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Abstract—The problem of proactively detecting Android
Malware has proven to be a challenging one. The challenges
stem from a variety of issues, but recent literature has shown
that this task is hard to solve with high accuracy when only a
restricted set of features, like permissions or similar fixed sets
of features, are used. The opposite approach of including all
available features is also problematic, as it causes the features
space to grow beyond reasonable size.

In this paper we focus on finding an efficient way to select
a representative feature space, preserving its discriminative
power on unseen data. We go beyond traditional approaches
like Principal Component Analysis, which is too heavy for
large-scale problems with millions of features.

In particular we show that many feature groups that can
be extracted from Android application packages, like features
extracted from the manifest file or strings extracted from the
Dalvik Executable (DEX), should be filtered and used in clas-
sification separately. Our proposed dimensionality reduction
scheme is applied to each group separately and consists of raw
string preprocessing, feature selection via log-odds and finally
applying random projections.

With the size of the feature space growing exponentially as
a function of the training set’s size, our approach drastically
decreases the size of the feature space of several orders
of magnitude; this in turn allows accurate classification to
become possible in a real world scenario. After reducing the
dimensionality we use the feature groups in a light-weight
ensemble of logistic classifiers.

We evaluated the proposed classification scheme on real
malware data provided by the antivirus vendor and achieved
state-of-the-art 88.24% true positive and reasonably low 0.04 %
false positive rates with a significantly compressed feature space
on a balanced test set of 10,000 samples.

Keywords-malware classification; logistic regression; random
projection; Android; dimensionality reduction; feature selec-
tion

I. INTRODUCTION

Nowadays mobile devices are used for managing our
everyday needs beyond calls and sms-messages, as evident
in the use of mobile banking, shopping, and social network
applications. Anti-virus companies aim to stop hackers from
making a profit on the Android platform by detecting
malware early.

The analysis of file contents without its execution is
known as static analysis. Due to the structure of the content
of Android applications, most of the features differ from
file to file, making it hard to come up with a fixed set
of features. Permissions requested by installed application

are a well-investigated set of features and have been used
previously by researchers, for example in [[1], but are limited
in their discriminative power. Bag-of-words models with N-
gram string features are used in [2], while byte code feature
are used in [3]; these approaches, where the dimensionality
of the feature set is very large and difficult to handle due
to unrestricted selection of features, go to the other extreme
when compared to the permission approach.

In this paper we propose a fast and accurate way of
generating useful representations from Android application
packages, that achieves the right balance between selecting
a fixed set of features and extracting all possible features
automatically. While this framework is adjusted for the
Android malware problem, it can be adapted for other sparse,
high dimensional problems.

Our approach contributes the following:

1) from the point of view of malware detection: present-
ing a scheme for selecting important feature groups
and effectively filtering them by their discriminative
power using log-odds; finding the trade-off in reduc-
ing dimensionality for different groups of features
separately; achieving significantly low false positive
rate to reduce the number of clean applications to be
classified as malicious.

2) from the point of view of machine learning: showing
that sparse random projections can efficiently reduce
large feature spaces from millions to thousands of
features to build a robust and reliable ensemble of
logistic classifiers for Android malware detection;

The rest of the paper is structured as follows. Section
outlines publications that are relevant to our paper. Next
we describe in detail the features being extracted from
Android packages for classification. Section[[V]describes our
dimensionality reduction approach and justifies the use of
log-odds and random projections. Section [V] describes how
we integrate our approach with feature preprocessing and an
ensemble of logistic classifiers. We evaluate our approach in
Section [VI|on the real data provided by the antivirus vendor.

II. RELATED LITERATURE REVIEW

The approach described in this paper uses static tech-
niques to distinguish between malware and benign objects,
meaning that the object under analysis is never run; this is in



contrast with dynamic approaches, where the object under
investigation is run and its behavior analysed.

Machine Learning approaches related to Android malware
vary greatly in the features selected: manually collected
features [4], N-grams on the code strings [2], or specific
groups of Android features, like permissions or manifest
strings. The authors of [2] also used unreferenced strings
extracted from DEX files with Support Vector Machines
(SVM) [5]] on 3-grams. Their accuracy on their dataset is
99.2% with slightly high false positive (FP) rate of 2%.

We consider [6], where random projections were used
to reduce the feature space (sparse binary features, API
trigrams and API calls) to classify Windows malware on
a dataset of several million samples, to be the highest-
impact contribution to the dimensionality reduction problem
in malware classification. Although their work is not directly
dealing with Android malware, we consider this publication
to be very relevant due to its tackling a similar large-scale
classification problem.

The dimensionality reduction problem for Android mal-
ware was tackled as well in [3] by exploiting the sparse
nature of n-gram frequency matrices. This allows to effi-
ciently compute partial singular value decomposition and
thus make PCA possible. However, their dataset consisted
of only 3869 Android applications, and with more files even
optimized PCA could be hard to fit into system resources.
With 20% of the files belonging to the test set, the proposed
algorithm achieved a FP rate of 2% and TP rate of 91%.

While reviewing malware detection approaches relying on
static analysis, the lowest reported FP rate was shown in [2]],
where the authors achieved FP = 0.06% and TP = 79.0% on
byte-code features with a SVM classifier. In our experiments
we achieve much higher TP rate with a fixed FP = 0.04%.

III. USED FEATURES

When designing malware detection systems for Android
applications one is confronted with a significant freedom
when it comes to the choices of feature; this is both a curse
and a blessing. An Android Application package (APK) is
an archive that in most cases contains 3 important files:
AndroidManifest.xml, classes.dex and resources.arsc. This
package is used for installing the application.

The first file AndroidManifest.xml [[7] contains general
information about the application to be installed. It provides
the summary of the resources, the permissions needed to
run the application and its components, including services,
activities, libraries, entry points, their capabilities, etc. As
most of the information is optional, one can expect variety
in the strings observed across different manifest files. Re-
searchers have actively used the permissions for Malware
Classification as highly interpretable features.

When it comes to the executable part of the application,
the DEX file is responsible for storing the compiled Java
byte-code of the application. DEX strings include identifiers

from the Java code, specifically: classes, strings, methods,
types, prototypes, etc. In fact this group of features con-
tributes the most to the explosion in the number of features.
At the same time this group can not be entirely omitted due
to the valuable information about the functionality of the
application. In order to use the identifiers from DEX we
had to implement our own extraction tool for the required
strings.

The third file resources.arsc consists of the precompiled
resources in a binary format. It may include images, icons,
strings, or other data used by the application. Our initial
study showed that features extracted from these files were
usually less effective in distinguishing between malware and
non malware; therefore, we don’t consider this features any
further.

Additionally, one can use information about other files
present in the APK; for example, for each of them one could
record the file names of embedded files, together with the
cryptographic hashes of their content. These features will be
considered in the remainder of this document as they add
value to classifying repackaged files, for example.

From Table [[] we can see how large the raw feature spaces
are, especially for DEX strings. Additionally, when training
a system for Android malware classification, one would be
encouraged to use all the available samples for training
the model, which could contain millions of malicious files.
Classification on this scale would be quite difficult to handle.

For our classification approach we use the most significant
feature groups: hashes (HASH), manifest strings (MSTR),
DEX strings (DEXS) and permissions from manifest files
(PERM).

IV. PROPOSED DIMENSIONALITY REDUCTION

In this section we describe two subsequent dimensionality
reduction (DR) techniques that are then applied to the
selected string features in sequence. As classical techniques
such as PCA [8]], non-negative matrix factorization [9] or
autoencoders [10] are rather of high-complexity for datasets
with millions of features, we proposed alternative ways, that
besides their speed show high performance.

A. Log ratio

The chance of a feature to contribute to the maliciousness
of a file is estimated as follows:

_ p(mal)
 plben)
where p(mal) and p(ben) are the probabilities of feature i
to occur in malicious and respectively benign files.

The probability of a feature appearing in the malicious
class is defined as:

(D

i

mal + k
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Table I: The size of the sets of raw extracted features from different groups. With the growth of the dataset, the feature
space reaches millions of features for DEXS and HASH feature types. Nmal and Nclean denote the number of malicious

and clean files respectively.

Feature type Source Nmal=1000 Nclean=1000 Nmal=10000 Nclean=10000
Manifest strings (MSTR)  AndroidManifest.xml 73,292 113,106 742,335 1,093,489
Permissions (PERM) AndroidManifest.xml 13,590 11,457 137,776 111,548
Dex strings (DEXS) classes.dex 4,362,573 9,960,902 44,155,410 99,268,349
Hashes (HASH) hashes of all seen files 133,683 431,243 1,370,128 4,490,554

where k£ is a smoothing parameter used to avoid zero
probabilities, mal is the number of malicious files having
the feature, and M is the total number of malicious files
observed. The same logic applies to the benign class.

Thus:
s mal +k B+ 2k

O = Yotk M2k 3)

where B and M are the number of benign and malicious
files respectively.

If we want to select the features being present only in the
malicious class (i.e., ben = 0), we can achieve the following
approximation when k is small and the data is balanced for
simplicity, meaning that B = M:

log(6;) = log(mal + k) —log(ben+ k) ~ log(mal) —log(k)
“

Hence the feature occurs one or more times in a ma-
licious file when log(6;) > log(1) — log(k) > —log(k).
Accordingly to have the feature only being present in benign
files the following inequality should hold: log(6;) < log(k).
Both inequalities hold when a feature occurs in either of the
classes and |log(6;)| > —log(k).

Therefore, the features with |log(6;)| < —log(k) con-
tribute both to malicious and benign files. To select some
portion of such features in addition to purely discriminative
features, we take features with |log(f)| > — log(ck), where
c< % and c should be adjusted depending on how we want
to squeeze the feature space.

In Figure |1| we plot the log 6 histogram for the DEXS
features extracted from 1000 samples from malicious and
benign classes. Only the most discriminative features with
|log 0| > —log(ck) were selected.

B. Random Projection

For a given matrix A € IRY*? a random projection [11]

defines a transformation to a lower dimensional space by
multiplying by a randomly generated matrix R € IRP*%,
namely:

B=A-R. 5)

The resulting matrix B preserves all pairwise distances of A
provided that R consists of i.i.d. entries with mean p = 0
and constant variance o [[12]]. Non-zero entries of the matrix
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Figure 1: The histogram of DEXS feature log-odds for 1000
malicious and 1000 benign examples. The border is 2.302,
¢ = 10 and k = 0.01 and only blue features are selected.
Through the ¢ parameter, we also use features from the
middle part of the histogram, where the features contribute to
both classes. Two high peaks on both sides are — log(k) and
log(k), where the feature occurs once in malicious (benign)
classes.

in a very sparse setting as introduced in [13]] are generated
with probability % Initialization of the random matrix R can
be expressed as follows:

1 with probability 5-
R=+/s40  with probability 1 — % . (6)
—1  with probability 5

The density of the generated matrix is controlled by
parameter s, that is shown to preserve the distances well
when s << \/5

As this type of projection is capable of preserving simi-
larity between the objects very efficiently, we used it as the
main approach for feature compression. In comparison to
Random Projections, Principal Component Analysis (PCA)
has much higher complexity O(D?N + D3).

Taking into account that matrix A consists of binary and
sparse features, our transformation can be calculated even



faster, depending on the implementation used.

In fact the projected matrices B can differ significantly,
taking into account that we need to select only a small
fraction K ~ \/E and some of the features will be taken
into account less than the others. However the variation of
the Area Under the ROC Curve (AUC) [14] results becomes
smaller with different RP initializations as K increases,
which can be seen in Table |lI} We checked the performance
of the logistic regression separately on DEXS features with
10 repetitions.

Table II: The effect of random projection initialization on
DEX strings on the AUC. With the increase of K the
deviation becomes smaller. Ntrain = Ntest = 10,000
and 10 replications are done. In other words, one does not
need to try different RP initializations and find the best one;
with sufficiently enough chosen features, the classification
performance varies much less.

K AUC

2,000  0.9913 £ 0.00052
4,000  0.9935 £ 0.00032
10,000 0.9944 £ 0.00027

V. PROPOSED APPROACH

Below we describe all the details necessary to implement
the proposed approach.

A. File parsing

At this stage for each file we collect the most significant
feature groups: HASH, MSTR, DEXS and PERM. Only
DEXS go through a preprocessing function that splits long
strings according to predetermined delimiters and gets rid of
irrelevant symbols. As other features are more standardized
in form, like manifest strings, we do not preprocess them
not to loose important information. DEXS contain strings
from the code that can vary significantly.

As all strings from different files are preprocessed in the
same way, this approach keeps the same frequencies for
initially the same features. At the same time, features having
a small difference, might end up producing the same features
after the preprocessing. For instance, “SIM_CARD” and
“sim card” form the same set of features after preprocessing:
“sim”,“card”.

Below you can find three steps we use for the feature
preprocessing:

1) First remove the following symbols from the string:

<>0;!1:=7*%+

2) Recursively split the string according to the following

delimiters: /n /t _$ ,&.

3) Split each string from step 2 if the string is in camel

case: camelCase = (camel,Case)

4) Lowercase all the resulting strings

We have used the most common symbols in steps 1 and 2,
the list of delimiter-symbols or symbols for removal could be
extended. The features in each group should then be sorted
by binary search during the training phase to speed up the
intersecting of selected features and features from each file.

B. Feature Selection

After the preprocessing, we select features based on what
was extracted from the training set.

From each file only the features with minimum number of
feature occurrences « in the training dataset and minimum
number of readable symbols /3 are extracted.

Secondly, the features are filtered based on their discrim-
inative power calculated by log#; of each feature in the
training set. Specifically, we take HASH and DEXS features
where |log6;| > —logck for chosen ¢ and k. Filtering
M STR can be done optionally in case the extracted feature
space is too large to work with. As PERM is a much smaller
group, one does not need to filter them by log-odds. We
will report our choices of ¢ and k£ in Experimental Results
Section [V1l

C. Dimensionality Reduction

When the set of features is fixed, we build a bag-of-words
model for the rest of the training set, where each file is
represented by the binary occurrence of the features. Using
only binary features optimizes storage costs and does not
have a strong effect on the output, as most of the features
will have 0 or 1 frequency in a file. For each i*" group of
features the training matrix X; € RY*Pi is built.

Now with the help of random projection matrix R; €
IRP:* K+ the projected matrix X” will be calculated. The
size of the projected dimension K; for each group of features
should be decided based on the computational limits. In
practice, we did not apply RP both to permissions and
manifest strings, as the dimension D; for them was rather
reasonable (<10,000) in comparison to the millions of
strings from DEX strings.

We have to stress that our DR is so efficient because cross-
validation of the random projection based on its performance
with the logistic classifier is not needed. We have previously
conducted (Table [[l) a series of experiments on separate
logistic regression classifiers trained on different initializa-
tions and showed negligible variation in the outcome when
it comes to AUC, FP and TP rate.

D. Building an ensemble

After dimensionality reduction with RP, compact data
matrices X*¥ are used for building our proposed ensemble
classifier. It comprises four logistic regression [[15] classi-
fiers, from which individual votes are combined by an SVM
[S] classifier in order to provide a final verdict about the
class of the object.
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Figure 2: The schema of the proposed ensemble method. We
don’t apply log-odds and RP for PERM and MSTR, however
with a larger training sample it could be helpful. Only DEXS
features require preprocessing, as the others have relatively
standard form.

Logistic regression is a generalized version of linear
regression for binary outputs. However in logistic regression
classifier linear combination of the explanatory variables X
is found to approximate logistic function of the probability
of the malicious class p(mal) with vector of coefficients 3:

p(mal)
1 — p(mal)

In our experiments the logistic regression classifier outper-
formed Naive Bayes, SVM and Decision Trees implemen-
tations from [16]], verifying a high performance previously
observed in [6]. The schema for our approach is shown in

Figure [2

logit(p(mal)) = log =p-X @)

VI. EXPERIMENTAL RESULTS
A. Used datasets

Benign Android samples were collected according to their
observation date up to the end of 2014. Malicious samples
are dated from the Ist of June, 2014 up to the 25th of
October, 2014. We thank the antivirus vendor for providing
us with the datasets.

The dataset used for training and validating the model
consists of Ntrain = 20,000 files equally from malicious
and benign classes. Half of the files from Ntrain were used
for feature selection with log-odds, and half for training the
model. Test dataset has Ntest = 10,000 samples, taken
equally from both classes.

B. Chosen parameters

The preprocessing step was done with a minimum feature
occurrence o = 3 and a minimum number of readable
symbols 3 = 5, based on the experiments in [17]. The
attempts of trying to increase « decreased the performance,

Table III: The comparison between the performances of the
proposed approach against the Naive Bayes implementation,
split by different sets of features. Using hashes in both
cases increases recall and AUC. Our proposed approach
significantly outperforms bag-of-words NB model, which
is with much larger feature space. Alternatively, the best
proposed approach with HASH achieves FP = 0.1% and TP
= 96.16% with another border.

Method  Feat. AUC TP FP
DEXS, MSTR
Proposed 0.9991 88.24% 0.04%
PERM, HASH
DEXS, MSTR
NB 09726 67.72% 0.04%
PERM, HASH
DEXS, MSTR
Proposed 0.9986 86.92% 0.04%
PERM
DEXS, MSTR
NB 09726 67.28% 0.04%
PERM

thus being fixed to rather low number. For large group of
features, like DEXS and HASH ¢ = 10 for log-odds; for
MSTR ¢ = 100 and k was set to 0.01 for all features. For
MSTR log(ck) = 0, meaning that log-odds was not used,
as the size of its feature space was reasonable.

Logistic regression was cross-validated with C €
{0.5,1.5} with a step 0.05, and SVM with C € {0.5,1}
with a step 0.1. Other settings were set to default parameters
as in scikit-learn python toolbox [16]. The features HASH
and DEXS were reduced to dimensionality KX = Ntrain
by default, unless stated otherwise.

C. Evaluation

One important aspect when evaluating malware detection
systems is the FP rate; a low FP rate means that benign
applications will rarely be blocked. At the same time overall
performance can be assessed based on Area Under the ROC
Curve (AUC) [14], that takes into account the area under the
curve with all FP and TP borders. We will report both AUC
and FP, TP values. As very low FP rate is very important
in practice, we fix FP to 0.04% and report corresponding
TP rate. We have chosen FP = 0.04% as it was the lowest
non-zero FP that compared NB classifier produced and to
make a fair comparison with the ensemble of classifiers, we
have chosen the same FP rate.

In Table we show those measures after running our
approach on the Ntrain = 20,000 and Ntest = 10,000
datasets. Adding hashes as a feature group slightly enhanced
the performances. In addition to the proposed approach,
we have implemented a Naive Bayes (NB) approach for
comparison, where the features are only filtered by a@ = 3



and 8 = 5 without log-odds filtering and RP. As Naive
Bayes classifier has a low-complexity, we can use larger
feature space with it and check, if using more features helps
to improve the results. The estimates for the NB method
used both Laplace smoothing parameter k¥ = 0.0001 and
normalization as proposed in [17]. From Table[[Tl] we can see
that our approach with reduced feature space significantly
outperforms Naive Bayes, which uses the extensive feature
space. We have to note that the NB classifier needs many
more samples and features to increase its performance as its
probability estimates become more accurate with the growth
of number of samples [§].

VII. CONCLUSIONS

In this paper we suggest an efficient approach for dimen-
sionality reduction for the proactive detection of Android
malware. Specifically, we proposed an efficient way to ex-
tract meaningful representations from four highly significant
Android feature groups and used those representations with
an ensemble of logistic classifiers to achieve significant
performances.

The dimensionality within large groups (HASH and
DEXS) was reduced significantly: from 9.9 million to 10,000
by an initial preprocessing step followed by two low-
computation dimensionality reduction methods: log-odds
and random projections. Other groups of features, strings
and permissions from manifest file form much smaller
feature space in comparison and filtering by the minimum
feature occurrence and number of readable symbols was the
only technique we used. If necessary, log-odds and random
projections can be applied to any group of features with their
own parameters.

The evaluation of the proposed dimensionality reduction
approach on the dataset of 20,000 training and 10,000 test
samples with trustworthy labels showed an improved TP rate
of 88.24% with an acceptably low FP rate of 0.04%. To
the best of our knowledge we are in line with state-of-art
performance due to preserving quite a small FP rate.

We believe that due to the simplicity and relative effi-
ciency of this approach, it can be adopted by practitioners
in the security field.
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