaking,  separation  algorithms using
the input data (provided that > M). Let us briefly discuss prewhitened data converge faster and have often better
some relevant possibilities - stability properties. On the other hand, whitening can make

Standard PCA is often used for whitening, because one C%‘%oaration of sources more difficult or even impossible if the

then simultaneously compress information optimally in th"XINg nllatrle IS :J:I-conhdltlonhed orglf SgTe of the sources
mean-square error sense and filter possible Gaussian ndflg. Weak compared to the others [9], [31].

The PCA whitening matrix is given by B S tina Algorith
. Separating Algorithms

— —1/2xT
vV =D"'/?E". (13) The core part and most difficult task in ICA is learning

of the separating matrisB; in (5). Recall thatB; can be
sought either directly, or using prewhitening in the form
&k = WiVy, whereWy is the orthogonalM x M separating
matrix applied to the whitened vectosg,. During the last
pygars, many neural blind separation algorithms have been
is a preferable way in practice #/ is not small and high p_roposed. For a brief review,. see [31.]' In the following, we
discuss and propose separation algorithms which are suitable

accuracy is required. . T :
A further advantage of PCA whitening is that standarﬁ)r learning the matrbW;, or By, in PCA-type networks.

PCA provides a convenient means for estimating the numbenJn [41], one of the authors proposed two nonlinear exten-

M of the sources or independent components. This can Hans of his PCA subspace learning rule which can be applied

done by estimating all the eigenvalues of the covariani% learning the orthogonal separating math;. Consider

matrix E{x;x} }. From the theoretical expression (12) of th Irst so-calledrobust PCA subspace rule

covariance matrix it is easy to see [49] that thé largest Wit = Wi + px[vi — kak]g(y{)
eigenvaluesi(1), -, \(M) of E{x;x}} are some linear -W I—W.W7¥ Tw 16
combinations of the source signal power§sfi)?} added il Wi Jvig(vie Wi). - (16)
to the noise power?. The remainingL — M eigenvalues Here and later og(y) denotes a vector whostéh component
correspond to noise only, and are all theoretically equal t® g(y(¢)), where ¢(¢) is a nonlinear function. In all these

Here theM x M diagonal matrixD = diag[A(1),---, A(M)],
and theL x M matrix E = [c(1),---, c(M)], with A(¢) de-
noting theith largest eigenvalue of the data covariance matr
E{xxx}}, and c(i) the respectiveith principal eigenvector.
PCA whitening is easy to do using standard software. T
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algorithms, the functiony(¢) is usually chosen to be odd forof multiplying the gradientv,g(yi) as in (16). This has
stability and separation reasons. The learning parametés two distinct advantages. First, iW is an approximately
usually positive, and slowly tends to zero or is a small constaotthonormal squarel x A matrix, this does not nullify

In [27], we have shown that (16) is a stochastic grahe effect of gradient learning. Second, (18) can be used
dient algorithm which tries to maximize the criteriondirectly for the respective minimization problem, because
> 1L, B{f[y(j)]} under the constraint th&¥ is orthonormal. the algorithm is stable also whem is negative. Thus the
The functiong(¢) in (16) is related to the criterion function bigradient algorithm (18) is a better choice than the robust
f(t) so that it is the derivativedf(t)/dt of f(¢t). Thus PCA subspace rule in separation. Its disadvantage is that two
by choosing f(t) = t*/4 with g(t) = 3, (16) could be gain parameters are needed. The algorithm (18) is derived and
used for maximization of the sum of the fourth momentdiscussed in more detail in [52] and [53].
(8), leading to separation of super-Gaussian sources. Irin all the above algorithms, the gradientg(y? ) is essen-
principle, the robust PCA subspace rule could be applied tially responsible for learning the separating matrix. It can be
the respective minimization problem by using the negativeterpreted as a nonlinear Hebbian learning term. The other
stochastic gradient withy;, < 0, but the algorithm is terms appearing in the algorithms (16)—(18) have the role of
then not stable. However, the sum of fourth momengabilizing and normalizing the matri¥v.
can be approximately minimized by using the nonlinearity Cardoso and Laheld recently introduced so-cal#d&I (or
g(t) = tanh(¢) in (16) with p; > 0. This follows from the PFS) algorithm[9], [35], where the total separating matrix is
Taylor series expansiotanh(t) = ¢ — t3/3 + 2¢°/15 — ..., computed from the formula
where the cubic nonlinearity is dominating if the data are
prewhitened [17]. This can be seen by noting that in thﬁ
Taylor series expansion of the respective criterion function

. vivi -1 gyn)yi — vrg(yi)
L4+ myrye 1+ eyt g(yr)

k+1=Br —p

f(t) = Incosh(t) = t?/2 — t*/12 4+ #5/45 — ..., the (19)
second-order term?/2 is on an average constant due tohe scalar terms in the denominator are needed to stabilize the
the whitening. learning rule (19) in practice, if the nonlinearig(t) grows

In our simulations, the robust PCA subspace rule (1€aster than linearly. Otherwise, they can usually be omitted
often worked satisfactorily for two sub-Gaussian sources usipgbvided thaty;, is not too large. A similar stabilization can
g(t) = tanh(¢) andyu;, > 0, but usually not in the case of threepe applied to the other separation algorithms described in this
sources. The reason is that the algorithm is originally intendgdbsection if necessary. In [9] and [35], the EASI algorithm
for seeking a subspace, or fbix M matricesW with M < L. (19) is actually derived by first whitening the data vectors; this
If W is a squarel] x M matrix, it tends to unit matrix, and the yjelds the “linear” whitening pafykyf —Tin (19). After this,
orthonormalizing term in the square brackets in (16) becomggparation is achieved by minimizing\2, E{y(i)*}. After
almost zero before the algorithm learns a separating matrixaeayy approximations, this yields the nonlinear separating

This problem can be circumvented at least in two wayggrt g(vi)yF — yiglyl), where g(t) = 3. These parts
Instead of (16), we can use the nonlinear PCA subspace rgl@ combined in (19) in an elegant way. In practice, other
introduced by one of the authors in [41]; see also [27] and [3f@bnlinearities than jusy(t) = ¢* are often able to learn a

T separating matrix in (19).

Wit = Wit pulvi - Waiglynlg(vi). (A7) The learning rule (19) is introduced in [9] and [35] as an
The update formula (17) differs slightly from (16), but thé&daptive source separation algorit.hm \{vithout any rgference to
nonlinearity inside the square brackets enables in practice ral netyvorks_ However, espeuglly in |ts_unstab|llzed form
application of this algorithm also to square weight matricdd®) can directly be used as a learning algorithm of a PCA type
W .. The columns ofW;, are now not exactly orthonormal. Network. For introducing even more _hlghgr order St.atIStICS, we
We can anyway justify that the nonlinear PCA subspace rdf@n use another odd nonlinear functiet) in (19). This leads
(17) converges to a separating matW,. This analysis is [© @ kind of generalized EASI (or PFS) algorithm
presented in the next section. Otherwise, the same remarks on
minimization and maximization of the sum of fourth momenf?’“rl =By [yryi —Te(y)h(yi)-hlye(vi) B
as for the robust PCA subspace rule hold for (17), too. (20)

We have recently developed another so-calégradient which i.s .sta.bilize.d in a similar way as (.19) i necessary. A
algorithm [52], [53], which is applied for learning the or- heuristic justification to the algorithm (20) is that it should after

; . convergence satisfy on an average the conditiofys. i } =
thonormal separating matri¥v as follows: I (whiteness) and &(yi)h(yT)} = E{h(yx)e(y?)} (a kind
Wil = Wi + ukag(y;‘C) + 7, W, (I - W;;FWk) (18) of independence condition).
The mutual performance of the separation algorithms dis-
Here -, is another gain parameter, usually about 0.5 or om@issed above depends on a number of factors such as the
in practice. The bigradient algorithm is again a stochastimixing matrix, source signals, chosen parameters, and non-
gradient algorithm for maximizing or minimizing the criterionlinearities. In our experiments, the bigradient algorithm often
Ej‘il E{f[y(4)]} under the constraint that the weight matrixconverged faster than the nonlinear PCA subspace rule, but it
W must be orthonormal. However, the orthonormalizatioseems to be more sensitive to the choice of gain parameters.
constraint is realized in (18) in an additive way insteadn advantage of the nonlinear PCA subspace rule is that it
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can be realized fairly easily using hardware, for example by Assuming that the matriB;, has converged to a separating
modifying slightly the implementation presented in [34] fosolutionB, the basis vectors of ICA can be estimated by using
the standard PCA subspace rule. The EASI learning algorithihe theory of pseudoinverses A, is solved directly from (5),
(and its generalization) usually perform rather similarly thaim the general cas®é > M there exist infinitely many possible
the other learning rules, but it can separate the sources egetutions. They all can be represented in the form
though the mixing matrix is ill-conditioned provided that there
is no noise [9)], [31]. x, =BT (BBY) 'y, + [I-BY(BBY)"'Blz  (21)

A practical, ever-present problem with the above type of
simple stochastic algorithms is the choice of the learningherez is an arbitrary vector having the same dimension
parameter(s). Some hints on how to do this are given #¥x,. Clearly, thez part of the general solution (21) is not
[27]. Generally, the learning parameters should be the smaligferesting, because it does not depend on the estimated source
the larger is the relative magnitude of the update term. Fgéctory,,, and represents the portion of possible solutions that
nonlinearities growing faster than linearly, special measurgs in the subspace orthogonal to the rowsBfSettingz = 0
like the denominator terms in (19) are often needed to ensiie(21) yields the remaining meaningful part, which is the

the Stablllty of the algorithm. For the robust PCA SUbSpaQﬁ]ique minimum-norm (pseudoinverse) solution
rule (16), the first author has derived a bound ensuring the

stability of the algorithm in [29]. This can be applied as a . M
good approximation to the nonlinear PCA subspace rule (17), %» = Ay, = BT(BBY) 'y, = Z§k(j)é(j)- (22)
too. Quite recently, we have introduced in [33] adaptive least- j=1
squares type algorithms for minimizing the same criterion .
function from which the nonlinear PCA subspace rule (17) hitere a(j) denotes thejth column of the L x M matrix
been derived in [27]. These algorithms are somewhat mofe= B*(BB*)~*. Comparing this with the ICA expansion
complicated than the simple stochastic gradient algorithri®, We see that the vectoéj) are the desired estimates of
discussed above. Their great advantage is that the learniig basis vectors of ICA. They can be normalized and ordered
parameter is determined automatically from the input data gsitably.
that it is roughly optimal, resulting in a fast convergence [33]. If PCA whitening (13) is used, the estimated ICA basis
Another problem that is often encountered in practice is thaatrix A = BY(BB*)~* can be simplified to the form
the input data are not stationary. Either the source signals may R
be nonstationary or the mixing matrix changes with time or A =ED'?*W. (23)
both. We have made some simulations on this situation, too,
showing that the presented algorithms are able to track at lehBtS the unnormalizedth basis vector of ICA isa(i) =
slow changes in the data provided that the learning parametB®'/*w(i), where w(i) is the ith column of W, and its
are chosen suitably. More detailed results on this case will Bguared norm becomef(i)||* = w(i)' Dw(i). Due to the
presented elsewhere. diagonality of the eigenvalue matrifo, these expressions
Finally, we emphasize thainy suitable algorithm can be are somewhat easier to compute than (22), but still require
used for learning the separating matW&} in the network of square rooting and knowledge of the principal eigenvalues and
Fig. 3 or the matrixB;, in the network of Fig. 2. The above-vectors of the covariance matrix of the input data.
algorithms have been proposed and discussed because théy completely neural algorithm for estimating the basis
can be regarded neural, are applicable in PCA type networkectors of ICA which does not require any inversion of
and are among the simplest available to our knowledge. Alatrices or square rooting can be developed as follows. Recall
these algorithms require that the original source signals hdvem Section Il that the columns of the weight matr}
a kurtosis with the same sign: sgn(cls)*]) = +1 or —1 become estimates of the basis vectors of ICA, if the mean-
fori =1,--., M. This condition can be mildened in the EASIsquare error H|x — Qy||?} is minimized under the constraint
algorithm somewhat so that the sum of kurtosises for any p#iat the components of the vectgrare statistically mutually
of two sources must have the same sign [9]. This means tiradependent. Assume now that as a result of the whitening and
the kurtosis of one source may have an opposite sign if geparation stages, the matiy, has converged to a separating
absolute value is the smallest. The same condition seemsstdution B, and the components of are as independent as
hold for the other discussed algorithms in practice. possible. Then it suffices to search for the maxwhich
The condition on the signs of the kurtosis has been recentiynimizes the mean-square error.
removed in one-unit learning algorithms [22], [23] that are able Omitting the expectation, the gradient jp — Qy||* with
to find one source signal at a time, and have computationatlspect taQ is —2(x—Qy)y?', which in a standard way yields
efficient fixed-point variants. the stochastic gradient algorithm

C. Estimation of the Basis Vectors of ICA Qurt = Qu + i(xn — Quy)y: (24)

The task of the last layer in the networks of Fig. 3 or Fig. 2
is to estimate the basis vectet&),i = 1,---, M, of ICA. We (11, > 0) for learning the matrixQ. Here the coefficient 2 has
first present the standard nonneural solution to this probldmen absorbed in the learning parametgrfor convenience.
and then a neural learning algorithm for the weight ma®ix This algorithm can be used for estimating the basis vectors
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of ICA in context with any suitable separation algorithm. To make the analysis easier, we multiply both sides of the
Naturally, the matrix@Q could be learned by minimizing thelearning rule (17) byH?”. We obtain [43]
MSE error using more complicated but faster convergi
algorithms. In large dimensional problems or in cases Whgfgwk“ = H'Wi + i [H'vi - H' Wig (Wi vi )]
the directions of the some of the basis vectors of ICA are close X g(Vker)
Eo e)ach(oth)efr, it mr?y be bettf?r to use the nonneural formulas =H"W;, + [HTVk - HTWkg(W}CHHTvk)]
22) or (23) for achieving sufficient accuracy. TrroyT

Finally, consider estimation of the basis vectors of ICA % g(v’“ HH W’“) (25)
in the specific situation where the data are already whitghere we have used the fact tHH? = I. Denoting for the
E{vivi} = Iy. ThenB = W7, which yieldsSA = W momentS, = H'W), and using the definitiom;, = HZv;,
due to the orthonormality oW. Thus the basis vectors ofgiven above, we have
ICA are directly the columns of the separating mat for
whitened data. This explains the good exploratory projection Sk+1 = Sk + jk [w. — Sig (S ) g (ufSk). (26)

purs_ui_t resul_ts achieved i_n [17]. The authors first take whitengdl,;g equation has exactly the same form as the original one.
multidimensional Gaussian data, then make the data N@flagmetrically the transformation by the orthogonal makix
Gaussian in some direction, and finally estimate this d|rect|gri],np|y means a rotation to a new set of coordinates such that
using the robust PCA subspace rule (16)._From the ab% elements of the input vector expressed in these coordinates
discussion, we can conclude that the found direction is nothigg, statistically independent. %, tends to a scaled version of
but a basis vector of ICA. In these experiments, the Projectigy nit matrix, then in the original nonlinear PCA subspace

of the data onto this direction is furthest from the Gaussig()|e (17)W,, = HS; tends to a similarly scaled version of
dlstrlk_)utlon. ) . the separating matriH.

Quite recently, the basis vectors of ICA have been estimatedry show this, the difference equation (26) can be further
for re_al—worl_d image anc_i sound da@a_ in [5], [6], and [Zl]analyzed by writing down the corresponding averaged differ-
showing their relevance in characterizing natural data. gy equation; for a discussion of this technique, see e.g.,

[39]. The limit of convergence of the difference equation is
V. MATHEMATICAL ANALYSIS among the asymptotically stable solutions of the averaged

. . . ifferential equation. Taking averages in (26) with respect to
The bigradient algorithm (18) [as well as the robust PC%]e density ofuy, and usingZ — Z(#) as the continuous-time

subspace rule (16)] has been derived by optimizing the crite- / .
fion Ej\il E{ f[y(;)]} under orthonormality constraints, andcounterpart of the transformed weight mat8x, we obtain
so it can be expected to converge to an orthogonal matrix dZ/dt = G(Z) — ZH(Z) (27)
W that will minimize or maximize the criterion (dependingith
on the sign of the learning parameter). We have presented _ T
mathematical analysis supporting this in [52], showing that G(Z)= E{Ug(‘; Z)} T (28)

in the standard PCA/MCA case in whicHy(j)] = y(j)?, H(Z) = E{g(Z" w)g(u” Z)}. (29)

the asymptotic convergence .points are indeed the deSiFﬁge expectations are over the (unknown) density of veator
eigenvectors. The EAS.I algorithm (19) has been anal_yzed\me are ready to state the main result of this section, which
.[9]'. However, the nonlmea_r PCA subs_page rule (17) is on|¥ a simplified version of a more general theorem originally
indirectly related to an optimization criterion [30], and so (?resented by one of the authors in [43]

convergence analysis should be given. This section provi eSrheorem: In the matrix differential equation (27), assume
some results on the asymptotic solutions of the nonlinear P% following

subspace rule. We first present a mathematical theorem, an

then study in more detail two interesting special cases, wher ) The random vecton has a symmetrical density with

. . . . . E{u} = 0.
the functiong(¢) is either a polynomial or a sigmoid. 2) The elements ofa, denoted hereu;.--- u,, are sta-
_ _ _ tistically mutually independent and all have the same
A. Asymptotic Analysis of the Nonlinear PCA Subspace Rule density.
We start from the learning rule (17) 3) The functiong(.) is odd, that is¢(t) = —g(—¢) for all
t, and at least twice differentiable everywhere.
Wit = Wi + ui[vi - Wig(ya)ls(yvi) 4) The functiong(.) and the density ofi are such that the
following conditions hold:
with y;, = Wiv,. The input vectorsv, are whitened: .y )
E{vivI} = I, and we assume that there exists a square A = E{u"g' (aw)} — 2aE{g(au)g'(au)u}
separating matri? such that the vecton, = H?v; has - E{¢*(aw)} <0 (30)

independent elements and also unit variancestmy } = L.
This implies that the separating mat#k” must be orthogonal.
Because our aim is to show that the weight matW
converges to a separating matrix (transposed), we do not make E{ug(on)} = aE{g*(au)}. (31)
any prior assumptions on the separation propertiéd/ofiere.

where ¢'(¢) is the derivativeg(t) and « is a scalar
satisfying
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5) The following condition holds: The stability condition 5) of Theorem 1 now becomes
E{u’}E{¢ (cu)} — E{¢*(au)} < 0. (32) E{ut'} — sE{u*}E{u""'} > 0. (36)
Then the matrix Consider first the case
Z =D =diag(a, -+, ) = ol (33) s=1, glu)=mu. (37)
is an asymptotically stable stationary point of (27)Clearly, the condition (36) is not satisfie@ihe linear function
where« is the positive solution to (31). never gives asymptotic stabilit€¢onsider next the case
The proof is given in [43]. s=3, glu)=u’ (38)

Note 1: We only consider a diagonal matT} = oI as the
asymptotically stable solution. However, any permutatiobof Now (36) gives
can be shown to be an asymptotically stable solution, too, by . o119
making another orthogonal rotation of the coordinate axes that E{u®} = 3(E{«"})" > 0. (39)
will permute some of them. This simply means reindexing

the vector elements;. Mathematically, by replacing(t) with cumulant ofu. If and only if the density igositively kurtotic

PZ(t), whergP IS a permutguoh (an (_thhogonal mat”x)v."?“br super-Gaussignthis condition is satisfied and the cubic
analogous differential equation is obtained, and the Cond'tloﬂélynomialg(u) — 43 gives asymptotic stability

of Theorem 1 are unaltered. Lo - i~
Note 2: Conditions 4) and 5) are the technical requirements Likewise, fors = 5 we get the condition
for asymptotic stability. Clearly, substituting matrix (33) into E{u®} — 5E{u*}E{u*} > 0 (40)
the fixed point conditionG(Z) = ZH(Z) gives (31). The
inequalities (30) and (32) are sufficient for asymptotic stabilitggnd so on.
as shown in [43].
Note 3: Due to the oddity of functiom(t), the signs of the C. Special Case: Hyperbolic Tangents
a cannot be determined from (31);4« is a solution, then S0 consider then the sigmoidal learning functigrft) =

OIfhis expression is exactly thkurtosis or the fourth-order

is also—«. If the weight matrixS; of (26) converges td, tanh(8t) where 8 > 0. It asymptotically approaches
then asymptotically théth element of the vectoy;, = Duy,  the hard-limiting function sigft) as # — oo. Assuming

is theith element of the vectan, multiplied by +cv. The sign ;2 — 1/ the stability condition 5) of the Theorem 1 becomes
has no influence on the absolute magnitude. For the nega@%/(au)} < E{g*(au)}. For the hyperbolic tangenty (¢)

a, a similar result to the above holds. has a peak around the origin and decreases to both sides,
Note 4: Theorem 1 allows nonmonotonic learning funcyhile ¢2(¢) is zero at the origin and increases to both sides.
tions. However, ifg(¢) is monotonic, then (31) in fact implies | this case it is clear that a peaked super-Gaussian density of

that it must be an increasing function.dft) were monoton- ,, makes Bg' (aw)} large and Eg2(au)} small, while a flat
ically decreasing and odd, then the left-hand side would Bfph-Gaussian density does just the opposite. The latter case
negative for positivex and positive for negativey; but then s then more stable.
there could not be any solution becausg/&au)} > 0. A simple example of a sub-Gaussian density is the uniform
The Theorem 1 will now be illustrated for two specificgensity on the interval41,1]. Let us assume this for the
types of nonlinear learning functions: polynomial functiongiements of the vecta to illustrate the Theorem 1. Condition
g(t) = ¢, with s an odd positive integer, and sigmoidall of Theorem 1 is then satisfied. It remains to check the
functionsg(t) = tanh(/3t), with 3 a positive slope parameter.stapility conditions 4) and 5) of Theorem 1. Now, a closed
All these functions obviously satisfy the condition 3) of thg¢orm solution for « in (31) is not feasible, and numerical

Theorem. For more details, see [43]. methods must be used. It turns out that condition 5) holds
for 5 > 0 (for details, see [43]), and condition 4) is always
B. Special Case: Polynomials satisfied. The conclusion is th&br the uniform density the
The family of odd polynomial functions sigmoidal function gives asymptotic stabilishen 3 > 0.
Asymptotic stability is a local effect, and Theorem 1 does
git) =, s=1,3,57,--- (34) not say anything about the basin of attraction of the asymp-

. ing in th b Il th | totic solution, that is,global stability We have tested the
IS Interesting in the present context because all the re ev%tgbal stability of the differential equation (27) numerically.

variables in the conditions 4) a.n.d 5) of T.heorem 1 will beporq these simulations the input data were three-dimensional,
momentsof v for any probabmty_ density. These functlonseach element having an identical uniform density, the sigmoid
'nCIL_’de the linear function for whick = 1. parameter had the valug = 5.0, and the initial deviation of
First, we get from (31) for Z(0) from the theoretical limit was varied. For this value/f
E{u*t1} = o*T1E{u2}. (35) @and the uniform densities used= 0.6998. The deviation was
increased up to 100.0 and the algorithm converged invariably
Substituting this in (30), we find that the condition 4) is alwayt the asymptotically stable solutidn predicted by Theorem
satisfied. 1 or to its variation. This means that when the initial deviation
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is increased, it may happen that the asymptotic limitZet) 1 . , ; ; ; ; : :

will not be D = diag(«, o, ) but a permutation with possibly
changed signs. Thus for example for the initial value ol /\/\/\/\ Y
—6.1953  0.2556 —0.0945 R L
Z(0)=| 6.3493 -—2.1398 —3.6694 (41) "o 10 20 30 40 s 60 70 80 90 100
0.0710 7.6358 —5.7220 2 ' v : v T
the asymptotic value turned out to be ol \/\/\/\/\/W\/\/\\/W i
—0.6998 0.0000 0.0000
limZ(t) = | 0.0000 0.0000 —0.6998 (42) % 10 20 30 0 s e 70 80 %0 100
0.0000 0.6998 0.0000 2 . 1 . ;

which is a permutation of matriD. Note also the negative
sign in two of the nonzero elements.

The overall conclusion of this section is that, while the \ . . . . ‘ . / .
nonlinear PCA subspace rule (17) is not directly a gradienizo 10 20 3 40 50 80 70 80 90 100
learning algorithm for a cost function, its limits of convergence
are nevertheless separating matrices, if the nonlinear Iearnﬁﬁ% 4. One hundred samples of three source signals in Comon’s example:
function ¢(¢) is adapted to the original densities of the sourcd™ oMy distributed noise, a ramp signal, and a pure sinusoid.
signals, especially to the sign of the kurtosis.

2

VI. EXPERIMENTAL RESULTS o

In this section, we demonstrate the performance of the ICA
network of Fig. 3 using both artificial and real-world data. ,
Artificially generated data is useful because it makes possible
to compare the estimation results with theoretically correct’
values. In Section IV, several alternative learning algorithms
or estimation procedures were given for each of the thre€’|
layers in the network. We have not tested all combinations of
them; however, at least two different learning methods have
been used for each layer for confirming the generality of thes
proposed structure.

Comon’s Data: Consider first a test example used earlier o
by Comon [12]. Here, the three original source signgll),
s1(2), and s, (3) in (3) consist of uniformly distributed noise, s ] ' : : : : : : ‘

. . . . o] 10 20 30 40 50 60 70 80 90 100
a ramp signal, and a pure sinusoid. Fig. 4 shows 100 samples t

of them. Actually _tWO of the_ Sour(_:e Slgnf’ils are determmls_tﬁg. 5. Components of the 100 data vectors used in the simulation. They are

waveforms, allowing easy visual inspection of the separati@fear combinations of the source signals shown in Fig. 4.

results. All the three sources have a negative kurtosis. Fig. 5

depicts the respective components of the three-dimensional | . .

da’?a vectorsy, F\:/)vhich are Iinpear mixtures of the source sig-‘f‘%omhm (24) learned a matri} Whosﬁ nf)rmahzed columns

nals. They were formed using the linear ICA model (3),Whefé(1) - [_0'10827 0'89}6’ —0.4397]%, a(2) = [0'391?

the true normalized basis vectors of ICA weid) = [0.0891, _016542’ 0.6470]", and a(3> = [0.3325, ~0.8507, 0.4072]

—0.8909, 0.4454]7, a(2) = [0.3906, —0.6509, 0.6509]7, and estimate well the true basis vgc.tors of ICA. . .

a(3) = [—0.3408, 0.8519, —0.3976]7, and the noise term,, The results were roughly similar, when the bigradient al-

was zero. gorithm (18) was used for estimating the separating matrix
We chose the simplest learning algorithms, so that (15) w¥¥’ Wwith the same learning function and parameters, or

used for whitening, the nonlinear PCA subspace rule (1@lernatively using the learning functiarit) = ¢*> and learning

for separation, and (24) for estimating the basis vectors BRrametey;, = —0.003. The other parametey was 0.9. Also

ICA. The 100 data vectors were used 60 times sequentiallytit EASI (PFS) algorithm (19) performs well with suitable

teaching the ICA network of Fig. 3. The learning parameté&hoices.

pur was 0.01 both in (15) and (17). The learning function was Parallelogram Data: As a second example, consider the

g(t) = tanh(t). After teaching, the data vectors,,k = performance of the generalized EASI-type algorithm (20) in

1,---,100, were inputted to the network of Fig. 3. Fig. 6estimating the basis vectors of ICA in a simple but illustrative

shows the separated signajg(1), v (2), andy,(3) (outputs test case. In Fig. 7, the dots are data vectors uniformly

of the second layer), which are good estimates of the origirdistributed inside the parallelogram, and the solid lines are

source signals. In the last layer of the ICA network, ththe true basis vectors of ICA. In this case, the independent

0 10 20 30 40 50 60 70 80 90 100
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2 . T T T T . . . . TABLE |
TYPE OF THE SOLUTION PROVIDED BY THE GENERALIZED EASIFTYPE
ALGORITHM WITH DIFFERENT CHOICES OF THENONLINEAR
FUNCTIONS g(t) AND R(t) IN THE PARALLELOGRAM EXAMPLE

L [ [ [ ]

o] 10 20 30 40 50 60 70 80 90 100
t |tanh(t) | #

o
T
L

t — ICA DCA
ok | g(t) | tanh(?) || DCA e DCA
t> ICA ICA —
o 10 20 80 90 100
2 ' ' ' ' is positive), (19) provides separation; if the sources are sub-
Gaussian (negative kurtosis), the signs of the nonlinear terms
or 1 should be changed whef(t) = tanh(t) is used in (19) for
achieving separation.
20 a5 3 a0 80 0 70 80 9 100 Image Data: Here we present a larger scale experiment
t with image data. The nine source signals were the digital
Fig. 6. The separated signajs (1), yx(2), andy; (3) after learning. images shown in Fig. 8. The first three source images (S1-S3)

describe natural objects, the next three (S4-S6) are Brodatz
! — textures, and the three last ones (S7-S9) are artificially gen-
a ] erated. More specifically, S8 is a two-dimensional sinusoidal
signal and S9 uniformly distributed noise. We have not tested
the mutual independence of these sources in any way. All
the sources except S3 had a negative kurtosis; the kurtosis of
S3 had a small positive value, so that the sum of pairwise
kurtoses for any two sources was always negative. The size
of the source images was 387 306; they were coded as
vectors with 118422 elements. Each nine-dimensional source
Boos os ek w2 ToTdk os os ds vectors;, in the ICA model (3) contained thith components
Fig. 7. The parallelogram data and the basis vectors of ICA (solid Iinecs)ﬁf the vectorized source images. Thgse Wer_e mu'j[lp“?d by a
and DCA (dashed lines). nonorthogonal full-rank 9« 9 ICA basis matrixA, yielding
the 118422 data vectoss, used in the simulation. The nine
components (projections of the data vectors onto the bas@mponents of the mixtures; are depicted in the subimages
vectors of ICA) have a negative kurtosis. The dashed line$ Fig. 9; they look almost similar, revealing not much about
in Fig. 7 represent basis vectors which define a kind tfie structure of original source images.
opposite of ICA: when the data vectors are projected ontoEach of the nine images in Fig. 10 contains one component
these directions, their components are maximally dependeritthe whitened vectorsy, k = 1,---,118422. In this exper-
Let us call this solution dependent component analysis (DCAnent, we used the PCA whitening matrix (13), which was
In a sense, the DCA directions describe the data as well as tloenputed using standard numerical software. These images
ICA directions. In this simple example, the first DCA basislready show some structure, but are still far from the original
vector happens to be the same as in PCA (see Fig. 1), pointsmyrces. For separation, we used the nonlinear PCA subspace
to the corner which is in the direction of maximum varianceule (17). The data vectors were used 20 times sequentially,
However, the second DCA basis vector differs from the secoadd the gain parameter, decreased slowly from its initial
PCA basis vector, which is restricted to be orthogonal to thelue 0.0005. The learning function wagt) = tanh(¢).
first one. Fig. 11 shows the component images of the veciqrsk =
Depending on the choice of the functiop&t) and h(¢), 1,---,118422. These were obtained as responses to the data
the generalized separation algorithm (20) converges eithernviectorsx;, k = 1,---,118422, inputted to the ICA network
the ICA or to the DCA solution. The basis vectors werafter learning. The component images in Fig. 11 have been
estimated using either the nonneural formula (22) or the neurakcaled so that their gray level range is the same as in the
learning rule (24). Table | shows the results for some choicesginal images in Fig. 8, and in some cases their sign has been
of g(¢) and h(t). In all these experimentsy;, was a small changed to opposite. The separation results are good, even
constant, and a similar stabilization as in (19) was used fthrough some mixing is still visible especially in the subimages
the cubic nonlinearity. Note that interchangip@t) and ~(¢) corresponding to the natural scenes S1-S3 in Fig. 8.
is equivalent to changing the signs of the nonlinear termslit is obvious that some of the original source images
in (20). The results also show that it is possible to use theere not truly independent. However, experience shows that
nonlinearity g(¢) = tanh(¢) in the EASI algorithm (19). This it is in practice often possible to achieve adequate blind
has the advantage that the stabilizing terms in the denominateparation results even though the sources are not statistically
are not needed. If the sources are super-Gaussian (the kurtoglependent. Furthermore, the images S1-S3 are not even
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S2

Fig. 8. The nine source images used in the image separation experiment.

stationary. The separation results could probably be improvéd(basis vectors) during learning. After a clear initial decrease,

by adding to the network of Fig. 3 another separation lay#te error stabilizes to a roughly constant value. Furthermore,

where a different nonlinearity is used for introducing moreve computed the angles between the true and estimated basis

higher order statistics [11]. vectors of ICA after learning. These angles were 0.0, 0.0,
We also estimated the basis vectet&) of ICA using 0.8, 3.6, 4.8, 9.4, 15.3, 17.2, and 27.6t is apparent that

the formula (22). Fig. 12 shows the evolution of the averadgbe large angles correspond to the basis vectors of the natural

absolute error in the elements of the estimated mixing matiimages S1-S3 which are not truly independent and for which
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M1 M2

Fig. 9. The component images of the data vectors. They are linear mixtures of the source images in Fig. 8.

the separation results in Fig. 11 are not perfect. The smallest have applied especially the bigradient algorithm (18) to
angles correspond to the artificial sources S7-S9; they arger-Gaussian sources, too. In [53], an example similar to
roughly independent and separated almost perfectly. Comon’s data is presented, where (18) successfully separates
This example clearly demonstrates the usefulness of nonlthree artificially constructed super-Gaussian sources.
earities in PCA-type learning algorithms. The definitely poorer Furthermore, we have managed to separate up to ten real
results in Fig. 10 show what standard PCA is typically ablgpeech signals from their mixture using the bigradient algo-
to achieve in this application. rithm. The speech signals are typically super-Gaussian [4].
Speech Data:In all the simulations described above, thén this experiment, we recorded 10 s of speech from ten
sources were sub-Gaussian with a negative kurtosis. Howedifferent speakers. The sampling rate was 8 kHz, yielding
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w2 -W3

Fig. 10. The component images after PCA whitening.

80000 samples of each speech waveform. These wavefousing MATLAB code. The bigradient algorithm converges in
were preprocessed by normalizing their amplitudes. The ingygneral quickly provided that the learning parameters have
vectors were generated from (3) by using a0 mixing been chosen appropriately.

matrix A whose elements were uniformly distributed random Finally, we emphasize that preprocessing the input data
numbers. The noise term; was zero. Using theanh(t) by whitening them is essential for achieving good separation
nonlinearity and the parametefs = —0.01, v = 0.9, the results using nonlinear PCA-type learning algorithms. Without
bigradient algorithm (18) converged to an acceptable sepandiitening, the algorithms are able to separate sinusoidal
tion result with 10 000 training samples. This required aboutsignals somehow [27], but usually not other type of sources.
min computing time on a SiliconGraphics INDY workstationThe obvious reason is that without whitening, the algorithms
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~(W+NPCA1) W+NPCA2 ~(W+NPCA3)

W+NPCA5

Fig. 11. The component images after separation. The separating matrix was learned using the nonlinear PCA subspace rule.

still largely respond to the second-order statistics in spite bésis vectors of ICA, which is useful for example in projection

using nonlinearities. pursuit. We have presented several alternative learning proce-
duces for each layer, and modified our previous nonlinear PCA
VII. CONCLUSION AND REMARKS type learning algorithms so that their separation capabilities are

In this paper, we have introduced a class of neural networ@eatly improved. The proposed class of networks yields good
for performing ICA. After learning, the networks have a starfesults in test examples.
dard feedforward structure. The basic ICA network consistsSome new results continuing the work described in this
of whitening, separation, and basis vector estimation layerspaper can be found in [21]-[23], [32], [33],and [51]. In [22]
can be used for both source separation and estimation of #rel [23] computationally efficient, accurate fixed-point algo-
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Fig. 12. The average absolute error of the elements of the estimated mixing matrix in the image data example during learning. The horizontal axis shows
the number of epochs. During each epoch, the whole input data were used once in learning the separating matrix.

rithms have been introduced for estimating the independeid] P. Baldi and K. Hornik, “Neural networks for principal component anal-

components or source signals one at a time. These algorithms ysis: Learning from examples without local minim&éural Networks
. . - vol. 2, pp. 53-58, 1989.
have been applied to large-scale practical problems in [21]31 " " “[eaming in linear neural networks: A surveylEEE Trans.

[32], and [51]. Fast converging least-squares type adaptive c[)r Neura}: Neéworkssvol. 6,kpp- 837—f858, 1995. A

; ; ; A. Bell and T. Sejnowski, “An information-maximization approach to
neur.al blind separatlgn glgorlthms have been developed for g blind separation and blind deconvolutiofNeural Computa.vol. 7, pp.
nonlinear PCA criterion in [33]. 1129-1159, 1995.

In any of the three layers of the complete ICA network,[5] , “Learning the higher order structure of a natural sound,”

- ibl ith | [ . Network: Computa. Neural Systuol. 7, pp. 261-267, 1996.
It Is possible to use either a neural or a nonneural learing; _~ "“qges are the independent components of natural scenes,”

method. In practice, it may be advisable to learn neurally only to appear inAdvances in Neural Information Processing Systems 9

it ; i~ Cambridge, MA: MIT Press, 1997.
the critical part, source separation, because efficient Standa[tﬂi G. Burel, “Blind separation of sources: A nonlinear neural algorithm,”

numerical methods are available for whitening and estimation” neural Networksvol. 5, pp. 937-947, 1992. .
of the basis vectors of ICA. On the other hand, simple trulyi8] G. Burel and N. Rondel, “Neural networks for array processing: From

. . . . . DOA estimation to blind separation of sources,’Hroc. 1993 IEEE Int.
neural learning algorithms can be used in each layer if desired. ~ ¢ Syst.. Man, CyberrLe Touguet, France, Oct. 1993, pp. 601-606.

Another remark concerns the linear ICA model (3), which[9] J.-F. Cardoso and B. Laheld, “Equivariant adaptive source separation,”
is relatively simple. It would be of interest to extend thi IEEE Trans. Signal Processingol. 44, pp. 3017-3030, Dec. 1996.

. :lt(g A. Cichocki and R. Unbehaueileural Networks for Optimization and
results of this paper to more general models, where the d Signal Processing New York: Wiley, 1993.

are nonstationary, or the data model is nonlinear, or contaiiAg] A. Cichocki, W. Kasprzak, and S. Amari, “Multilayer neural networks

; : Shilid ; with a local adaptive learning rule for blind separation of source signals,”
time delays, to mention a few possibilities. For example time in Proc. 1995 Int. Symp. Nonlinear Theory Applicat.. NOLTA-BSs

delays should be included in the data model in practical speech \vegas, NV, vol. 1, Dec. 1995, pp. 61-66. . _
separation. Some attempts to extend blind source separafigh P. Comon, “Separation of stochastic processesProt. Wkshp. Higher

- : - Order Spectral Analysjsvail, CO, June 1989, pp. 174-179.
and ICA into these directions have already been made fgg, “Independenit component analysis—a new concepSignal

example in [7], [14], [36], [44], and [50]. A more detailed Processing vol. 36, pp. 287-314, 1994,
discussion and additional references can be found in tHé! G: Deco and D. ObradovicAn Information-Theoretic Approach to
. . Neural Computing New York: Springer-Verlag, 1996.

tutorial review [31]. [15] K. Diamantaras and S. Kun@rincipal Component Networks—Theory

and Applications New York: Wiley, 1996.
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