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Abstract. Deep neural networks with several layers have during the last
years become a highly successful and popular research topic in machine
learning due to their excellent performance in many benchmark prob-
lems and applications. A key idea in deep learning is to not only learn
the nonlinear mapping between the inputs and outputs, but also the un-
derlying structure of the data (input) vectors. In this chapter, we first
consider problems with training deep networks using backpropagation
type algorithms. After this, we consider various structures used in deep
learning, including restricted Boltzmann machines, deep belief networks,
deep Boltzmann machines, and nonlinear autoencoders. In the later part
of this chapter we discuss in more detail the recently developed neural
autoregressive distribution estimator (NADE) and its variants.
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1 Introduction

In late 1980’s, neural networks became a hot topic in machine learning due to
invention of several efficient learning methods and network structures. These new
methods included multilayer perceptron networks trained by backpropagation
type algorithms, self-organizing maps, and radial basis function networks [1, 2].
While neural networks are successfully used in many applications, interest in
their research decreased later on. The emphasis in machine learning research
moved to other areas, such as kernel methods and Bayesian graphical models.

Deep learning was introduced by Hinton and Salakhutdinov in 2006 [3]. Deep
learning has then become a hot topic in machine learning, leading to a renais-
sance of neural networks research. This is because when trained properly, deep
networks have achieved world-record results in many classification and regression
problems.

Deep learning is quite an advanced topic. In this short review, we do not
discuss most of their learning algorithms in detail. However, the NADE-k method
introduced recently by two of the authors in [4] is discussed in more detail. There
exist different types of reviews on deep learning containing more information.
An older review is [5], and the doctoral theses [6, 7] are good introductions to



deep learning. Schmidhuber lists in his recent review [8] over 700 references on
deep learning, but the review itself is very short with no formulas. The book [9]
in preparation will probably become a quite popular reference on deep learning,
but it is still a draft, with some chapters lacking. In general, research on deep
learning is advancing very rapidly, with new ideas and methods introduced all
the time.

In the following, we first briefly discuss multilayer perceptron networks and
restricted Boltzmann machines as starting points to deep learning, and move
then to various deep networks.

2 Multilayer Perceptron Networks
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Fig. 1. The architecture of a multilayer perceptron network with L hidden layers.

Figure 1 shows a multilayer perceptron (MLP) network having an input layer,
L ≥ 1 hidden layers, and the output layer. In general, the numbers of neurons
(nodes) in each layer can vary. Usually the processing in the hidden layers is
nonlinear, while the output layer can be linear or nonlinear. In the input layer
no computations take place, only the components of the input vector are inputted
there, one component in each neuron.

The operation of neuron k in the l-th hidden layer is described by the equation
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where h
[l−1]
j , j = 1, . . . ,m[l−1] are the m[l−1] input signals coming to the neuron

k, and w
[l]
kj , j = 1, . . . ,m[l−1] are the respective weights multiplying the input

signals. The number of neurons in the l:th layer is m[l]. The input signals to the
MLP network and to its first hidden layer are x1, . . . , xp. The constant bias term
bk is added to the weighted sum. The components of the output vector y are



computed similarly as the outputs of the l:th hidden layer in (1). The function
φ(t) is the nonlinearity applied to the weighted sum. It is typically chosen to
be the hyperbolic tangent φ(t) = tanh(at) where a is constant or the logistic
sigmoidal function φ(t) = 1/(1 + e−at). If the operation of a neuron is linear,
φ(t) = at [1, 2].

Even though processing in a single neuron is simple, it is nonlinear. These
distributed nonlinearities in each neuron of the hidden layers and possibly also
in the output layer of the MLP network give to it a high representation power,
but on the other hand make its exact mathematical analysis impossible and
cause other problems such as local minima in the cost function. However, a
MLP network having enough neurons in a single hidden layer can approximate
any smooth enough nonlinear input-output mapping [1, 2].

With detailed notations the learning algorithms of MLP networks become
quite complicated. We do not here go into details but just present an overall view,
for details see the books [1, 2]. In general, MLP networks are trained in supervised
manner using N known training pairs {xi,di} where xi is i:th input vector and
di is the corresponding desired response (output). The vector xi is inputted to
the MLP network and the corresponding output yi is vector computed. The
criterion used to learn the weights of the MLP network is typically the mean-
square error E = E{‖ di − yi ‖2}, which is minimized.

The steepest descent learning rule for a weight wji in any layer is given by

∆wji = −µ
∂E

∂wji

(2)

In practice, steepest descent is replaced by instantaneous gradient or a mini batch
over 100-1000 training pairs. The required gradients are computed first for the
neurons in the output layer using their local errors. These local errors are then
propagated backwards to the previous layer, and the weights of its neurons can be
updated, and so on. The name backpropagation of the basic learning algorithm
for MLP networks comes from this. Usually numerous iterations and sweeps
over the training data are required for convergence, especially if instantaneous
stochastic gradient is used. Many variants of backpropagation learning and faster
converging alternatives have been introduced [1, 2].

Usually MLP networks are designed to have only one or two hidden layers, be-
cause training more hidden layers using backpropagation type algorithms using
steepest descent directions has turned out unsuccessful. The additional hidden
layers do not learn useful features easily because the gradients with respect to
them decay exponentially [10, 11]. A learning algorithm using only the steepest
descent update directions often leads to poor local optima or saddle points [12],
potentially due to its inability to break symmetries among multiple neurons in
each hidden layer [13].

3 Deep learning

However, it would be desirable to have deep neural networks having several
hidden layers. The idea is that the layer closest to the data vectors learns simple
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Fig. 2. Higher layers extract more general features of face images. The input to the
network consists of pixels. Reprinted from [14].

features, while the higher layers should learn higher-level features. For example in
digital images first low-level features such as edges and lines in different directions
are learned in the first hidden layer. They are followed by shapes, objects, etc. in
higher level layers. An example is shown in Figure 2. Human brains, especially
cortex, contain deep biological neural networks working in this way. They are
very efficient in tasks that are difficult for computers such as various applications
of pattern recognition.

Deep learning addresses problems encountered when applying backpropaga-
tion type algorithms to deep networks with many layers. A key idea is to not
only learn the nonlinear mapping between input and output vectors, but also the
underlying structure of data (input) vectors. To achieve this goal, unsupervised
pre-training is used. This is achieved in practice by using restricted Boltzmann
machines or autoencoders in each hidden layer as building blocks in forming
deep neural networks.

4 Restricted Boltzmann Machines

Boltzmann machines are a class of neural networks introduced already in late
1980’s. They are based on statistical physics, and they use stochastic neurons
contrary to most other neural network methods. Restricted Boltzmann Machines
(RBMs) are simplified versions of Boltzmann machines; see Figure 3. In RBMs,
the connections between the hidden neurons (top) and between the visible neu-
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Fig. 3. Restricted Boltzmann machine.

rons (bottom) in the original Boltzmann machines are removed. Only the con-
nections between the neurons in the visible layer and the hidden layer remain.
Their weights are collected to the matrix W. This simplification makes learning
in RBMs tractable compared with Boltzmann machines, where it becomes be-
comes soon intractable due to the many connections except for small-scale toy
problems.

4.1 Modeling binary data

In an RBM, the top layer represents a vector of stochastic binary features h. That
is, the value of the state of each neuron can be either +1 or −1 with a certain
probability. The bottom layer contains stochastic binary “visible” variables x.
Their joint Boltzmann distribution is [6]

p(x,h) =
1

Z
exp(−E(x,h))

where E(x,h) is an energy term given by

E(x,h) = −
∑
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From these equations, one can derive the conditional Bernoulli distributions
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There σ(z) is the logistic sigmoidal function

σ(z) =
1

1 + e−z



Wij is a symmetric interaction term between input i and feature j, and bi, bj are
bias terms. The marginal distribution over visible vector x is

p(x) =
∑

h

exp(−E(x,h))
∑

u,g exp(−E(u,g))
(3)

The parameter update required to perform gradient ascent in the log-likelihood
becomes (〈·〉 denotes expectation)

∆Wij = ǫ(〈xihj〉data − 〈xihj〉model
) (4)

In the data distribution x is taken from the data set and h from the conditional
distribution p(h | x, θ) given by the model. In the model distribution both are
taken from the joint distribution p(x,h) of the model. For the bias terms, one
gets a similar but simpler equation. The expectations can be estimated using
Gibbs sampling in which samples are generated from the respective probability
distributions.

4.2 Modeling real-valued data

Restricted Bolzmann machines can be generalized to exponential family distribu-
tions [6, 15]. For example, digital images with real-valued pixels can be modeled
by visible units that have a Gaussian distribution. The mean of this distribution
is determined by the hidden units:
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The marginal distribution over visible units x is given by Eq. (3) with an energy
term

E(x,h) =
∑
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If the variances are set to σ2
i = 1 for all visible units i, the parameter updates

are the same as defined in Eq. (4).

5 Deep Belief Networks

Deep belief networks are generative models with many layers of hidden causal
variables. Each layer of a deep belief network consists of a restricted Boltzmann
machine. Hinton et al. derived a way to perform fast, greedy learning of deep
belief networks one layer at a time [3]. When an RBM has learned, its feature



activations are used as the “data” for training the next RBM in the deep belief
networks, see Figure 4.

An important aspect of this layer-wise learning procedure is that each extra
layer increases a lower bound on the log probability of the data, provided that
the number of features per layer does not decrease. This layer-by-layer training
can be repeated several times for learning a deep, hierarchical model of the
data. Each layer of features captures strong high-order correlations between the
activities of the features in the layer below.
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Fig. 4. Pretraining of a deep belief network.

This representation is more efficient than using a single hidden layer with
many units. Using the greedy algorithm, one can learn a relatively good hier-
archical representation of the data. But it is not yet an optimal representation,
because the weights of each layer are learned independently of the weights of
the next layers. Therefore, the representation found by the greedy learning al-
gorithm can be improved using a fine tuning algorithm for the weights. To this
end, one can use a variant of the standard backpropagation algorithm which is
good at fine tuning.

Recursive learning of a deep generative model in this manner can be sum-
marized as follows:

1. Learn the parameter vector W 1 of the first layer of a Bernoulli or Gaussian
model.

2. Freeze the parameters of the lower level model. Use as the data for training
the next layer of binary features the activation probabilities of the binary
features, when they are driven by the training data.

3. Freeze the parameters W 2 that define the second layer of features, and use
the activation probabilities of those features as data for training the third
layer of features.

4. Proceed recursively for as many layers as desired.



6 Deep Boltzmann machines

In the Deep Belief Networks (DBN) discussed above, the connections between
the layers are directed except for the two upmost layers. However, for better flow
of information, it would be desirable to have undirected connections everywhere.
Salakhutdinov and Hinton introduced such Deep Boltzmann Machines (DBM)
in 2009 [16, 6]. In Fig. 5, the vectors of the activities of the neurons in the visible
and hidden layers are denoted respectively by v,h1, . . . ,hL. The state vector of
the DBM network having L hidden layers is denoted by x = [v;h1; . . . ,hL] =
[v,h]. Note here the difference in notation: in RBMs x denoted the activities of
visible units.
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Fig. 5. Deep Boltzmann machine has undirected connections.

The Boltzmann distribution

p(x | θ) = 1

Z(θ)
exp(−E(x | θ))

is still used, where θ denotes all the parameters. The energy function −E(x | θ)
is pretty complicated, consisting of products of activities multiplied by the re-
spective weights. They are summed up together with activities multiplied by
biases. Each parameter θ is updated according to the rule

∆θ = ǫ(〈T1〉data − 〈T2〉model)

The expectation 〈T1〉data of the term

T1 = −∂E(v(n),h | θ)
∂θ

is computed over the data distribution P (h | {v(n)}, θ). Here v(n) denotes the
n:th visible data vector. The expectation 〈T2〉model of the term

T2 = −∂E(v,h | θ)
∂θ



is computed over the model distribution P (v,h | θ). The expectation over the
data distribution can be estimated using a variational approximation, while the
expectation over the model distribution can be computed using Gibbs sampling
[16, 6].

6.1 Differences between Deep Belief Networks and Deep Boltzmann

Machines

Thus far we have discussed only learning, but not using these networks for in-
ference and generation of new samples. Considering first Deep Belief Network,
it actually provides two networks that have common weights. In the recognition
network, data vector is inputted to the visible layer, and information then pro-
ceeds upwards. One feedforward pass is required for inference. New data vectors
resembling training vectors can be generated by sampling the uppermost hidden
layer with MCMC (Markov Chain Monte Carlo) methods. Then the information
proceeds downwards to the visible layer, and every layer tries to represent all
the dependencies in the layer below it.

On the contrary, Deep Boltzmann machines have only one undirected net-
work. Both recognition and generation of new samples require inference over
the entire network. For recognition mean field methods are typically used, and
MCMC for generation. The upper layers represent only such information that
lower layers have not managed to represent.

7 Nonlinear Autoencoders

Deep belief networks can be used for training nonlinear autoencoders [7]. Au-
toencoder is a neural network (or mapping method) where the desired output is
the input (data) vector itself. This is meaningful because in the middle of autoen-
coder, there is a data compressing bottleneck layer having fewer neurons than
in the input and output layers. Therefore, the output vector of an autoencoder
network is usually an approximation of the input vector only. Comparing it with
the input vector provides the error vector needed in training the autoencoder
network. Figure 6 shows a simple example of an autoencoder.

Autoencoders were first studied in 1990’s for nonlinear data compression [17,
18] as a nonlinear extension of standard linear principal component analysis
(PCA). Traditional autoencoders have five layers: a hidden layer between the
input layer and the data compressing middle bottleneck layer, as well as a sim-
ilar hidden layer with many neurons between the middle bottleneck layer and
output layer [2]. Output vector of the middle bottleneck layer in autoencoders
can be used for nonlinear data compression. They were trained using the back-
propagation algorithm by minimizing the mean-square error, but this is difficult
for multiple hidden layers with millions of parameters.

The greedy learning algorithm for restricted Boltzmann machines can be
used to pre-train autoencoders also for large problems. It performs a global
search for a good, sensible region in the parameter space. The fine-tuning of
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Fig. 6. An MLP network acting as an autoencoder.

model parameters is carried out using a variant of standard backpropagation.
Generally speaking backpropagation is better at local fine-tuning of the model
parameters than global search. So further training of the entire autoencoder using
backpropagation will result in a good local optimum. Nonlinear autoencoders
trained in this way perform considerably better than linear data compression
methods such as PCA.

Autoencoders must be regularized for preventing them to learn identity map-
ping. Instead of a middle bottleneck layer, one can add noise to input vectors or
put some of their components zero [19]. Or one can impose sparsity by penaliz-
ing hidden unit activations so at or near 0. Still another possibility is to force
the encoder to have small derivatives with respect to the inputs x (contractive
constraint) [20, 21]. Discrete inputs can be handled by using a cross-entropy or
log-likelihood reconstruction criterion.

Instead of stacking Restricted Boltzmann Machines, one can use a stack of
shallow autoencoders to train deep belief networks, deep Boltzmann machines
or deep autoencoders [22].

8 Neural Autoregressive Density Estimator (NADE)

8.1 Background

Traditional building blocks for deep learning have, however, some unsatisfactory
properties. For example Boltzmann machines are difficult to train due to the
intractability of computing the statistics of the model distribution. This may
lead to potentially high-variance Monte Carlo Markov Chain (MCMC) estima-
tors during training [23] and the computationally intractable objective function.
Autoencoders have a simpler objective function such as denoising reconstruction
error [19], which can be used for model selection but not for the important choice
of the corruption function.



In [24], Larochelle and Murray introduced the so-called Neural Autoregres-
sive Distribution Estimator (NADE), which specializes previous neural auto-
regressive density estimators [25] and was recently extended [26] to deeper archi-
tectures. It is appealing because both the training criterion (just log-likelihood)
and its gradient can be computed tractably and used for model selection, and
the model can be trained by stochastic gradient descent with backpropagation.
However, it has been observed that the performance of NADE has still room for
improvement.

Training of the neural autoregressive density estimator (NADE) can be viewed
as performing one step of probabilistic inference on missing values in data for
reconstructing missing values in data. The idea of using missing value imputa-
tion as a training criterion has appeared in three recent papers. This approach
can be seen either as training an energy-based model to impute missing values
well [27], as training a generative probabilistic model to maximize a generalized
pseudo-log-likelihood [28], or as training a denoising autoencoder with a masking
corruption function [26].

The NADE model involves an ordering over the components of the data vec-
tor. The core of the model is the reconstruction of the next component given all
the previous ones. In the following, we describe a new model and method called
NADE-k, proposed recently by two of the authors in [4]. It is an extension of
the NADE model based on the reinterpretation of the reconstruction procedure
as a single iteration in a variational inference algorithm.

8.2 Iterative NADE-k method

The NADE-k method extends the inference scheme of the original NADE method
in [24] to multiple steps [4]. We argue that it is easier to learn to improve a
reconstruction iteratively in k steps rather than to learn to reconstruct in a
single inference step. The proposed model is an unsupervised building block
for deep learning that combines the desirable properties of NADE and multi-
prediction training: (1) Its test likelihood can be computed analytically, (2) it is
easy to generate independent samples from it, and (3) it uses an inference engine
that is a superset of variational inference for Boltzmann machines.

The NADE-k method is introduced and discussed in more detail in [4], with
experiments on two datasets, MNIST handwritten numbers and Caltech-101
silhouettes. In these experiments, the NADE-k method outperformed the original
NADE [24] as well as NADE trained with the order-agnostic training algorithm
[26].

In the probabilistic NADE-k method D-dimensional binary data vectors x

are considered. We start by defining conditional distribution pθ for imputing
missing values using a fully factorial conditional distribution:

pθ(xmis | xobs) =
∏

i∈mis

pθ(xi | xobs), (5)

where the subscripts mis and obs denote missing and observed components of
x. From the conditional distribution pθ we compute the joint probability distri-
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Fig. 7. The choice of a structure for NADE-k is very flexible. Left: Basic structure
corresponding to Equations (10–11) with n = 2 and k = 2. Right: Depth added as in
NADE by [26] with n = 3 and k = 2. These two structures are used in the experiments.

bution over x given an ordering o (a permutation of the integers from 1 to D)
by

pθ(x | o) =
D
∏

d=1

pθ(xod | xo<d
), (6)

where o<d stands for indices o1 . . . od−1.
The model is trained to minimize the negative log-likelihood averaged over

all possible orderings o

L(θ) = Eo∈D! [Ex∈data [− log pθ(x | o)]] . (7)

using an unbiased, stochastic estimator of L(θ)

L̂(θ) = − D

D − d+ 1
log pθ(xo≥d

| xo<d
) (8)

by drawing o uniformly from all D! possible orderings and d uniformly from
1 . . .D [26]. Note that while the model definition in Eq. (6) is sequential in
nature, the training criterion (8) involves reconstruction of all the missing values
in parallel. In this way, training does not involve picking or following specific
orders of indices.

We define the conditional model pθ(xmis | xobs) using a deep feedforward
neural network with nk layers, where we use n weight matrices k times. This
can also be interpreted as running k successive inference steps with an n-layer
neural network.

The input to the network is

v〈0〉 = m⊙ Ex∈data [x] + (1−m)⊙ x (9)

where m is a binary mask vector indicating missing components with 1, and
⊙ is an element-wise multiplication. Ex∈data [x] is an empirical mean of the
observations. For simplicity, we give equations for a simple structure with n = 2,
illustrated in Fig. 7 (left).

In this case, the activations of the layers at the t-th step are

h〈t〉 = φ(Wv〈t−1〉 + c) (10)

v〈t〉 = m⊙ σ(Vh〈t〉 + b) + (1−m)⊙ x (11)



Fig. 8. The inner working mechanism of NADE-k. The left most column shows the
data vectors x, the second column shows their masked version and the subsequent
columns show the reconstructions v〈0〉

. . .v〈10〉 (See Eq. (11)).

where φ is an element-wise nonlinearity, σ is a logistic sigmoid function, and the
iteration index t runs from 1 to k. The conditional probabilities of the variables
(see Eq. (5)) are read from the output v〈k〉 as

pθ(xi = 1 | xobs) = v
〈k〉
i . (12)

Fig. 8 shows examples of how v〈t〉 evolves over iterations, with the trained
model.

The parameters θ = {W,V, c,b} can be learned by stochastic gradient
descent to minimize −L(θ) in Eq. (7), or its stochastic approximation −L̂(θ) in
Eq. (8), with the stochastic gradient computed by back-propagation.

Once the parameters θ are learned, one can define a mixture model by using
a uniform probability over a set of orderings O. The probability of a given vector
x as a mixture model can be computed

pmixt(x | θ, O) =
1

|O|
∑

o∈O

pθ(x | o) (13)

with Eq. (6). One can draw independent samples from the mixture by first
drawing an ordering o and then sequentially drawing each variable using xod ∼
pθ(xod | xo<d

). Furthermore, samples can be drawn from the conditional p(xmis |
xobs) easily by considering only orderings where the observed indices appear
before the missing ones.

It is well known that training deep networks is difficult without pretraining,
and in the experiments described in more detail in [4], the networks are trained
up to kn = 7 × 3 = 21 layers. When pretraining, the model is trained to pro-
duce good reconstructions v〈t〉 at each step t = 1 . . . k. More formally, in the
pretraining phase, the Equations (8) and (12) are replaced by

L̂pre(θ) = −
D

D − d+ 1

1

k

k
∑

t=1

log
∏

i∈o≥d

p
〈t〉
θ
(xi | xo<d

) (14)

p
〈t〉
θ
(xi = 1 | xobs) = v

〈t〉
i . (15)



8.3 Related Methods and Approaches

Order-agnostic NADE The proposed method follows closely the order-agnostic
version of NADE [26], which may be considered as the special case of NADE-k
with k = 1. On the other hand, NADE-k can be seen as a deep NADE with some
specific weight sharing (matrices W and V are reused for different depths) and
gating in the activations of some layers (See Equation (11)).

Additionally, in [26] it was found crucial to give the mask m as an auxil-
iary input to the network, and initialized missing values to zero instead of the
empirical mean (See Eq. (9)). Due to these differences, the approach in [26] is
called here NADE-mask. One should note that NADE-mask has more parame-
ters due to using the mask as a separate input to the network, whereas NADE-k
is roughly k times more expensive to compute.

Probabilistic Inference Consider the task of missing value imputation in a
probabilistic latent variable model. The conditional probability of interest is ob-
tained by marginalizing out the latent variables from the posterior distribution:

p(xmis | xobs) =

∫

h

p(h,xmis | xobs)dh.

Accessing the joint distribution p(h,xmis | xobs) directly is often harder than
alternatively updating h and xmis based on the conditional distributions p(h |
xmis,xobs) and p(xmis | h). Variational inference is one of the representative
examples that exploit this.

In variational inference, a factorial distribution q(h,xmis) = q(h)q(xmis) is
iteratively fitted to p(h,xmis | xobs) such that the KL-divergence between q and
p

KL[q(h,xmis)||p(h,xmis | xobs)] =

−
∫

h,xmis

q(h,xmis) log

[

p(h,xmis | xobs)

q(h,xmis)

]

dhdxmis

is minimized. The algorithm alternates between updating q(h) and q(xmis), while
considering the other one fixed.

As an example, consider a restricted Boltzmann machine (RBM) defined by

p(v,h) ∝ exp(b⊤v + c⊤h+ h⊤Wv).

One can fit an approximate posterior distribution parameterized as q(vi = 1) =
v̄i and q(hj = 1) = h̄j to the true posterior distribution by iteratively computing

h̄← σ(Wv̄ + c)

v̄←m⊙ σ(W⊤h+ b) + (1−m)⊙ v.

Notice the similarity to Eqs. (10)–(11): If one assumes φ = σ and V = WT , the
inference in the NADE-k is equivalent to performing k iterations of variational



inference on an RBM for the missing values [29].

Multi-Predictive Deep Boltzmann Machine Goodfellow et al. [28] and
Brakel et al. [27] use backpropagation through variational inference steps to
train a deep Boltzmann machine. This is very similar to NADE-k, except that
they approach the problem from the view of maximizing the generalized pseudo-
likelihood [30]. The deep Boltzmann machine also lacks the tractable probabilis-
tic interpretation similar to NADE-k, see Eq. (6), that would allow to compute
a probability or to generate independent samples without resorting to a Markov
chain. NADE-k is also somewhat more flexible in the choice of model structures,
as can be seen in Fig. 7. For instance, encoding and decoding weights do not
have to be shared and any type of nonlinear activations, other than a logistic
sigmoid function, can be used.

Product and Mixture of Experts One can ask what would happen if we
would define an ensemble likelihood along the line of the training criterion in
Eq. (7). That is,

− log pprod(x | θ) ∝ Eo∈D! [− log p(x | θ, o)] .

Maximizing this likelihood directly will correspond to training a product-of-
experts model [31]. However, this requires evaluation of the intractable normal-
ization constant during training as well as in the inference, making the model
not tractable any more.

On the other hand, one can consider using the log-probability of a sample
under the mixture-of-experts model as the training criterion

− log pmixt(x | θ) = − logEo∈D! [p(x | θ, o)] .

This criterion resembles clustering, where individual models may specialize in
only a fraction of the data. In this case, however, the simple estimator such as
in Eq. (8) would not be available.

8.4 Experimental results

the NADE-k model has been studied with two datasets: binarized MNIST hand-
written digits and Caltech 101 silhouettes. NADE-k was trained with one or
two hidden layers (see Fig. 7 left and right) with a hyperbolic tangent as the
activation function φ(·). Stochastic gradient descent was used on the training
set with a mini batch size fixed to 100. The AdaDelta method [32] was used to
adaptively choose a learning rate for each parameter update on-the-fly. We used
a validation set for early stopping and to select the hyperparameters. With the
best model on the validation set, we report the log-probability computed on the
test set.

In [4], the NADE-k method is tested extensively with the MNIST data and
compared favorably with the NADE-mask method introduced in [26]. We mostly
skip here these experiments, except for in Figure 8 we present how each iteration



t = 1 . . . k improves the corrupted input v〈t〉 from Eq. (9). We also investigated
what happens with test time k being larger than the training k = 5. We can
see that in all cases, the iteration – which is a fixed point update – seems to
converge to a point that is in most cases close to the ground-truth sample.
However, the experiments in [4] show that that the generalization performance
drops after k = 5 when training with k = 5. From Figure 8, we can see that the
reconstruction continues to be sharper even after k = 5, which seems to be the
underlying reason for this phenomenon.

We also evaluate the proposed NADE-k method on Caltech-101 Silhouettes
[33], using the standard split of 4100 training samples, 2264 validation samples
and 2307 test samples. We demonstrate the advantage of NADE-k compared
with NADE-mask under the constraint that they have a matching number of
parameters. In particular, we compare NADE-k with 1000 hidden units with
NADE-mask with 670 hidden units. We also compare NADE-k with 4000 hidden
units with NADE-mask with 2670 hidden units.

We optimized the hyper-parameter k ∈ {1, 2, . . . , 10} in the case of NADE-k.
In both NADE-k and NADE-mask, we experimented without regularizations,
with weight decays, or with dropout. We did not use the pretraining scheme
described in Eq. (14).

Table 1. Average log-probabilities of test samples of Caltech-101 Silhouettes. The re-
sults marked with ⋆ are from [34]. The terms in the parenthesis indicate the number
of hidden units, the total number of parameters (M for million), and the L2 regu-
larization coefficient. NADE-mask 670h achieves the best performance without any
regularizations.

Model Test LL Model Test LL

RBM⋆

(2000h, 1.57M)
-108.98 RBM ⋆

(4000h, 3.14M)
-107.78

NADE-mask
(670h, 1.58M)

-112.51 NADE-mask
(2670h, 6.28M, L2=0.00106)

-110.95

NADE-2
(1000h, 1.57M, L2=0.0054)

-108.81 NADE-5
(4000h, 6.28M, L2=0.0068)

-107.28

As one can see from Table 1, NADE-k outperforms the NADE-mask regard-
less of the number of parameters. In addition, NADE-2 with 1000 hidden units
matches the performance of an RBM with the same number of parameters. Fur-
thermore, NADE-5 has outperformed the previous best result obtained with the
RBMs in [34], achieving the state-of-art result on this dataset. We can see from
the samples generated by the NADE-k shown in Figure 9 that the model has
learned the data well.



Fig. 9. Samples generated from NADE-k trained on Caltech-101 Silhouettes.

9 Conclusions

Deep learning has become a hot topic in machine learning, because it can pro-
vide world record results in different classification and regression problems and
datasets. Many corporations including Google, Microsoft, Nokia etc. study it
actively. Understanding deep learning well requires mathematical maturity and
good knowledge of probabilistic modeling. Learning algorithms are complicated,
and good initialization is important. The field is developing quite rapidly, with
new structures and learning methods introduced all the time.

In this chapter, we have reviewed some of the most widely studied and used
deep learning models for unsupervised learning tasks. Also, we have discussed in
more detail a new model called iterative neural autoregressive distribution esti-
mator NADE-k [4] that extends the conventional neural autoregressive distribu-
tion estimator (NADE) [26] and its training procedure. The proposed NADE-k
method maintains the tractability of the original NADE while we showed that
it outperforms the original NADE as well as similar, but intractable generative
models such as restricted Boltzmann machines and deep belief networks.

The list of unsupervised models we have reviewed in this chapter is not
exhaustive. During the last few years, a number of new deep learning models for
unsupervised learning have been proposed. For instance, Kingma and Welling
in [35] proposed a so-called variational autoencoder, where they proposed to
train an autoencoder to maximize a variational lower-bound of a directed belief
network. Bengio et al. [36] recently proposed a rather distinct deep learning-
based framework for unsupervised learning, called generative stochastic network
which aims to learn a Markov chain Monte Carlo transition operator instead of
a full probability distribution.
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