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In applications of signal processing and pattern recognition, eigenvectors and
eigenvalues of the statistical mean of a random matrix sequence are needed.
Iterative methods are suggested and analyzed, in which no sample moments are
used. Convergence is shown by stochastic approximation theory.  © 1985 Academic
Press, Inc.

1. INTRODUCTION

There are several applications of digital signal processing and pattern
recognition in which eigenvalues and eigenvectors of data correlation or
covariance matrices are needed. Some such applications are optimal feature
extraction in pattern recognition [2]; data compression and coding [19];
optimal pattern classification [8, 18]; antenna array processing for noise
analysis and source location [14]; and adaptive spectral analysis for fre-
quency estimation [15, 20, 16]. In a stationary case, the problem can be
presented in the following general form: Consider an almost surely sym-
metric real n x n random matrix whose finite mean is denoted 4. We want
to compute the dominant eigenvalues and corresponding eigenvectors of A
in a situation in which A itself is unknown but in which there is available a
sequence of samples 4,, k=1, 2,... with E{4,} = A4 for all k.

The straightforward method is to compute the sample mean and then
use standard techniques like the QR method. This may be recommended if
the {A4,} sequence is completely general. However, in the applications
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70 OJA AND KARHUNEN

involving correlation or covariance matrices, the A4, matrices have a
specific form A4, =wu,u] with {u,} a random vector sequence. Then an
iterative method which updates the estimates every time a new sample u,
becomes available has computational advantages [6].

As a stochastic approximation counterpart of the “simultaneous iteration
method” of numerical analysis [17] we suggest the following algorithm:

X,=X, (+ A X, Ty, (1)
. Xk__"XkRk_l, (2)

in which X, = (x(Mx{®---x{*))e #"** is a matrix whose columns x{)e 2"
are orthonormal and approximate s (with s<n) of the eigenvectors of A.
In (2), R;! is a matrix orthonormalizing the columns of X,. Matrix
I' e #7*° is the usual diagonal gain matrix of stochastic approximation.

In the present paper the almost sure convergence of the x{” to eigenvec-
tors of A is shown. These eigenvectors correspond to the s largest eigen-
values of 4, which are assumed distinct, i.e. of unit multiplicity. It is also
shown that the algorithm

o= (1=9) o |+l Aexf) ) (i=1,2,0,9) (3)

then converges almost surely to the corresponding eigenvalues. The
emphasis of this paper is on convergence theorems, with references to
numerical applications.

The relation of (1), (2) to the simultaneous iteration method, which is an
extension of the power method of numerical analysis, is of a theoretical
nature only. There exist iterative methods well known in statistical
literature, which use the power method directly for computing eigenvalues
and eigenvectors of covariance matrices [ 1, 227]. These methods use a fixed
sample of data vectors. The eigenvector and eigenvalue estimates are com-
puted one at a time and their consistency follows from the consistency of
sample moments. The algorithm given in the present paper is very different.
No sample moments are computed, and several eigenvalues and eigenvec-
tors are produced in a fully parallel manner.

Depending on the form of orthonormalization in (2), the present
algorithm allows comparisons between some related stochastic
approximation type algorithms reported earlier, as well as between the
asymptotic solutions x{” and the asymptotic paths of ordinary differential
equations. Krasulina [8] introduced a stochastic approximation algorithm
for computing one dominant eigenvalue and the corresponding eigenvector
of A:

i
Xig 1 ApXe_q x ]
k—1 |

T
X _1Xk—1

Xe=Xp_1+ Yk [Akxk—l— (4)
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where y, >0 is a sequence of gain scalars. The convergence of x, to a ran-
dom vector lying in the eigenspace corresponding to the largest eigenvalue
of E{A,} follows from the inequality

E{llxe o 1 1xa} < el (1495 E{I w4 117)). (3)

If E{||4.|*} is bounded and Y y2 converges, this yields convergence, but
the upper limit for E{||x,]|*} can be very large. Computer simulations con-
firm this.

We discuss in Section 5 of the present paper a simpler algorithm

Xpe=Xp 1+ Vel Agxi 1 — (X]_ Apxe_ 1) Xe_ 11, (6)

whose convergence to a wunit eigenvector of A emerges as a corollary of
results established in Section 2.

Algorithm (1), (2) is also closely related to a data orthogonalization
method given by Owsley [14] in context of signal processing. His
algorithm is a special case of (1), (2) with A, =u,u], all diagonal elements
of I', equal and constant, and R, ' performing Gram-Schmidt orthonor-
malization. Also, Thompson [20] gives essentially the same algorithm with
A, = —u,ul, although vector u, then has different properties. Geometrical
considerations have been presented by both Owsley and Larimore and
Calvert [10]. However, the authors do not give a rigorous proof of con-
vergence of algorithm (1), (2).

Our method of proof relies on results given by Kushner and Clark [9],
concerning almost sure convergence of stochastic approximation
algorithms. We prefer this technique to the classical methods mostly based
on Dvoretzky’s results (see, e.g., [21]), because the use of limiting differen-
tial equations seems to provide a much better insight into the asymptotic
behavior and mutual relations of the algorithms under study.

2. CONVERGENCE OF THE UNIT EIGENVECTOR
CORRESPONDING TO THE LARGEST EIGENVALUE

When X, consists of one column x, only, Egs. (1), (2) read
Xe=Xe_1+ViArXi_1, (7)
X =Xi/l Xl (8)

where the Euclidean vector norm is used. Assuming y, small enough, (7)
and (8) can be expanded as a power series in y,, yielding

Xe=Xg_ 1+ Y[ AeXe 1 — (X7 _ApXp 1) X1 1+ Ve 9)
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There b, =0(y,). Since x7_,x,_,=1, Eq. (9) can further be written as

(xf_Axi 1) ]
X1

T
Xp_1Xk—1

Xe=Xgp1+ Yk [Axk—l—
+ 9 [(Ae—A) xp_y —xT_ (A — A) Xp_1Xk—11+vebe.  (10)

Assume now:

Al. Each A, is almost surely bounded and symmetric and the A, are
mutually statistically independent with E{A,} = A for all k.

A2. The largest eigenvalue of A has unit multiplicity.

A3. Vk>052ﬁ<°0,2?k=00

A4. Each A, has a probability density which is bounded away from zero
uniformly in k in some neighbourhood of A in Z#"*".

We modify a result given by Kushner and Clark [9, p. 39] to suit the
present algorithm:

LemMa 1. Let Al and A3 hold. Let z, be a locally asymptotically stable
(in the sense of Liapunov) solution to

dz (zTAz) z
= Ar— 11
dt Az z'z (11)

with domain of attraction 9(z,). If there is a compact set oA < D(zy) such
that the solution of (7), (8) satisfies P{x, € o infinitely often} =1, then x,
tends to z, almost surely.

Proof. The boundedness of x, is trivially true due to (8). Assumptions
A221 and A2.2.3 of Theorem 2.3.1 in Kushner and Clark [9] follow
directly from (11) and A3. Condition A.2.2.2 is verified as follows: in (9),

we have
b= _I/Z'Yk(xlf—lAixk— 1) Xg_1— 1/2y BrAiXi 1
+ 7y LA +7eBe) ™ V2 14+ 1/2y B I — Yic Aic) Xie— s

with B, =2xT_ Agxi_1+yixi_1A2x,_;. Since x,_; and A, are as.
bounded, b, is a.s. bounded and tends to zero as y, — 0. Condition A.2.2.4
is finally verified as follows:

2 Vi[(Ai_A) xi—l—xiT—l(Ai—A) Xi_1X%i 1]
i=k

is a martingale sequence due to the independence and a.s. boundedness of
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matrices A, and, as pointed out by Kushner and Clark, for any ¢>0 it
holds that

Z Yil(di—A)x,_ —x ((4;—A4) x;_ 1 x;_ 1]

i=k

lim P {sup

k — o0 m=k

>s}=0

because Y y2 converges ([3] or [11]).
We next show that the unit eigenvectors of 4 corresponding to the
largest eigenvalue are indeed the possible limits of the O.D.E. in Lemma 1.

LEMMA 2. In the O.D.E. (11), let A2 hold and let c*) be one of the two
unit eigenvectors corresponding to the largest eigenvalue AV of matrix A.
The points c") and —c'V are (uniformly) asymptotically stable. The domain
of attraction of ¢V is D(cV)={xeR"|xTc¢V>0} and that of —cV is
D(—cV)={xeR"|xTcM <0}.

Proof. Set
2(1)= 3, 1)
i=1

with ¢V,..., ¢ an orthonormal set of eigenvectors of 4. Then (11) yields
dn/dt =2\ — (z"Az) n'?/z"z, i=1,..,, n. The solutions n(¢) are unique,
and if n'(¢,) = 0 for some t,, then #'(¢) is identically zero. For simplicity,
set to=0. If now z(0)7c™ =#1(0)=0, then #*(¢) remains zero for all ¢
and z(¢) cannot tend to ¢V or —c™). Assume now that #‘(0)#0. Then
n(¢)#0 for all + and we may define ((¢)=n"()/n™V(t), yielding
dtO(e)/dt = (dnD/de nV — nD dnV/dt)/n %, hence

dC(i)/dt — (l(i) - A(l)) C(i) (12)
whose solution on [0, c0) is
{O(t) =exp[ (A" —24M) 1] {(0). (13)

There A is the eigenvalue of 4 corresponding to c¢”. Because 1) < A1),
{Y(t) tends to zero as ¢t — oo for all i=2,..,n On the other hand, (11)
implies (d/dt) |z|*=2z"(dz/dt) =2(zTAz—zTAz) =0. Thus if |z(0)|=1,
then |z(z)] =1 for all «. Then 37_, n”(¢)*>=1, hence the convergence of
{(¢t) to zero (i=2,.,n) implies the convergence of n)(t) to zero
" (i=2,..,n) as t - oo. But then lim, _, ., "(¢)?>= 1. Since n1(¢) #0 for all ¢,
we have lim n"(¢)= +1 according to the sign of #V(0) =2z(0)"c'". This
concludes the proof.

LeMMA 3. In (7), (8), let Al to A4 hold. Then there exists a number &
such that the event |xIc"| > ¢ occurs infinitely often almost surely.
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Proof. Equations (7) and (8) yield
x[c(l)=xl—lc(1)+ykc(1)T[(Ak_A)+A]xk—l- (14)
(14 7iedi) Xe—1

4, there exist positive numbers 6 and p such that
uniformly in k. Assume without loss of
Imost sure upper bound for | Al
(1, Then we obtain from

By assumption A
P{c"V7(Ax—A4) Xk-1 20} 2p,
generality that x]_,c"’>0. Let a be ana
and denote again the largest eigenvalue of 4 by 4

Eq. (14)
XZC(I)Z T 7.0 (cM7Txy 4 +'))k'l(l)c(l)rxk—1 +740)
e
1y .
=-————1+’Ykll C(I)Txk + e 0.
1+})koc - 1+'))kd

nt, with probability at least

Since matrices A; are statistically independe
s for all j=k, k+1,., M.

M—k+1 we have ¢P7(4;—A4) x; 12

equal to p
Then
147,40 : . ,
xJTc(l)Z—_tL—c“)ij_l—F Y s for j=ky. M,
1+y;a 1+ya

M ) M 1 _/1(1)

j= L+y0) 2551 147y

M . M 1 ./'{(1)
=6 Y (__V;__) I1 (_ﬂ_'__),

i L+y0) 21 1+4+7ya
since ¢V7x,_, was assumed positive and due to A3 it may be assumed
without loss of generality that 0<7y;< |1/A] for i>k. In the above, we
define a product of the form [1", .. to have the value 1, as usual

Furthermore,
M ] M 1 ~/1(1)
s () 01 ()
oy L+y0) 251 1+ya
__ 0 §(1+v,-a)—(1+v,-z‘“) i (HM‘”)
_a'—’l“}j=k 1+'))jo( i1 1+')),'OC
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Since o is now an upper bound for 4, it follows:that & can be chosen larger
than [1(V]. Then there exists a number 6> 0 such that e~ %> (1 +11V¢)/
(1 + o) for all £ in the interval [0, [1/AV|]. This implies

(1)
1+y9,A% <
1+7ya

e_oyi

for i>k and

1 A M
I1 (—ﬂ—><exp<—0 Y v,i),

iZk \ 14y =k

implying

T A 5
i (Lo (=0 L ) )

Choose now ¢=18/(a— A"?). Due to the divergence of the sum X y;, there
is an index M such that

0 < Z"_‘
—_— 1—exp<—9 y;))}s.
oa— A" i=k

The conclusion from the above is that the event

{¢DTx gy >e, when ¢VTx, >0},

with ¢ a fixed positive number, has at least probability p™—k+1 Since {x;}
is a Markov process due to the statistical independence of the A4, it follows
that starting from any state x,_, such that ¢(V7x,_,>0, the region
{x|x7cV > ¢} is eventually reached with probability one [3]. The proof is
completely analogous for the case c¢"x,_;<0 and the region
{x|xT¢™ < —¢}. So the union of these two regions is reached by the
process {x,} infinitely often with probability one, as was to be shown.

The convergence of the algorithm (7), (8) is now a direct corollary of the
above lemmas.

THEOREM 1. In algorithm (7), (8), let A1, A2, A3, and A4 hold. Then x,
tends either to ¢V or —cV almost surely as k — .

Proof. By Lemma 3, {x,} visits a.s. infinitely often a compact subset of
the domain of attraction of one of the asymptotically stable points ¢ and
— ¢ in differential equation (11). Lemma 1 implies then the theorem.
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3. DETERMINATION OF ALL EIGENVECTORS

In establishing convergence for the second, third, etc. eigenvector, we
proceed along very similar lines as in the case of the first vector.
Assumptions A2 and A3 must first be modified to suit the algorithm (1),

(2). They are now replaced by

AS. The s largest eigenvalues of A are positive and each of unit mul-

tiplicity.
A6. The diagonal elements of the sXs diagonal matrix I, are, in this
order, Vi, 0Py 071, with each 9@ positive and y, satisfying A3.

LEmMMA 3. For y, small, the jth column of X, in (1), (2) satisfies
X = ), + 00 L5 <2

i-R
- Z (1+ a(i)/g(j)) x;ci)— 1x§ci)—T1] Akxij)—l + O0(v%)- (15)

i=1

Proof. Tt is easily shown that (15) holds for j=1 (this is then Eq. (9)).
Equation (15) for j=2,.., s can be shown by induction, making use of the

orthonormality of vectors x{ , and x| for i<
In exactly the same way as Eq. (11) is derived from (9), Eq. (15)

corresponds to the O.D.E.
dz(j)/dt — g(j)[AZ(j) _ (Z(j)TAZ(j)) Z(j)

j—=1
= Z (1 + g(i)/g(j))(z(i)TAz(j)) Z(i)] (16)

i=1

s are the possible almost sure limits for

whose asymptotically stable solution
ble points are given in the following.

x{) as k grows to infinity. These sta

LEMMA 4. In the set of differential equations (16) for j=1,.., s, let AS
and A6 hold. Let ¢,..., ¢ be unit eigenvectors corresponding to the s

largest eigenvalues of A. In the jth equation, the points ¢ and —c are

asymptotically stable.
Proof. Denote eV(t) = zV(t) — V. Let A1) denote the eigenvalue

corresponding to ¢!. We have from (16).

j—1
de(f)/dt=BU)e(f"+Jz CliDed 4 f(eD),..., e™) (17)
— _

i=
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with
BY) = G(j)[A L 0)) gun 2/1(j)c(j)c(j)T
j—l . > . I3 .
— Z {(1 + 9(1)/0(1)) A(’)c(’)c(’)T], (18)
i=1
C) = — (9(1‘) o 9(!‘)) l(j)c(i)c(j)T, (19)
and

fU) = QUL — e (eDT 4o 1)) — 2A0)(e DT )
j—1
— (DT 4e) ¢V] _jz (V) 4 90
i=1

x [(eVT4eD) e 4 AV (DTl

+ AD(eDTE®) o 4 (DT gty o], (20)

If we denote e = (e e@7--- ¢)7T) defining e as a ns-dimensional vector
function, we have

de/dt = De + f(e) (21)

with De #™*" a matrix of lower triangular block form whose diagonal
blocks are the matrices BV,..., B and f(e)e #™ a vector with the
fM, .., £ as its subvectors. Now both f(e) and lim df/de are zero at e =0,
due to (20). The eigenvalues of D are the eigenvalues of the diagonal blocks
BM to B®). Each of these matrices has the same vectors ¢'V),..., ¢ as eigen-
vectors, as is apparent from (18). The eigenvalue of BY) corresponding to
eigenvector ¢ equals —8WAY —9VAY) for i< j, —204Y) for i=j, and
0V(AD — 1Y) for i>j. Due to AS5, A6, all of these (for j<s,i<s) are
negative. The asymptotic stability of zero as the solution of (21) follows
from Theorem 2.4 of Hale [4, p. 86]. This concludes the proof.

Referring again to Theorem 2.3.1 of Kushner and Clark [9], the con-
vergence of algorithm (1), (2) may be established.

THEOREM 2. Assume Al, A3, AS, and A6 in algorithm (1), (2), and
assume that with probability one each process {x} (j=1,..,s) visits

- infinitely often a compact subset of the domain of attraction of one of the

asymptotically stable points, say +c). Then almost surely
lim x)=c?  (j=1,.5). (22)
k— o0

Remark. Tt is immaterial in view of applications whether the limit is ¢!
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or — ¢ The assumption of x{ coming infinitely often close enough to its
eventual limit is in fact an assumption on the distributions of the {4}
sequence. Since ¢/ is an eigenvector of A corresponding to a strictly
positive eigenvalue, and hence E (e 4¢P} is positive, T4, cY) must be
“large” infinitely often. The increment in algorithm (1) then tends to bring
x{ closer and closer to either ¢ or —c'. In computer simulations, no
problems related to this assumption ever occur. The validity of this
assumption in algorithm (7), (8) for computing one eigenvector was shown
above in Lemma 3 under assumption A4.

4. DETERMINATION OF THE EIGENVALUES

Next we turn to algorithm (3). We have
TueoREM 3. Let Al and A3 hold, and assume in (3) that x{, given by
algorithm (1), (2), tends almost surely to an eigenvector of A corresponding

to eigenvalue AY. Let ¢ be as. bounded. Then ¢ is a.s. uniformly bounded

and almost surely

lim ¢{?=24".

k — o

Proof. For convenience, in the following proof the superscript i ‘has
been dropped, since each o (i=1,., s) may be considered separately.

Equation (3) yields

k k k
Ukzn (1"Yj)0'0+ Z )’j(ij_1ijj—1) 1—[ (=74

j=1 j=1 h=j+1
hence almost surely
k k k
loxl < n(l—?j) |60|+°‘Z7’j H (=745
=1 j=1 ln=j+1

| = 1. Assumption

where « is the a.s. upper bound of | 4.[l. Note that [|x;_,
< 1; since then

A3 implies that from some index K, we can assume 0 <7y,
k k k k
[T t=-y)<t, Yoy, 1 =y=1-11 A=-9)<l
i=K j=K h=j+1 i=K

we obtain the almost sure bound

|| <lokl +a,
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showing the: first part of the theorem. To establish almost sure convergence,
write (3) in the form

O =0k 1—VelOk1—A+(A—=x{_ Ax, )+ x7_(A—Ay) x,_ 1]
=01~ Yelok 1 —A+ v+ & ]

Due to the a.s. convergence of x,_ to ¢, v, =A—x]_,Ax,_, tends to zero
a.s. Let & _, be the o-algebra generated by A4,,.., 4,_;. Then all x,_,,
Xp_2, are & _,-measurable due to Al, and &, =x]_ (A—A,)x,._;
satisfies E{&,|&,_y, &x gy} =E{Ec| F_ 1} =0. Also, because |x, | =1
and A4, is a.s. bounded, each &, has bounded variance. Then Y v, &, is a
martingale sequence and we have

i Vi Sk

k=p

lim P { sup

p=>® q=p

>s}=0

for all €>0, since Y y2 converges. Algorithm (3) thus satisfies A.2.2.1
through A.2.2.4 of Theorem 2.3.1 of Kushner and Clark [9]. Since the only
asymptotically stable solution of the O.D.E.

do/dt=1—c (23

is 4, whose domain of attraction is the whole real line, the a.s. convergence
of g, to A has been established.

5. SOME MODIFICATIONS OF THE BASIC ALGORITHM

Another similar recursive method to compute the eigenvector
corresponding to the largest eigenvalue is suggested by the -asymptotic
analysis of Sec. 2 and given by Eq. (9). When the O(y2) term is dropped
there we have

Xe=Xp_y+ Vel ApXp_y —x{_ AeXpe_ 1% _1]

— T i
=X+ yelAxe 1 —x[_ Axi x4 ]

+ el (A —A) xp g —x[_ (A= A) Xp_ 1 X1 ] (24)
This shows that the limiting differential equation is now

d
jj =Az—(z"Az) z.
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Its asymptotically stable points are again ¢*) and —c" with the same
domains of attraction as in Eq. (11), as can be shown in analogy with
Lemma 2. To show convergence to ¢ in (24) we have to verify that x,
remains bounded; the rest of the proof goes through as before with minor
variations.

In (7), (8) the boundedness was guaranteed by an explicit normalization
at each step. No such normalization is present in (24). It turns out that,
even with y, bounded, there is a possibility that during the early phase of
the recursion |x,| grows too large to be able to catch up any more with
the orbit of the limiting O.D.E. This must be prevented by setting a specific
upper bound for y,. Also, there is a possibility that ||x,|| grows even then
unless A, is positive semidefinite, although in practice this does not seem to
be a necessary assumption. We show the following:

LEMMA 5. In (24), let A, be positive semidefinite and bounded almost
surely for all k. Let y, > 0. Assume that x, is a.s. bounded. Then there exists
a uniform upper bound for y, such that x, is a.s. uniformly bounded.

Proof. Let u be a real number satisfying ||xoll — 1< u and n—pur=8.
Let a be the a.s. upper bound for ||4,[. We will show by a simple induction
argument that |x,[><p+11if

<—. 25
Yk ” (25)

Equation (24) yields
12 = N - 1%+ 2y(1 — e 1 I2) ek —  ArXi—1)
il AR yHxe - 1P =20 - Aexi— ) (26)
First, assume that ||x,_,|| <1. Then we have a.s.
1l <1+ 20 14kl + 72 14il® < 1+ 2y,0 + yR0
<1+4/u+4/p*<2(1+4/p*)<p+1
because pu®— u?>8. Second, assume 1< |x; || <2. Then as.
Ix 12 <242y302<2+8/u><pu+1.
Finally, assume 2 < ||x,_|><u+ 1. From (26), x> < llx,_ /1% if
29,1 — llxe— 1)ed _  ApeXie— 1)+ VEXi— 1 AiXie

+?/zc(”xk—1||2_2)(x[—1Akxk—1)2<0-
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Since 7, >0, a sufficient condition for the above is

2(l1xe 12— 1) ArXi—1)
Vi < : (27)
ES T A%+ (12 = 2) (] Awxy 1)

The denumerator of (27) is bounded from above by
xp_Aixi 1+ (s - ol1> = 2) (70— 1 AR X 1) lxe -1
= (1= llxe—1ll*)? Cef - AR Xk —1);
where the Cauchy-Schwartz inequality has been applied, and we have a.s.
21— /1> = 1)0ek 1 AXic—1)
Xt Aixe o+ (s o 12 = 2)(x ] ArXs - 1)°

2(x{_AeXr—1) > 2 2

2 T 2 2 = : 2_-
(T A2x_ DI%k— 112 —=1) 7 phmax(Ai) ™ por

Since y, <2u " 'a~', Eq. (27) holds and lx/12< p+ 1. Lemma 4 follows by

induction. _
The convergence of algorithm (24) is now a corollary of the results

established in Section 2.

THEOREM 4. In algorithm (24), let Al, A2, and A3 hold. Assume that
each A, is a.s. positive semidefinite, y, satisfies (25) and || x,|* is a.s. bounded
by u+ 1. Assume further that for some positive &, the event (xITcM)>>¢
occurs infinitely often with probability one. Then X, tends either to ¢V or to
—cV almost surely as k — .

Proof. When some obvious modifications are made in Lemma 1 and its
proof, the above theorem follows from Lemmas 1 and 2 in the same way as

Theorem 1.
For the other eigenvectors of A4, two possible modifications of (1), (2)

are the following:

=)+ 0%, | A = AT AL ) X2,
j—l " I3 o - o
s +e‘”/e‘")(xm«ikx‘kfll)x;:)_l], (28)
i=1

which is simply Eq. (15) when the O(y2) term has been dropped; and

Xk=Xk—l+'yk[Aka—(XI{—1Aka-l)Xk—l] (29)
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with
Xo=(x - x),

Algorithm (29) does not produce the eigenvectors as such, but only an
orthonormal basis of the subspace spanned by the eigenvectors ¢") to ¢,
This may be sufficient in some applications, notably in the learning sub-
space methods of classification [7, 12], but it is not sufficient if the eigen-
vectors are needed.

6. SoME NUMERICAL RESULTS ON THE RATE OF CONVERGENCE
AND ESTIMATION ERRORS

Algorithm (1), (2) has been used by Owsley [14] in a acoustic source
location problem and by Thompson [20] in an adaptive implementation
on Pisarenko’s harmonic retrieval method to find the eigenvectors
corresponding either to the largest or the smallest eigenvalues of a data
correlation matrix. Results are given in the two papers referred to above.
The smallest eigenvalue problem is converted to the largest eigenvalue
problem when matrix —A, is used in Eq. (1). Both authors use constant
gains j.

In a computer test with artificial data, we used 15-component indepen-
dent stationary sample vectors u, to define matrices 4, =u,ul e R~
Due to the form of (1), these matrices need not be formed explicitly. The
largest eigenvalues of the theoretical correlation matrix 4 =E {u,ul'} were
11 =2613 and A1® =1.470. With the gain sequence y{’=1y,=0.5/k, the
first eigenvector estimate x{! converged as shown in Table I. The initial
value x§!) was one of the sample vectors u,. The convergence is fast in the
beginning but then slows down. The gain of the form 1/k seems to be near
optimal in practice.

TABLE 1
Convergence Rate of Algorithm (1), (2)

k et — {0l

30 0.2250

75 0.0991
150 0.0895
300 0.0884

For details, see text.
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The standard method to estimate ¢! would be to first compute
=(1/K) 2.f_, u,ul and then obtain its largest eigenvalue and eigenvec-

tor, e.g., by the power method. A comparison showed that the stochastic
gradient algorithm needs roughly 1.5 to 2 times more sample vectors u, to
achieve the same estimation error, as compared to the standard method.

H

owever, this is compensated by the larger speed of computation. Also the

storage demands are much smaller for algorithm (1), (2).

Results on the computation of several eigenvectors and also eigenvalues,

both for stationary and nonstationary data and also using algorithms (24)
or (28), have been given elsewhere by the present authors [5, 6].

2,

>

10.

11.

12.

14,

15.
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