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Abstract—A class af nonlinear PCA( principal component analysis) type learning algorithms is derived by minimizing
a general statistical signal representation error. Another related algorithm is derived from a nonlinear feature extraction
criterion. Several known algorithms emerge as special cases of these optimization approaches that provide useful
information on the properties of the algorithins. By taking into account higher-order statistics, nonlinear algorithms
are ofien able to separate component signals from their mixture. This is not possible with linear principal component
subspace estimation algorithms. A suitably chosen nonlinearity makes the results more robust against various types
of noise. Estimation of noisy sinusoids is used as a demonstration example.
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1. INTRODUCTION

In unsupervised learning, the neural network tries to
self-organize so that it detects some useful features,
regularities, correlations, or signals from the input data
with little or no knowledge on the desired results. Heb-
bian learning is a basic unsupervised technique es-
pecially in feedforward networks (Hertz, Krogh, &
Palmer, 1991). This is because it often produces opti-
mal responses to the input data and is neurobiologically
justified (Linsker, 1988; Oja, 1982). In particular, Oja
has shown in a seminal paper (Oja, 1982) that simple
Hebbian learning applied to a single linear neuron ex-
tracts the feature describing best in the mean-square
error sense the input data, namely the first principal
component.

In Hebbian learning, the learning term is propor-
tional to the product of the input and output of a neu-
ron. If applied directly, this leads to two problems: 1)
learning is unstable, that is, the weight vectors of the
neurons grow infinitely large or tend to zero; 2) weight
vectors of different neurons become similar, producing
similar dutputs. The first problem can be solved by
adding some kind of stabilizing term. The latter prob-
lem can be managed either by competition of neurons
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or by imposing some constraint that makes the weight
vectors different.

Qja’s single neuron learning can be generalized to
networks having several neurons in the output layer.
The weight vectors of neurons converge then usually
to the so-called PCA subspace of input vectors, which
is defined by the principal eigenvectors.of the correla-
tion matrix of the input data. An example of this and
the starting point of our study is the symmetric algo-
rithm (Hertz et al., 1991; Oja, 1989)

Wit = Wi+ [T — W W Ixx [ W, (1)

In eqn (1) the L X M-matrix W, = [w,(1), ....
w(M)], L = M, has the weight vectors of the M neu-
rons after k iterations as its columns. The output
xIw(i) of ith neuron depends linearly on the corre-
sponding L-dimensional neuron weight vector w,(i)
and kth input vector. x,. A Hebbian type term
xXF Wy, product [x7w,(7)]x, of the output and the
input of each neuron, is responsible for the learning.
The gain parameter w; = 0 controls the learning rate.
The additive nonlinear constraint W, W/7x.xI W,
roughly orthonormalizes the weight vectors: W] W,
~ 1.

The algorithm (1) can be shown to learn the M-
dimensional PCA subspace of the input vectors (Baldi
& Hornik, 1991; Hertz et al., 1991; Hrycej, 1992; Oja,
1992), even though a strict convergence proof is still
lacking. If W, has only one column, eqn (1) reduces
to the basic Oja’s single neuron algorithm. The algo-
rithm ( 1) was first published in Oja (1989), though it
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had been studied several years earlier in context with

Oja’s single neuron learning rule (Karhunen, 1982;

Addi, 1984) and independently by Williams ( {985).

The network computing eqn (1) can be realized in dif-

ferent ways (Oja, 1989); hardware implementation has

been considered by Kotilainen, Saarinen, and Kaski

(1992).

Many different more or less neural PCA subspace
or principal components estimation algorithms have
been proposed during the last years [ for reviews and
introduction, see Baldi & Hornik (1991); Cichocki &
Unbehauen (1993); Hertzetal. (1991); Kung (1993);
Oja (1992)]. Principal component analysis networks
are useful in optimal feature extraction and data
compression, and they have a number of possible ap-
plications in different areas. However, they have some
limitations that make them less attractive from a neural
network point of view,

1. PCA networks can realize only linear input-output
mappings. Additional hidden layers with linear pro-
cessing do not bring anything new. On the other
hand, nonlinearity is one of the essential features of
neural networks and a major reason for using them.

2. Computationally efficient standard numerical
methods are available for solving the principal ei-
genvectors and -values needed in PCA. The relatively
slowly converging gradient type neural algorithms
are not always competitive with classical techniques
especially in large problems, even though they were
realized using hardware.

3. Principal components are based solely on covari-
ances or correlations. These second-order statistics
can describe completely Gaussian data and station-
ary, linear processing operations only. Therefore,
higher-order statistical methods are currently be-
coming important in signal processing.

4. The outputs of PCA networks are mutually uncor-
related, but usually not independent. Even though
the input data consist of a mixture of statistically
independent subsignals, the uncorrelated outputs are
generally some linear combinations of the subsignals
only. In many cases the subsignals themselves are
desired, but PCA networks cannot provide them di-
rectly.

For these reasons, it is meaningful to study various
nonlinear generalizations of PCA learning algorithms
and networks. If defined sensibly, such a learning al-
gorithm could yield something more than just uncor-
related outputs that describe best, in the mean-square
error sense, the input data. Some work has already been
done in this direction. Carlson (1990) and Foldiak
(1990) have applied nonlinearity in context with anti-
Hebbian learning, Sanger (1991) has added a nonlinear
layer to a PCA network for approximating nonlinear
functions. Softky and Kammen (1991) and Taylor and
Coombes (1993) have used higher-order correlations
in context with Oja’s single neuron rule. White (1992)
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has derived an approximative nonlinear Hebbian
learning rule by considering a constrained optimization
problem. Shapiro and Priigel-Bennett (1992) have
shown that if the activation function of the neuron is
nonlinear enough, the neuron can learn to discriminate
one pattern from the others; otherwise, it will learn a
complex mixture of the input patterns. Sirat (1991)
has used a simple hard limiting nonlinearity and shown
that the results approximate PCA.

In an interesting paper by Oja, Ogawa, and Wa-
ngviwattana (199 1), some nonlinear generalizations of
the symmetric algorithm (1) have been proposed at the
end of the paper, though their paper deals mostly with
the single neuron case. -The nonlinear variants have
been obtained rather heuristically simply by replacing
either one, two, or three of the products xj W or
W/x, appearing in eqn (1) by the nonlinearity

g(xTW,) or g(W[x,). This leads to the following al-
gorithms (in the original paper only the correspondmg
averaged differential equations are given):

Wi = Wi + il xix I Wi — WWIxg(xiW)1 - (2)
Wi = Wi + {1 = W Wxeg(xT W) (3)
Wiwr = Wi+ [ xeg(xE W)

= Wig(Wix)g(xT Wil (4)

Here the function g(¢) is applied separately to each
component of the argument vector. Thus, for example,
g(xI'W,) is a row vector with elements g[x{w;(i)], /
= 1,..., M. The same convention holds for other
functions defined later. For stability reasons, g(¢) must
be positive for positive argument values and negative
for negative argument values. Usually g(¢) is a mono-
tonic odd function, for example, g(¢) = tanh(at), where
« is a scalar parameter. In the algorithms (1)-(4), ini-
tial values of the weight vectors (columns of W,) may
be chosen either randomly or by (ortho)normalizing
first sample vectors, which yields sometimes faster con-
vergence.

The structure of the neural network is shown in Fig-
ure 1. In the learning phase, the output of each neuron
is connected to the inputs of all the other neurons. After
learning, these feedback connections (shown by dashed
lines) are not needed, and the network becomes purely
feedforward. The same structure can be used for all the
algorithms (1)—(4). In eqns (1) and (2), the output
of the ith neuron is linear x7w(/) and in eqns (3) and
(4) nonlinear g[x"w(i)].

A desirable property of eqns (1)-(4) is their sym-
metry in the sense that the form of each algorithm is
the same for different neurons (columns of the matrix
W). Then no external hardwiring is required for re-
alizing the corresponding neural circuit (Xu, 1991).
Also, the weight vectors learn in parallel rather than
sequentially, which is typically the case in algorithms
containing some kind of hierarchy (Karhunen & Jout-
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gxTw (1))  g{xTw(2)) g(xTw(M))

FIGURE 1. Architecture of the network. Feedback connections
shown. by dashed lines are needed only during the learning
phase.

sensalo, 1991a). However, eqn (1) converges to some
arbitrary orthonormal basis of the PCA subspace only.
Generally, in algorithms having linear neuron input-
output relationship, asymmetry (hierarchy) is required
. for learning the principal eigenvectors themselves ( Baldi
& Hornik, 1991).

An advantage of using nonlinearities is that the neu-
rons seem to become more selective during the learning
phase even though symmetry is preserved ( Xu, 1991).
Preliminary experimental results (Qja, Ogawa, &
Wangviwattana 1992) show that the weight vectors
given by eqn (2) converge towards the true nonnor-
malized principal eigenvectors of the correlation matrix
of the input vectors if a sigmoidal nonlinearity is used.
Note that the Hebbian learning part x,x} W, in eqn
(2) is still linear. Therefore, nothing more than a PCA
solution is obtained in spite of the nonlinearity ap-
pearing in the constraint term.

The possible convergence points of the algorithms
(2)-(4) are the asymptotic solutions of the corre-
sponding averaged differential equations. These equa-
tions can be written easily (Oja et al., 1991), but it is
usually impossible to determine their asymptotic so-
lutions analytically even in the single neuron case. Pre-
liminary experiments show that eqns (3) and (4), hav-
ing a nonlinearity in the Hebbian learning term, do
not generally converge to the PCA solution (Oja et al.,
1991), even though in special cases the learning result
may be much the same (Karhunen & Joutsensalo,
1992a).

Exact mathematical analysis of the algorithms (2)-
(4) is rather difficult because of the nonlinearities. We
have earlier studied their properties using a specific
problem, sinusoidal frequency estimation (Karhunen
& Joutsensalo, 1992a,b). Somewhat surprisingly, it
turned out that the nonlinear versions of eqns (2)-(4)
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performed relatively well in white noise also. In this
case, the theoretically optimal so-called MUSIC esti-
mator used by us is given by the PCA subspace. In
impulsive and colored noise, the nonlinear versions
yielded, in many cases, better results than the linear
algorithm in eqn (1), showing their potential useful-
ness.

In the next section, we first derive a new class of
nonlinear PCA type learning algorithms by minimizing
a general statistical signal representation error. The in-
put signal vectors x are represented in a linear basis,
but the coeflicients of the expansion are generally non-
linear. The algorithms (4) and (1) are obtained as par-
ticular approximations of this algorithm class. In Sub-
section 2.3, eqns (3) and (1) are dertved from a non-
linear feature extraction criterion. The optimization
criteria yield a good insight into what the algorithms
are actually doing and help to understand their prop-
erties. Various properties and interpretations of the
nonlinear algorithms are discussed more closely in
Section 3. In Section 4, we give experimental results
and demonstrate that certain nonlinear PCA algorithms
are useful in blind separation of component signals
from their mixture. This problem has received some
attention in signal processing research recently. In the
last section, we present the conclusions of this study.

2. DERIVATION OF ALGORITHMS FROM
NONLINEAR OPTIMIZATION CRITERIA

2.1. Minimization of Signal Representation Error

Consider the problem of approximating an L-vector x
in terms of M basis vectors w(l),..., w(M), M < L.
The coefficients f3[x"w(i)] of the expansion depend
generally nonlinearly on the inner product of x and the
respective basis vector w(i). Then x can be expressed
in the form
M
Xx=%X+e=2 fH[xTw(i)]w(i) + e, (5)
i=1
where e 1s error vector, and the summation defines the
approximation x of x. The expansion can be written
more compactly '

x=W/hH(WX) +e. (6)

We assume that x has zero mean and that f,(¢) is a
continuously differentiable, monotonically increasing
odd function, though all these assumptions are not ab-
solutely necessary. The choice f>(¢) = ¢ yields linear
coeflicients as a special case. The form of the expansion
(5) 1s justified later in this paper.

Now one can define a general nonlinear statistical
error criterion

J(W) = 1TE{fi(e)| W}
= 1TE{fi[x - WLR(WTX)]|W}, (7)
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where 1 = [1, ..., 1]7 is an L-vector having ones as
its elements and E is the expectation operator. The even,
nonnegative, continuously differentiable cost function
/i(t) has its only minimum at 7 = 0 and f; (1) = /i(4)
if 14, < |6). £ £i(0) = 1%, J(W) coincides with the
usual mean-square error £{ e[ *| W}. In fact, one can
always define a function A,(¢) = V/i(7) and express
eqn (7) in the form E{ [ (e)||*|W}. Denoting the
jth components of the vectors e, x, and w(/) by ¢;, &,
and w;(i), respectively, the error criterion (7) can be
expressed as the sum of componentwise error criterions:

L
J(W) = 2 E{fi(e)|W}, (8)
where
M
& = §&— Zﬁ[xTw(i)]wj(i). (9)

In the following, we derive a stochastic gradient al-
gorithm for minimizing the error criterion J(W). In
the derivation, the expectations may be omitted because
they will be replaced by their instantaneous values in
the final algorithm. Denoting the derivatives of Si(0)
and f;(1) with respect to ¢ by g,(¢) and £,(1), respec-
tively, we get from eqn (8)

aw) L ae;
awim) Z &le) 5o

j=1

and from eqn (9)

80,-
aw(m)

= —xglx"w(m)]w;(m)

— fHIxTw(m)][0, ..., 0,1,0,...,0]7,

where in the last vector the jth element is 1. Combining
these expressions yields

as(w) L e

_6_w(n—1) = Z gl(Cj)xé’z[X “(’")]wj(m)

j=t
I
— fAlx™w(m)] > [0,...,0, a(e),0,...,0]".
j=1
The last summation equals to gy(e) and Zh
g1(g)wj(m) = g/(eT)w(m), so that

JIW) N
aw(m) xgi(eT)w(m)g[x"w(m)]

~ AlxTw(m)lgi(e).
Updating the weight vectors in the direction of neg-
ative gradient:

aJ(W
Wi (m) = we(m) — p 0;:'((”’1;

yields the gradient descent algorithm

Wi (m) = wi(m) + pe{ g (eD)wi(m)ga[xkwi(m)]xe

+ AlxTwe(m)]gi(ed) ), (10)

J. Karhunen and J. Joutsensalo

e = X — Wi Wixg) (1)

for computing the weight vectors w(1), ..., w(M) that
minimize J(W). It is seen that the new estimates are
computed as weighted sums of the current input vector
x; and the nonlinear error vector ai(er). Let
G,(xI'W,) be the diagonal matrix whose ith element
is go(xFwi(i)). Theneqn (10)can be written in matrix
form as

Wi = Wi + il xe81(eD) WiGa(xTWy)
+ gi(e) L(xEWL.  (12)

2.2. Special Cases

The update formula derived above is somewhat com-
plex because it depends generally on three nonlinear
functions /5(1), £1(¢), and g>(). Therefore, we consider
some interesting special cases or approximations of eqn
(10) that lead to simpler gradient algorithms.

1) If 3(¢) = t, or the coefficients in eqn (5) are
linear, we get

Wit (1) = wil(m) + i g (e D) wi(m)xe
+ xIwi(m)gi(er)].  (13)

In this case, the outputs x7 w,(/m) of the neurons are
linear, but the error criterion is generally defined by
some nonquadratic function f; (7).

2) Ifthe error in the previous case is quadratic, that
is, /1 (1) = (2, we can write the resulting algorithm com-
pactly in matrix form as

Wiy = Wi+ pl xiel Wi + eixf Wil (14)

The coefficient 2 from g,(¢) = 2t has been absorbed to
p« for convenience. This has earlier been proposed in-
dependently by Xu (1991) and Russo (1991), and is
derived in Russo (1991) by minimizing the residual
J(W) = [ — WWT)x|?. Inserting e, = (I —
W, W/)x, into eqn (14) yields

Wi = Wi+ i xix (1= WW Wy
+ (= WWDxx[W, ] (15)

From this one can see that the latter part of the update
in eqn (14) is in fact the same as in eqn (1). In pre-
liminary experiments (Xu, 1991), eqn (14) was found
to be slightly more accurate than eqn (1), but otherwise
these algorithms behaved very similarly. This is because
the first update term xzef W in eqn (14) is much less
important than the latter one exx{ W;. The reason is
that for each weight vector w(m) the update in the
square brackets in eqn (14) becomes

elwi(m)xe + xTwi(m)eg
M
= (ex + X)) TWi(m)xi — xfwi(m) 2 xkwi()wi(D).
i-1

Thus, the first term e w,(m)x, affects the coeflicient
of x, only in the update. The coefficients of the weight
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vectors wi(i) depend solely on the latter term
x¥wi(m)eg. The first term can be omitted if the error
¢, is small compared to x,, as it should be after initial
learning phase. These considerations show that Oja’s
symmetric linear algorithm (1) is obtained from the
general criterion (7) as a relevant approximation of the
quadratic-linear special case.

3) Consider now the more general case in which
£>(2) is nonlinear and the error criterion is quadratic,
or f;(t) = 1. The general algorithm (12) simplifies
then to the form

Wi = Wi+ wd xiel WG (x W) + e H(xFWi)]. (16)

For each weight vector w(m), the first term in the
square brackets is again proportional to x, only. Omit-
ting it on the same grounds as before and inserting ey
from eqn (11), we get

Wit = Wi+ e xe — Wil W) LA(xTW,).

But this is exactly the algorithm (4) with the difference
in notation that in (4) f3(¢) is denoted by g(¢). This
result helps greatly in understanding what the algorithm
(4) is actually doing: it is an approximative stochastic
gradient algorithm for minimizing the mean-square
representation error J(W) = E{|x — WA(WTx)|?}.
We have derived eqn (16) in an alternative way by ex-
panding this error and computing its gradient directly,
but it turns out easier to start from eqns (8) and (9).
Because of the matrix G,(x] W), eqn (4) is not always
as good an approximation to eqn (16) aseqn (1) is to
eqn (14). It still holds that the term egfa(x{ Wy).is
much more important in learning than the omitted
term xge 7 W, G;3(x 7 W,). In the experiments, eqns (4)
and (16) gave, in most cases, almost similar results,
but sometimes eqn ( 16) performed better.

There are other ways of simplifying the general al-
gorithm (12), for example, one can choose g,(¢) =
/() or omit the first term in the square brackets in
eqns (12) or (13) as well. We do not discuss these pos-
sibilities more closely here.

2.3. Feature Extraction Using Nonlinear Criterion

Consider now another statistical optimization criterion
defined by

M
JW) =3 E{ilxw(D)]Iw(i)}
i=1

M

lA
+53

3 NAw()w(j) —ay]. (17)
i=1 j=1

The task is to maximize the first sum of conditional
expectations that depend nonlinearly on the outputs
xTw(i) of the neurons. Assuming that the number of
neurons M is smaller than the dimension L of the vec-
tors x and w(/), this can be regarded as a feature ex-
traction problem where the function f;(¢) measuring

117

the performance of the network is generally nonquad-
ratic. The function f (1) satisfies similar conditions as
earlier. The double summation imposes via the La-
grange multipliers \; = \;; constraints w(i)w(j) = a;
that are necessary for keeping the optimal solution
bounded. The criterion ( 17) can be written more com-
pactly

JW) = 1TE[/{(Wx)|W] + -;— tr{ A(WTW — A)], (18)

where tr denotes the trace of a matrix. The elements
of the matrix A are \;; and the symmetric, nonsingular
M X M matrix A has a; as its elements.

Because f; (/) is assumed to be continuously differ-
entiable, the operations of partial differentiation and
integration can be interchanged. The gradient of eqn
(17) with respect to the weight vector w(m) is then

. M
% = E{xg[x"w(m)]|w(m)} + "El NimaW (7).
At the optimum, the gradients must vanish for m = 1,
..., M. The resulting equations can be written in ma-
trix form as follows:

aJ(W)

W = Exa (W) W+ WA = 0. (19)

Differentiation of J(W) with respect to the Lagrange
multipliers yields the constraint equations

WTw = A, (20)

Equations (19) and (20) are the necessary conditions
for the optimum. Multiplving eqn (19) by W7 from
left and taking into account eqn (20) yields

A= —AT'WTE[xg (xTW)|W]. (21)

Using this optimum value of A in the left hand side of.
eqn (19) yields

(W) _

o~ (1— WA'WTE[xg,(x"W)[W]. (22)

This can be used for searching the maximum of eqn
(18) in the gradient algorithm

; aJ
Wi = \"k+#ka—w(wk)~ (23)

Replacing the expectation by its instantaneous estimate
xeg1(x] W) leads to the gradient ascent algorithm

Wea = W+ 1 = WA T W xeg (xk W) (24)

The constraint eqn (20) describes a general case in
which the weight vectors w( 1) of the neurons are lin-
early independent, but need not be mutuaily orthogonal
and normalized to unity. By imposing a strict ortho-
normality condition A = 1 we get rid of the inverse
matrix A™', and eqn (24) simplifies to eqn (3) with
2:(1) = g(¢). Another special case that yields a relatively
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simple algorithm is that A is diagonal, which means
that the weight vectors must be mutually orthogonal
but generally not normalized to unity.

We have thus shown that eqn (3) is a stochas-
tic gradient algorithm for finding the maximum
of the objective function 1TE[f(W'x)|W] =
E{|lA(W™x)[2|W} under the orthonormality con-
straints W/W = 1. The algorithm is somewhat ap-
proximative in the sense that the expression of A is
determined from the optimal solution and used then
everywhere.

The same derivation yields eqn (1), too. In this case
£i(1) = 0.5¢%, and the criterion function to be maxi-
mized under the constraint W'W = [ takes the form
J(W) = tr(W R, W), where R, = E(xx ") is the cor-
relation matrix of the input vectors. Clearly, the optimal
solution of this maximization problem is such that the
columns of W must be some orthonormal basis vectors
spanning the M-dimensional PCA subspace of the input
vectors. The optimal matrix W is not unique, but the
PCA subspace spanned by its columns is. Stated in
another way, the projection matrix WW T onto the PCA
subspace is unique.

Several authors (Baldi & Hornik, 1991; Hertz et al.,
1991; Hrycej, 1992; Karhunen, 1982; Oja, 1989; Oja,
1992; Williams, 1985; Xu, 1991) have justified both
theoretically and experimentally that the symmetric al-
gorithm (1) indeed converges to the M-dimensional
PCA subspace of the input vectors. However, the only
quite heuristic derivation available for eqn (1) until
recently (Oja, 1992; Xu, 1991) has been to replace the
weight vector w, in Oja’s single neuron learning rule
(Oja, 1982) by the weight matrix W,. We have now
ended up to eqn (1) in two ways: as an approximation
of the gradient algorithm minimizing J(W) = E{ (I
— WW T)x{ 2| W}, and from eqn (17) by choosing
fi(2) = 0.5¢2. The equivalence of these criteria can be
established by noting that

E{I(1 - WWT)x|?| W)
= E{[lell2IW} = E{llx = ]2 W}

where X = WW "x is the estimate of x. From the or-
thogonality principle of estimation theory it follows that
the optimal estimate X must satisfy E{e'X|W} =0,
which yields E{x"%|W} = E{XTX|W } or W'W =
1. But under this condition

J(W) = E{||(1 — WW T)x||*|W}
= E{[Ix]* = IW'x[I*|W},

which is minimized when E{[|Wx|*|W} =
tr(WTR, W) is maximized. This shows the equivalence
of the two criteria in the special case of linear learning.
Observe also that if the optimality condition W/W =
I is assumed to be valid, the first term in the square
brackets in eqn ( 15) vanishes, and eqn (15) becomes
the same as eqn (1).

J. Karhunen and J. Joutsensalo

[n the comparable case of nonlinear learning f,(¢)
=2, f,(t) # tineqn (7), and g,(¢) in eqn ( 18) equals
to /(1) in eqn (7). Now the two criteria are no longer
equivalent. They yield somewhat different algorithms,
eqn (4) as an approximation of eqn (16), and eqn (3)
as a special case A = I of eqn (24).

3. PROPERTIES OF THE ALGORITHMS
3.1. General Remarks

The general algorithm (10)-(11) canbe realized using
the network shown in Figure 1. Note that the update
formula ( 10) depends on the weight vectors of the other
neurons through the error vector (11) only. This vector
is the same for all the neurons and can be computed
first. The update (10) itself is local, depending on the

error vector ey, input vector X, and the weight vector .

w,(m) of the neuron to be updated. The special cases
considered in Subsection 2.2. allow usually a simpler
realization. The network is completely symmetric,
which has certain advantages and drawbacks as dis-
cussed in the Introduction.

One can easily construct the averaged differential
equation corresponding to eqns (10)-(11). Denoting
in the continuous case the weight vector of mth neuron
at time ¢ by w,,(¢), one gets by forming [w.,(m) —
wi(m)]/ ki and letting p = O

—dw—;lnt(_,_) = _E{ xgl(er)“;mgl(xrw"')“v}

- E{gi(e)a(xTw.)|W},  (25)

where e and x are also functions of time. On certain
conditions (Oja, 1983), the stochastic algorithm (10)
converges to one of the asymptotically stable roots of
eqn (25). These roots are difficult to solve even in the
single neuron case, except for the linear algorithm (15).
For determining the roots, one should generally know
the distribution of x and resort then to numerical tech-
niques (QOja et al., 1991).

An advantage of the optimization approach is that
the criterion functions (7) and ( 18) yield useful infor-
mation on the properties of the derived algorithms and
help to explain the effect of various choices. First, we
see that due to the complete symmetry the optimal
weight matrix W* is not unique. This is because its
column vectors that are the weight vectors w*(m) of
the neurons can always be interchanged without
changing the value of the criterion function J( W*),
Thus, initial values and other random factors determine
the order of columns in W*. In the linear algorithms
(1) and (15) there is even more freedom because the
columns of W, may converge to any orthonormal basis
of the M-dimensional PCA subspace. In practice, the
algorithm (1) usually converges to such weight vectors
w*(m) in the PCA subspace that produce roughly equal
output variances (Hrycej, 1992). If it is important that
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the neuron weight vectors have some order, there exist
several possibilities for achieving this in the nonlinear
case. One can, for example, iterate first with one neuron
only and add a second neuron after some convergence
has already taken place, and so on. It is also possible
to use different learning rates yu, for different neurons,
or impose additional constraints that make the solution
unique.

The criterion (18) and the algorithm (24), typically
with A = I, are mainly useful in feature extraction. If
J1(1) # 12, the extracted features g,[x "w(/1)] maximize
other than the usual quadratic information measure.
In eqn (7), /;(¢) and f3(t) define, respectively, a possibly
nonquadratic error measure and nonlinear coefficients
in the approximation of x. This criterion and the re-
sulting gradient algorithms can be used for achieving
two related but somewhat different goals: 1) separation
of the input signal or data x into its strongest subsignals
or components f5[x Tw(i)]w(i), or 2) extraction of the
basis signals w (/) whose linear combinations the input
vectors x primarily are.

3.2. Choice of the Nonlinearity

We consider next some possible alternatives for the
functions f(¢) and f;(¢) and their relative merits. Figure
2 shows some typical choices of the function f;(¢). The
dashed curve is the usual quadratic criterion f () =
1?/2, the dash-dot line is the linear criterion f;(¢) =
|¢], and the solid line is the criterion function f{(¢) =
Incosh(£) = In 0.5(e’ + ¢™"). The corresponding de-
rivatives g; (1) = ¢, g,(t) = sgn(t), and g,(¢) = tanh(¢),
where sgn(¢) denotes the sign of ¢, have been depicted
in Figure 3. The derivative g, (¢) is a similar monotonic
odd function as.f>(¢); Figure 3 represents typical choices
of f3(¢), too. )

One could also consider a criterion function f;(¢) that
grows faster than quadratically [e.g., fi(t) = t*/4].
In practice, such a criterion is usually not good because

Function value
-

FIGURE 2. Some typical choices of the function f,(t). Dashed
curve: f,(t) = t*/2; dash-dot line: f,(t) = |t|; solid curve: f,(t)
= Incosh(t).
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Derivative value

FIGURE 3. Derivatives g,(t) = t (dashed line), g,(t) = sgn(t)
(dot-dash line}, and g,(t) = tanh(t) (solid curve) of the func-
tions f,(t) depicted in Figure 2.

it tends to give too much weight to large values of f and
leads more easily to stability problems in gradient al-
gorithms. It is often preferable to choose f;(1) so that
it grows less than quadratically with ¢. It is well known
that optimization criteria based on absolute error are
more robust against outliers and impulsive noise than
those minimizing some quadratic error. In spite of this,
standard approaches are based on quadratic criteria
because they are mathematically easier to handle, lead-
ing typically to linear algorithms. The criterion function
Si(t) = |t] is tempting because of its simplicity. How-

. ever, its derivative sgn(¢) is not continuous and has

only two possible values, +1 and —1. Therefore, f5(¢)
= sgn(1) leads to a very crude representation (5) of x
and is not good in this respect.

From Figure 2 one can see that the criterion function

J1(1) = Incosh(¢) behaves at small values of |¢| roughly
quadratically, and for larger values of |¢| Incosh(¢) ~
{t| — In 2. Thus, fi(¢) = Incosh(¢) is satisfactory in
many respects. The only problem is that its derivative
tanh(¢) is not always suitable to be used as the function
f>(1) because its values are restricted to the interval
[—1, 1]. This difficulty can be alleviated to some extent
at least by scaling the input vectors x suitably. According
to our experience, often the best choice of /,(¢) is a
function that grows less than linearly but does not sat-
urate. Examples of such functions are fo(¢) =
sgn(t)\/l_tlandfz(l) =sgn()In(1 + a|t|), where a is
a scaling constant. Some other functions used especially
in robust statistics have been discussed in Cichocki and
Unbehauen (1993).

3.3. Choice of the Gain Parameter

In practice, it is important to choose the gain parameter
#, so that the algorithm converges well and is stable
(i.e., the weight vectors remain bounded). Typically,
too large values of uy give rise to instability, whereas
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too a conservative choice of u, leads to possibly intol-
erably slow though smooth convergence. We have re-
cently derived for the basic symmetric algorithm (1)
the following stability result, which extends the analysis
outlined by Karhunen & Joutsensalo (1991b).

THEOREM 1. The algorithm (1) is stable if the gain
parameter . satisfies at every iteration the condition

0 < e < 2fIxill 72, (26)

and the initial weight matrix W, is chosen so that the
largest eigenvalue of W\W T is at most 2. If the largest
eigenvalue of the matrix W,\WT or more generally
W W/ is N, > 2, ux must satisfy the condition

2

I @iz

0<u <

The proof is somewhat lengthy and not directly re-
lated to the nonlinear algorithms. Therefore, it will be
presented elsewhere together with other stability con-
siderations. However, we have made some simple ex-
periments with eqn (1) that are in excellent agreement
with the condition (26).

Theorem 1 can be generalized for the nonlinear al-
gorithm (3) as follows.

COROLLARY |. The algorithm (3) is stable if the con-
ditions of Theorem | hold and |g(t)| < |t| for all 1,
that is, the odd function g(t) grows at most linearly.

This result can be established rather easily by noting
that for each individual weight vector the update for-
mula (3) differs from (1) only in that the nonlinear
function g(¢) is applied to the inner product
xFwi(m).

If the function g(¢) is chosen so that it grows less
than linearly [e.g., g(f) = tanh(¢) or g(¢) = sgn()In(|1
+ |1])], the stability properties of eqn (3) are in practice
better than those of eqn (1). The algorithm can be
made stable also for functions g(¢) growing faster than
linearly [e.g., g(t) = r*]if p is kept sufficiently small.
However, it is difficult to determine a proper value for
u in this case, and stability problems are more likely
to occur. Much the same remarks seem to hold for the
other nonlinear algorithms in practice.

In algorithms like eqn (1), the fastest initial con-
vergence rate is usually achieved when g is roughly in
the middle of its stability region. However, the variance
of the weight vector estimates is relatively large in this
case. Therefore, u; should be made gradually smaller
after initial convergence. In practical realization of the
algorithms, it is often desirable to avoid division with
|xll . Then one can use a constant gain parameter u
that is, for example, 0.1-0.2 of the average upper bound
in eqn (26) and diminish the value of g, later if nec-
essary. These recommendations apply largely to the
nonlinear algorithms discussed in this paper, too. Var-
ious strategies of choosing the gain parameter in sto-
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chastic gradient descent algorithms have been discussed
in Darken, Chang, and Moody (1992).

3.4. Relationship to Higher-Order Statistics

The main justification of using nonlinear functions f(¢)
and g(¢) in PCA type networks is that they introduce
higher-order statistics into the computations. Consider,
for example, the algorithm (4), which is obtained as
an approximation of eqn (16). For each neuron weight
vector w(m) it can be written

Wirr (M) = we(m) + merg[xiwi(m)], (28)

where e, is defined in eqn (11) and g(1) = /(). Thus,
in the update term the error vector e, is correlated with
the nonlinear output g{x}w;(m)] of the neuron. As-
suming that g(¢) can be expanded in Taylor series, one
can see that higher than merely second-order moments
(correlations) of the components of x; enter into the
computations. For example, g(¢) = tanh(¢) has the
Taylor series expansion g({) = ¢ — 3/3 + 2°/15 —
.. for |1 <=/2.

Geénerally, nonlinearities and higher-order moments
tend to increase the independence of the output signals
in PCA-type networks. The standard PCA networks
and linear Hebbian learning algorithms utilize only
second-order statistics, producing uncorrelated output
signals. Recently, Jutten and Herault (1991) together
with Comon (1991) have introduced so-called INCA
(independent component analysis) as an interesting
counterpart to PCA [see also Cichocki & Unbehauen
(1993)]. As its name implies, in INCA the goal is to
decompose a signal into its statistically independent
components (or as independent subsignals as possible).
INCA is in many cases a much more meaningful de-
composition than PCA because it aims at extracting
the original signals from their mixture. In PCA, the
uncorrelated output signals are almost always some
linear combinations of the original source signals that
form the mixture input signal. A drawback of INCA
is that it is generally far more difficult to compute than
PCA. It is not easy to verify independence exactly, be-
cause one should know or estimate the associated
probability densities. Higher-order moments are re-
quired even in the case where the mixture is a linear
combination of the original signals (Burel, 1992).

INCA is related to the so-called blind separation
problem, which is becoming increasingly important in
signal processing. In blind separation, the goal is to
extract the original signals (sources) from their mixture
when only littie if any information on the sources
themselves is available. In fact, some more or less neural
approaches to blind separation have already been pro-
posed (Burel, 1992; Jutten & Herault, 1991). However,
these algorithms require generally inversion of a matrix
at every iteration or are otherwise computationally
complex.
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The algorithms derived here are simpler in this sense.
Qur earlier experiments (Karhunen & Joutsensalo,
1992a,b) have shown that even eqn (4) can in some
cases separate the source signals from their mixture.
We do not claim that the algorithms derived in this
paper perform INCA or solve the blind separation
problem generally for linear mixtures, but they are
clearly a step to this direction from PCA. One could
argue that the ultimate goal should be to decompose
an input signal into component signals in a meaningful
way, not necessarily always INCA. The problem with
this is that a signal can be decomposed into its subsig-
nals in an infinite number of ways (Cichocki & Un-
behauen, 1993), and some sensible assumptions or
constraints, for example, independence, uncorrelat-
edness, and maximization of output variance are nec-
essary. The approach presented in this paper starts from
the optimization criterion (7) [or eqn (18)], where the
form of the expansion (6) and the functions f,(¢) and
£2(t) impose the necessary constraints.

4. EXPERIMENTAL RESULTS

In this section, we study experimentally the perfor-
mance of various algorithms in two cases. The first one
is a simple but illustrative example adopted from Burel
(1992). In the second case, the input signal is a noisy
mixture of sinusoids. We consider both estimation of
the frequencies of the sinusoids and their separation
from the mixture.

4.1. Uniformly Distributed-Independent Signals

In this case, the input vectors x; are uniformly distrib-
uted inside the parallelogram shown in Figure 4. They
can be generated using the formula

Xk = a,i. + aziz, (29)

where «, and a5 are independent random numbers dis-
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FIGURE 4. The parallelogram bounding the uniform distribution
and the theoretical basis vectors of INCA (solid lines) and PCA
{dashed lines) for this distribution.
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FIGURE 5. Learning curves and the final basis vectors (straight
lines) for the algorithm (1).

tributed uniformly over the interval (—0.7, 0.7). The
vectors i, = [—1/V5, 2/V5]7 and i, = [1, 0]7 are the
basis vectors of INCA; they have been depicted in Figure
4 by solid lines. The corresponding PCA basis vectors
e, = [3/V13, —2/V13]T and e, = [2/V13, 3/V13]7
have been shown using dashed lines. The signs of the
basis vectors e; and i; can be chosen arbitrarily.

The PCA basis vectors are always mutually ortho-
normal, and the coefficients x [ e; in the approximation

M
% = 2 (x{e)e . (30)
i=\
are uncorrelated. If e, . . ., ey are the true principal
eigenvectors of the data covariance matrix, the first
coefficient x/e, has the largest variance, the second
coefficient second largest variance, etc. We note that
this property does not hold for eqn (1), which estimates
some orthonormal basis of the PCA subspace only.
However, the PCA coefficients, or the coordinates of
the data vectors x; in the PCA coordinate system, are
generally not independent. This is the case in Figure 4,
too. Contrary to the PCA, the INCA basis vectors are
usually not orthonormal, but the projections of the data
vectors onto the INCA basis vectors are mutually in-
dependent. However, INCA is more difficult to use in
approximating or representing the data vectors because
nonorthogonal projections must be computed. The
INCA formula corresponding to eqn (30) is

ikz S(STS)'lSTXk, (31)

where S = [i;, .... iy]. Note that if the matrix S
consists of PCA basis vectors, eqn (31) simplifies to
eqn (30), because then S’S = 1. From the definition
of the expansion (3) it follows directly that

M
X = T AIxEw(D)]w(i), (32)

=l
if the algorithms (16) or (4) with g(¢) = f3(¢) are used.
Thus, no matrix inversion is needed, and X, can be

T T A L AR
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computed relatively simply from the outputs

S[xFw(i)] of the neurons and the respective weight

vectors w(/).

We have tested the algorithms (1), (4), and (16)
using the data described above. Figures 5, 6, and 7 show
the results of a typical simulation. The number of data
samples was 500. The gain parameter was held constant
(1 = 0.05) during the initial convergence, and then
decreased slowly to zero. In egns (4) and (16}, the
function f3(¢) was sgn(£)In(1 + 20{¢]). The figures
show the initial values of the weight vectors, their tra-
jectories during learning, and the final weight vectors
marked by the straight lines starting from the origin.
Both eqn (4) and eqn (16) yield a weight vector that
is relatively close to the vector i, eqn ( 16) being slightly
better in this respect. On the other hand, the other
weight vector in eqn (4) is slightly closer to the second
INCA basis vector i,. The weight vectors given by eqn
(1) are in this case something between INCA and PCA
basis vectors.

Other values of «; and i; than those mentioned below
eqn (29) have been tried, too. Sometimes a small third
component was added to the data vectors for preventing
the representation error going to zero, but this had very
little effect on the results. General conclusions from
these experiments are the following:

1. If the gain parameter p; is not too small and the
function f>() = g(t) is chosen suitably, the nonlinear
algorithms (16) and (4) converge usually roughty
to the same weight vectors irrespective of the initial
values and input data realization used. A different
solution may occur especially if the initial values are
poor and/or g is too small. The algorithm (4) is
somewhat more robust in this sense.

2. One of the weight vectors found by eqns (4) and
(16) is usually close to the direction of the first INCA
basis vector i,. The other weight vector lies in a
roughly but not exactly orthogonal direction.

3. The nonlinearity 3(¢) =sgn(¢)}In(1 + «|1|) usually
gave the best results, provided that « is matched to
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FIGURE 6. Learning curves and the final basis vectors (straight
lines) for the algorithm (4).
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FIGURE 7. Learning curves and the final basis vectors ( straight
lines) for the algorithm (16).

fit the norms of the data vectors. The function /5(¢)
= tanh(af) yielded more variable results. Fast
growing functions such as f5(¢) = 1* were more dif-
ficult to use because of stability problems, and the
results varied even more.

4. Tt is difficult to assess the superiority of eqns (4)
and (16). Either of these algorithms can yield a
weight vector closest to the first INCA basis vector
i,. The algorithm (4) is simpler and seems to be
more robust.

4.2. Sinusoids in Noise

A more practical test example is estimation of the fre-
quencies and/or separation of individual sinusoids from
their noisy mixture. This problem arises naturally in
several applications, and many different approaches of
varying complexity and accuracy have been proposed
(Kay, 1988; Therrien, 1992).

During the last years, some neural methods have
been considered for sinusoidal frequency estimation or
the related problem of estimating directions-of-arrival
in array processing. Most of these try to optimize the
maximum likelihood criterion function arising in this
problem using, for example, backpropagation, simu-
lated annealing, or Hopfield’s net. This is often tedious
or time consuming because the highly nonlinear cri-
terion function has many local minima (Kay, 1988).
A restriction of this approach is that noise should be
white and Gaussian. The works of Kung, Diamantaras,
and Taur (1991) and Russo (1991) are more closely
related to ours because they use learning of sinusoidal
frequencies as a test problem of proposed linear PCA
subspace estimation algorithms.

An important class of methods for estimating si-
nusoidal frequencies is based on the notion of signal
subspace (or its orthogonal complement) (Therrien,
1992). For noisy sinusoidal data, this is defined as the
subspace spanned by pure sinusoidal vectors

e=[1, e, ., eI EDIT (33)
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at correct normalized frequencics /'€ [—0.5, 0.5]; here
Jj= V—1. For complex sinusoids, the correct dimen-
sionality M of the signal subspace is naturally the same
as the number J of the sinusoids in the data; for rcal-
valued sinusoids M = 2J, because cos(2xf) = (e/*/
+ e#27/)/2. Various signal subspace methods (Kay,
1988; Therrien, 1992) have become popular recently
because they often provide good accuracy and are
computationally clearly less demanding than the max-
imum likelihood approach. It can be shown theoreti-
cally that the signal subspace coincides with the M-
dimensional PCA subspace of the input data. Here it
is assumed that noise is white and that the PCA sub-
space is known exactly.

In practice, the signal subspace must be estimated
somehow from the available data vectors. We use the
proposed PCA type learning algorithms for this, and
replace the unknown basis vectors of the signal subspace
by the weight vectors w, (i) of the neurons. For deter-
mining the frequencies, we use the well-known MUSIC
method (Kay, 1988; Therrien, 1992), in which the si-
nusoidal frequencies are estimated by matching ten-
tative vectors e, to the signal subspace of correct di-
mensionality. In the general case of complex data, MU-

SIC frequency estimator then takes the form (Karhunen -

& Joutsensalo, 1991a, 1992b; Kay, 1988)

. 1
PO = TS ewant (=
Here H denotes the conjugate transpose. The estimated
sinusoidal frequencies are obtained as peak locations
of eqn (34). If the weight vectors are not roughly or-
thonormal, they must be orthonormalized explicitly
prior to computing eqn (34) (Karhunen & Joutsensalo,
1991a).

One may question whether it is appropriate to use
nonlinear PCA type learning algorithms in context with
the MUSIC estimator, which relies on the theory of

MAGNITUDE
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FIGURE 8. One hundred samples of the test data used in the
example.
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FIGURE 9. MUSIC estimator from eqn {(1).

linear subspaces. Now observe that the representation
(5) of the data vectors x is still linear with respect to
the neuron weight vectors w(i). After convergence,
these define a linear subspace that estimates the signal
subspace of x because the nonlinear algorithms are de-
rived by minimizing the statistical representation error
(7). The nonlinear coefficients in eqn (5) are not
needed in the MUSIC type estimator (34).

Our experimental data consists of N samples x[1],
..., X[N] of J real sinusoids in additive noise:

J
x[k] = 2 A.cos(2nfk + 0,,) + wlk]. (35)

m=1

The amplitudes A4,,, frequencies f,,, and phases 8,, of
the sinusoids are constants unknown to the learning
algorithm. The data vectors

X = (x[k], x[k+1],...,x[k+ L—1]DT (36)

are collected from L successive samples, and are used

several times if necessary. The signal subspace dimen-

sion M = 2J is usually the correct one.

We have tested different PCA-type algorithms with
the above data using varying frequencies, types of noise,
etc. First results on the linear algorithm (1) in white
noise can be found in Karhunen and Joutsensalo
(1991a,b). The nonlinear algorithms (2)-(4) have
been studied using colored noise, too, in Karhunen
and Joutsensalo (1992a,b). In the following, we present
the most important conclusions from the experiments
with these and the new nonlinear algorithms together
with an example. The main attention is on eqns (4)
and ( 16) because these algorithms have interesting sig-
nal separation properties.

1. In white Gaussian noise, all the algorithms yield
reasonably good MUSIC estimators (34) after suf-
ficient number of iterations (provided that the
problem is not too difficult). If the signal-to-noise
ratio is high, the basic algorithm (1) performs best,
because PCA subspace is optimal in this situation,
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2. In Karhunen and Joutsensalo (1991a,b), we used
the data vectors x, sequentially in eqn (1) and had
difficulties in achieving high resolution. However,
high resolution is possible, if x;’s are used in a ran-
dom order. This diminishes the high correlation be-
tween subsequent data vectors, which causes con-
vergence problems if the frequencies of the sinusoids
are closely spaced. The algorithm (2) can also pro-
vide high resolution, whereas the more nonlinear
algorithms, especially eqns (4) and (16), have dif-
ficulties with achieving it.

3. On the other hand, the most nonlinear algorithms
(4) and (16) perform better than eqn (1) at low
signal-to-noise ratios even in white Gaussian noise.

4. The nonlinear algorithms, in particular eqn (3),
tolerate impulsive noise better than eqn (1) and are
more stable provided that the nonlinearity grows
less than linearly. This property follows from the
definition of the criterion functions (17) and (7).

5. Especially eqns (4) and (16) have interesting filtering
and separation properties. In most experiments with
the functions £5(¢) = g(¢) = sgn(t)In(1 + «|¢]) or
tanh(ar), the outputs of individual neurons became
almost pure sinusoids after learning, even though
the input signal was a mixture of sinusoids in ad-
ditive, possibly colored, noise. The algorithms (1),
(2), or (15) with a linear Hebbian learning term
XXT W, cannot usually separate the sinusoids in
this way. An experimental comparison is presented
below.

6. A comparison between eqns (4) and (16) reveals
that eqn (16) has somewhat better separation prop-
erties, especially if the amplitudes of the sinusoids
are different. In many cases, however, the two al-
gorithms produce almost identical outputs of the
neurons. On the other hand, for some reason the
MUSIC frequency estimates given by eqn (4) are
more accurate. Roughly speaking, this implies that
eqn (4) has better noise filtering properties of these
two algorithms.
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FIGURE 10. MUSIC estimator from eqn (4).
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FIGURE 11. MUSIC estimator from eqn (16).

7. We have made some experiments with complex-val-
ued data by replacing the transpose 7 in eqns (1)-
(4) by the conjugate transpose H. After this minor
change, these algorithms performed properly with
sinusoidal data. )

8. Tracking of slow changes in the frequencies is pos-
sible, but requires careful choice of the gain param-
eter u;. Some results with eqn (1) have been pre-
sented in Karhunen and Joutsensalo (1991a). The
nonlinear algorithm (4) seems to possess somewhat
better tracking properties than eqn (1).

EXAMPLE. The input data consisted of 100 samples

of two sinusoids having normalized frequencies f; =

0.11 and /5 = 0.20 and amplitudes 4, = 0.8 and 4, =

1.2, respectively. The data vectors had L = 15 com-

ponents, and they were used 10 times for achieving

convergence. In the algorithms (4) and (16), we used
the nonlinearity f2(f) = g(¢) = sgn()In(1 + 5]¢]).

The gain parameter was constant u; = 0.03 during the

first 300 iterations and then decreased slowly. Colored

Gaussian noise w(k) (SNR 5 dB) was generated from

the autoregressive model w(k) = 1.058w(k — 1) —

0.81w(k — 2) + v(k), where v(k) is white Gaussian
noise. The spectrum of this process has a disturbing
peak frequency 0.15, because the poles of the filter cor-
responding to this AR model are 0.9 exp(%j270.15).

Figures 9, 10, and 11 show the MUSIC spectra (34)

given by eqns (1), (4), and (16), respectively. The

spectra are very similar, but the higher peak in Figures

10 and 11 is closer to the correct frequency 0.20.
After learning, test data (Figure 8) generated from

another noise sequence realization using different

phases of the sinusoids were inputted to the network.

Figure 12A and B shows the outputs x/w,(2) and

xTwi(4) of the second and fourth neuron of the linear

network trained by eqn (1). The corresponding non-
linear outputs /3(f,) and f5(14), f; = xZw,(i), of the
networks trained using eqns (4) and (16) have been
depicted in Figures 13 and 14, respectively. The signals
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in Figures 13B and 14A have a clear fundamental fre-
quency of about 0.20, and those in Figures 13A and
14B about 0.11, whereas the output signals of the linear
network in Fig. 12A B contain both frequencies in
somewhat different proportions. The first and third
neuron in each network produced qualitatively similar
output signals as in Figures 12-14 with a phase differ-
ence. The curves appear somewhat rectangular because
subsequent output samples have been connected by
straight line segments.

Clearly, the nonlinear networks trained using eqns
(4)and (16) have learned the sinusoids themselves and
separated them into different output signals, whereas
the linear network trained by eqn (1) cannot do this.
The nonlinear networks have filtered some of the col-
ored noise out, too. When the number of neurons was
increased from four to six, each of the MUSIC esti-
mators had three peaks roughly at frequencies 0.11,
0.15, and 0.20. In this case, two of the neurons trained
by eqns (4) or (16) learned the sinusoidal frequency
0.11, two others the frequency 0.20, and the remaining
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FIGURE 12. Outputs of the second (A) and fourth (B) neuron
of the linear network trained using eqn (1) for the test data.
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FIGURE 13. Outputs of the second (A) and fourth (B) neuron

of the nonlinear nétwork trained using eqn (4) for the test data.

two neurons produced an output corresponding
roughly to the AR noise.

We also made a statistical test using 100 realizations
of the above data. In each realization, the noise se-
quence and the phases of the sinusoids were chosen
randomly. The frequencies of the sinusoids were esti-
mated from eqn (34). The average absolute biases of
the estimated frequencies /, and f; were, respectively:
0.0078 and 0.0029 for the linear algorithm (1); 0.0068
and 0.0020 for eqn (4); and 0.0085 and 0.0044 for eqn
(16). If the function f;(¢) = g(¢) = tanh(a?) is used,
the biases given by the nonlinear algorithms (4) and
(16) are smaller, but the saturation effect typically clips
off the highest values of the output signals. Some ex-
periments with eqn (4) are presented in Karhunen and
Joutsensalo (1992b).

5. CONCLUSIONS

In this paper, we have derived two classes of nonlinear
PCA-type learning algorithms from the optimization
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FIGURE 14. Outputs of the second (A) and fourth (B) neuron
of the nonlinear network trained using eqn (16) for the test
data.

criteria (7) and (17). Several of the existing linear or
nonlinear PCA-type algorithms are obtained as special
cases or approximations. The optimization criteria
provide valuable information on the properties of the
algorithms under various choices, and help to under-
stand their mutual relationships. A suitably chosen
nonlinearity makes the algorithm more robust against
impulsive and colored noise. By taking into account
higher-order statistics, some nonlinear algorithms are
often able to separate component signals from their
mixture. This is not possible with linear PCA subspace
estimation algorithms. These properties are demon-
strated experimentally using noisy stnusoidal data.
One could characterize the derived algorithms so
that they produce results that lie somewhere between
PCA and INCA. The standard PCA provides in the
mean-square error sense optimal linear representation
of the input signal and filters effectively white noise,
but its separation capability is poor. The INCA algo-
rithms are powerful in separating the component signals

J. Karhunen and J. Joutsensalo

but they cannot filter noise and are not convenient for
representing the data. The mildly nonlinear algorithms
(3) and (13) are close to standard PCA subspace es-
timation algorithms, but are more robust against out-
liers and impulsive noise. The more nonlinear algo-
rithms (4) and (16) are able to separate signals from
their linear mixture provided that the component sig-
nals are not too much correlated. Furthermore, they
can simultaneously filter noise and represent the orig-
inal signal fairly well using a lower-dimensional sub-
space. Thus, they provide an interesting alternative to
PCA and INCA.
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