
A Pragmatic Android Malware Detection
Procedure

Paolo Palumbo1, Luiza Sayfullina2, Dmitriy Komashinskiy1, Emil Eirola3, and
Juha Karhunen2

1 F-Secure Corporation, Helsinki, Finland
2 Department of Information and Computer Science, Aalto University, Finland

3 Arcada University of Applied Sciences, Helsinki, Finland

Abstract. The academic security research community has studied the
Android malware detection problem extensively. Machine learning meth-
ods proposed in previous work typically achieve high reported detection
performance on fixed datasets. Some of them also report reasonably fast
prediction times. However, most of them are not suitable for real-world
deployment because requirements for malware detection go beyond these
figures of merit.
In this paper, we introduce several important requirements for deploying
Android malware detection systems in the real world. One such require-
ment is that candidate approaches should be tested against a stream
of continuously evolving data. Such streams of evolving data represent
the continuous flow of unknown file objects received for categorization,
and provide more reliable and realistic estimate of detection performance
once deployed in a production environment.
As a case study we designed and implemented an ensemble approach
for automatic Android malware detection that meets the real-world re-
quirements we identified. Atomic Naive Bayes classifiers used as inputs
for the Support Vector Machine ensemble are based on different APK
feature categories, providing fast speed and additional reliability against
the attackers due to diversification. Our case study with several malware
families showed that different families are detected by different atomic
classifiers. To the best of our knowledge, our work contains the first pub-
licly available results generated against evolving data streams of nearly
1 million samples with a model trained over a massive sample set of
120,000 samples.

Keywords: android, malware detection, static analysis, machine learn-
ing, classification, ensemble learning, feature selection

1 Introduction

The importance of the Android platform in the mobile operating system space is
a well-known fact. During the first half of 2015, the Android platform represented
49.47% of the total mobile operating system market according to data provided
by NetMarketShare [1], making it the most widely used mobile operating system



2 P. Palumbo, et al.

in the selected time frame. A mobile operating system with such a wide adoption
rate clearly is at risk of becoming the target of criminals and other threat actors;
according to the data collected by F-Secure Corporation [2], the first half of 2015
has seen hundreds of thousands of detections reported by mobile antivirus clients.
This represents a clear continuation of the trend that was observed in 2014 and
previous years.

Starting with the very first samples of Android malware discovered back in
2010, the Android platform has been under attack by increasingly sophisticated
new malware. Polymorphic structure, the use of encryption, dynamic protec-
tion techniques and increasingly sophisticated communication techniques with
attacker-controlled Command and Control servers are just some of the issues
that contribute to the growth in complexity of Android malware. The reasons
for this evolution of malware are numerous. For example, malware authors are
always trying to counteract the detection capabilities developed by security ven-
dors; similarly to legitimate software, malware is software that is continuously
developed and maintained; finally, malware needs to take advantage of the latest
vulnerabilities and security flaws to infect, spread and persist. Additionally, this
increase in sophistication clearly reflects the perceived value that Android de-
vices have to the attacker’s eyes, and as a result, this new malware is increasingly
more complicated to detect in a generic fashion, for example through the use of
machine learning-based approaches. Difficulties in detecting the malware reflect
in malware that is able to survive longer before being detected. As a result it is
able to carry out its purpose for longer; and malware that is able to sneak past
the security countermeasures of App stores, including the official Google Play
store, and therefore is able to reach a much wider pool of potential victims.

To address these problems with Android malware detection several approaches
have been tried in the past. However, observation of the security for the last years
has shown that even a company like Google [3], which has often been at the fore-
front of research and has a concrete interest in keeping the Android ecosystem
free of malware, has failed to prevent malware from sneaking into its own mar-
ketplace [4–7]. This situation made us believe that the problem of automatically
detecting Android malware is still far from being solved.

This paper makes the following contributions:

1. Presenting an approach to automatic malware detection that is
based on a number of atomic classifiers for specific features ex-
tracted from Android APK files which are then combined by an
overall classifier in a typical ensemble-classification model. This ap-
proach is designed to be more effective both against new variants of existing
Android malware and against samples belonging to new, previously unseen
families, while at the same time minimizing the amounts of false positives.
Although ensemble methods are not novel, we highlight the importance of
using different feature groups separately by each atomic classifier to improve
robustness. Our proposed approach, thanks to its low computational com-
plexity, is very easy to deploy; we consider this to be an extremely important
asset for using in real-world operations. We compared the False Positive rate



Pragmatic Android Malware Detection 3

(FPR) with the one obtained using the approach outlined in the selected
baseline paper both on the evolving streams of data and on fixed test set
and observed significant decrease of FPR. The model is described in Section
5.

2. Providing clear usage scenarios of automatic malware detection
systems and defining the associated requirements. These require-
ments include complexity, acceptable False Positive and False Negative rates,
low dependency on external tools, easy retraining and robustness towards
new malware families and obfuscation; several considerations about obfus-
cation are made in Section 8. We show that our whole approach from data
collection to prediction satisfies most of these requirements and is particu-
larly useful for filtering system that prioritizes what will eventually reach a
human analyst. The details are provided in Section 2.

3. Highlighting the importance of being chronologically consistent when per-
forming both training and evaluation. To properly simulate real world usage
scenarios, it is clear that the process of training a classifier should include the
selection of a specific date. All the samples used for training should be
anterior to this selected date and, correspondingly, all the samples
used for testing should be posterior to this date.

4. Evaluating how the different types of features extracted from APK
samples contribute to the overall detection capabilities. We present
a breakdown of the contribution of each feature type in Section 7.2.

5. Providing detection results both for test data and for real, evolving
data stream using a model trained on 120,000 samples with con-
firmed labels and over 1 million samples obtained via evolving data
streams. A FP rate of 4.07% achieved by testing on the evolving streams
of data is acceptable as a filtering tool for experts tasked with analysing
malware. Experimental results are presented in Section 7.

The rest of the paper is organized as follows: first we clarify the problem
statement (Section 2); then we present a survey of existing approaches for An-
droid malware detection and classification using machine learning techniques
(Section 3). Later we describe the format of the data our approach is based on
and explain how this data is collected (Section 4). Our method and its imple-
mentation are described next (Section 5), followed by extensive experimental
results (Section 7) and conclusions.

2 Design requirements

When designing automatic malware detection systems, it is of high importance
to understand how such systems will be used, especially in the context of a
wider automation that is inevitably present when working at an industrial scale;
it is critical to understand how such system could be contributing to the back-
end automation of an anti-virus (AV) vendor. Specifically, we can identify three
different use cases for such systems:



4 P. Palumbo, et al.

1. Detection. The automatic system could be integrated as a black box that
receives as an input a new, previously unseen object and is able to indepen-
dently classify the object as malicious or not. The verdict produced by such
system would then be unquestionably propagated to the object in question,
and used directly for protecting users encountering such an application in-
the-wild. It is clear that such a use case is an extremely challenging one,
as it assumes that the verdict given by the system is completely reliable.
In such a scenario, precision is the most important requirement. In case of
false positives, user-experience is impacted: for example, users trying to in-
stall the application would be informed of its maliciousness and prevented
from installing in fact a perfectly valid application. Moreover, application
developers would also be impacted, as these wrong verdicts could result in
missed revenues and reputational damage. Finally, there might be a severe
reputational harm for the company that forces such a wrong verdict onto
their users.

2. Categorization. Such an automatic system could be deployed as a black
box that receives as an input a new, previously unseen object, and is able to
independently classify the new object as belonging to a certain malware fam-
ily or to a known group of specific applications. A mistake in such a scenario
would result in the new application being reported as similar to a wrong
group of existing applications, leading to false positives or false negatives.
Additionally, the wrong labeling of the new application is likely to generate
a cascade of different issues in the greater context of a wider automation;
for example, the wrong labelling of a sample as belonging to a certain ap-
plication group could erroneously trigger a set of expensive actions resulting
in the degradation of performances for the overall backend automation. It is
clear that before an automatic system can be used in this particular fashion,
its precision must have been confirmed to be high enough, perhaps after the
system has been successfully operating as a standalone classification system.

3. Prioritization. The automatic system could be integrated as a black box
that receives as an input a new, previously unseen object, and is able to
assess independently the maliciousness of the object. Such assessment would
then be used to augment the information available to backend-side about
the new object and to prioritize and optimize expensive human interven-
tion and the usage of heavier, more computationally expensive automatic
systems. Erroneous outputs in this situation are problematic, but somewhat
less severe than in the two previous scenarios; in fact, wrong decisions in this
situation could trigger the intervention of human analysts or more expen-
sive automatic systems, therefore wasting resources without need. It is clear
that, were these kind of mistakes to be frequent, there would be a significant
degradation of the operations of the security company using such systems.

Additionally and independently of the particular use case, it is clear that
such system should satisfy two additional generic requirements:

1. Such a system should be computationally efficient, both from training and
of prediction points of view. Considering the case of an anti-virus company



Pragmatic Android Malware Detection 5

using this system, such a company might receive well over thousands of new
unknown objects every minute, meaning that prediction times need to be
adequate. Similarly, to account for the changes in the threat landscape, the
system will need relatively frequent re-training, and therefore a system that
takes days to train might be unacceptable from an operational point of view.
Similar considerations can be done for resource consumption and scalability.

2. Such a system should not rely heavily on the external dependencies. While
there are available a number of very effective tools that can be used as part
of an automatic system for malware analysis, these third party tools might
be a liability in the long term. For example, the developer of the third party
tool disappears leaving the tool broken or unable to cover the evolution of
malware. Therefore it is preferable to be able to control all parts of the
automatic system, for example by developing them in-house.

To this end, we adhere to a strict methodology when it comes to the design,
implementation and testing of our proposed solution. First, a sizable amount of
data is collected from a trustworthy data source, for which we possess verified
labels, often the result of human categorization. Then we extract an extensive
description of each application in our dataset using our own pre-processing tool.
Later we select the most relevant features for malware detection and apply the
improved Naive Bayes classification approach [8] in an ensemble-based classifier
which satisfies the generic requirements described above. After that state-of-
the-art testing methodologies are applied to our system and these results are
discussed at length. Finally, the testing methodology is extended to include
evolving data stream as we see from an anti-virus company submission feed.

3 Related work

Research efforts in automatic malware processing focus on a number of possible
goals. The majority of the relevant literature has focused on malware detection
[8–19], where the goal corresponds to the first and third use cases we discussed
in the previous section (usually depending on the required precision). Given an
object of interest (for example, a file object), it is necessary to make a decision
on whether the object is malicious or not.

Some research has also been conducted in malware identification [20, 12],
corresponding to the second use case from the problem statement; the main task
of malware identification is to identify the specific malware family the object of
interest belongs to.

A third goal is malware behaviour characterization [12], focusing on mining
structural and behaviour patterns in order to precisely identify particular groups
of objects of interest. For example, given a family of malicious objects, we want to
understand what behavioural characteristics make this family of objects unique.

To reach these goals researchers use data that represent appropriately the ob-
jects of interest. There are two basic groups of techniques to extract and assemble
data for this kind of representation – static and dynamic. Static approaches pri-
marily focus on getting information that describes the objects’ layout, structure



6 P. Palumbo, et al.

and content. One drawback of static techniques is that in certain situations they
cannot provide a usable representation of the data: for example, if the code of the
particular object has been obfuscated, static processing of the object will pro-
duce substantially weak data and therefore this data cannot guarantee a system
to be reliable enough in terms of precision and recall. At the same time, there is
a clear advantage when it comes to static processing: static techniques are often
computationally light. When it comes to dynamic processing, these approaches
focus on collecting information during the execution of the objects in proper
environments (e.g., operating systems, virtual machines, sandboxes). Obviously,
such data gives a better understanding of the objects’ behavioural patterns that
would not be completely collectable by using static analysis techniques. Unfor-
tunately, dynamic analysis techniques have their own set of problems: first of all,
developing tools that allow the dynamic analysis of malware is very challenging.
Additionally, such techniques require extensive resources and often do not scale
enough to be practical.

An Android package file is a compressed container of files (embedded items)
located in a number of file directories, where Dalvik executable (classes.dex) and
manifest (AndroidManifest.xml) files are the most interesting static data sources
and represent the basic functionality of an application. Other items embedded in
the APK container could be additional native executables or resource files. While
being executed, the application interacts with a number of layered execution en-
vironments of Android operating system. The Dalvik executable is executed by
Android runtime, which is in turn supported by the native execution environ-
ment and accompanying native libraries which in own turn use Linux kernel
services. Correspondingly, the possible dynamic data sources giving behavioral
information can be implemented at the level of these environments by adopting
existing instrumentation and development tools available for Android and Linux
kernels.

Most of the previous work has been based on static processing, the static data
is extracted from mandatory items embedded in analyzed Android Packages. A
dynamic approach is used only in some cases [14–16], where the particular data
is collected by instrumenting operating system.

Most of the discussed research work relies on freely available tools created
by the security community and academia. Particularly, tools like Androguard
[21], Apktool [22] and Baksmali [23] are commonly used by many researchers in
several contexts. All the tools rely on information provided by Google [3].

Among all papers reviewed, only a single one takes into account the problem
associated with not considering the chronological order with the samples used
for training and testing classifiers for malware detection [16]. The authors use
Control Flow Graphs (CFGs) extracted from APK samples to demonstrate that
using random selection to create a training and testing sets from a group of
samples is an approach that introduces a significant bias. In order to reconstruct
a chronology, the authors of [16] make use of the compilation time reported
in APK container. In contrast, we use the date of first observation to sort the
objects in this paper.



Pragmatic Android Malware Detection 7

From the set of works that we reviewed, we observed the use of the follow-
ing supervised learning approaches: k-nearest neighbours (k-NN) [9, 20]; various
implementations of Decision Trees [9, 10, 12, 13, 18], including Classification and
Regression Tree, Quinlan’s ID3 and C4.5; Naive Bayes models [8, 18, 19]; and
Support Vector Machines (often in classification context referred to as Support
Vector Classification, SVC) [9–12, 17]. At the same time we see that ensemble
learning approaches based on boosting (AdaBoost) and bagging (random forest,
RF) are used also in [10, 12, 13, 18, 24]. When it comes to unsupervised learning
techniques, we remark the use of k-Means clustering in [13] and [14]. The former
paper uses the clustering means to divide the initial input data set into a number
of groups of similar instances (thereby assigning the obtained cluster’s labels to
the input instances) and then uses supervised learning approaches. In the lat-
ter paper, the authors expectedly set the number of clusters k to 2 (malicious
and benign) and use the obtained decision model for further detection of new
malicious instances.

One of the most important aspects that defines the practical usefulness of
proposed approaches is the quality of the data used during the training phase.
There are two main points that have to be considered on the matter. First of
all, the amount of available data has to be diverse and large enough to represent
the objects of interest. This said, while considering the existing amount of An-
droid applications and their families, we estimate the minimal acceptable size
for the training data as tens of thousands of instances. Secondly, the sources
of the information that are used to assign labels to the training objects have
to be trustworthy. In this scope, such sources are antivirus vendors and specific
research project databases. For example, in order to mitigate the labeling issue,
some research teams use antivirus-based validation [8, 16, 17], reputation of An-
droid markets [18] and various aggregating services like VirusTotal [25]. At the
same time we still consider the practice of using various Android markets for
labeling the training data risky, especially for the cases of preparing benign data
sets. Out of investigated papers, the biggest datasets were used in [17] and [16],
where the training set is of size 12,158 and 200,000 and test set is 135,792 and
200,000 respectively.

4 Dataset Description

According to the discussion in the previous section, one of the biggest challenges
encountered in research work in the area is the unavailability of a big enough vol-
ume of recent and trustworthy data. In this study, we have access to a database
of malicious and clean samples retrieved and processed by F-Secure Labs. The
samples originate from different sources: for example they are gathered by em-
ployed investigators or submitted by users of F-Secure products. In subsequent
processing, each sample is given one of three labels:

– “Knowingly benign” (a.k.a., “knowingly clean” or “clean”) – this label is
assigned only after human inspection verifies that the sample does not con-
tain malicious or potentially unwanted functionality, or it is confirmed to



8 P. Palumbo, et al.

originate from a trustworthy manufacturer. As this label requires manual
intervention, the cost of producing such labels is relatively high.

– “Knowingly malicious” (a.k.a., “malicious”) – if the antivirus vendor’s ex-
isting detection infrastructure identifies the sample as malicious, it is auto-
matically labelled as such. The systems are executing human created rules
based on previous observation.

– “Unknown” (a.k.a., “undetected”) – this is the default label given to any
instance not assigned to any of the previous labels, i.e., a sample that is
not flagged by existing methods, and has not been manually checked. The
majority of available samples fall into this category. Most of these samples
can be expected to be benign, but a fraction is likely to represent undetected
malware.

Table 1 provides a partition of the datasets used in the context of the study and
highlights both the sizes of the datasets and their associated label. It is important
to note that often in research studies, objects from the “Unknown” category
are defined as benign. For obvious reasons, we consider this assumption risky
for understanding and interpreting the results obtained in the context of these
studies; we instead use entities with this label for estimating the real contribution
of the approach we developed (i.e., the ability to detect new, previously unseen
malicious objects and therefore the added value of the automatic system).

Table 1. The number of samples available in each category

Label

Dataset Knowingly benign Knowingly malicious Unknown

Training 61,249 61,481 N/A

Testing N/A 304,259 1,048,116

4.1 Dataset Collection

The training data set was collected during the time period preceding our experi-
ments. The samples from the “knowingly benign” subset were collected according
to their discovery date, starting from the time when the first android malware
was observed up to the end of 2014. The samples belonging to the “knowingly
malicious” subset were randomly chosen from the set of all malicious android
samples discovered in the time interval beginning with the first of June 2014 and
ending with the 25th of October 2014.

Both of the subsets used for testing purposes (“knowingly malicious” and
“unknown samples”) were collected between October 2014 and January 2015.
The length of the data collection period and our ability to collect precise times-
tamps for samples in the testing set give us an opportunity to observe the evo-
lution of the system’s performances over time. Additionally, given the fact that



Pragmatic Android Malware Detection 9

data included in the testing sets is collected after the conclusion of the training
phase of our classifier, we have the unique and exciting opportunity of under-
standing how the system performs in a real life scenario. In order to emphasize
this important aspect we contributed to the testing methodology, we denote the
used testing sets as evolving data streams.

4.2 Feature Extraction

One issue, highlighted in the previous sections, is the heavy dependence of previ-
ous studies from the available set of external tools for processing input instances.
In order to mitigate this aspect, we implemented our own APK processing tool
that focuses on the types of features we were interested in. The tool goes through
all items embedded in an object of interest, identifies their types and extracts
available static data. For each embedded item, independently of its type, the
tool collects its external attributes as filename, path, size and “sha1” hash.

A number of mandatory embedded items, such as Android manifest file An-
droidManifest.xml, Dalvik executable file container classes.dex and resource file
resources.arsc are completely parsed in order to extract additional information
that is considered meaningful for our study.

In order to form the initial collection F of used features, we extract and use
the ten following subsets of data from the items embedded in a generic Android
package:

– Permissions (1) and other strings (2) from AndroidManifest.xml, denoted as
FMFP and FMFS correspondingly

– Prototypes (3), types (4), methods (5), fields (6), names of classes (7) and
other string (8) information from classes.dex, denoted as FDEXP, FDEXT,
FDEXM, FDEXF, FDEXC and FDEXS correspondingly

– String (9) information from resources.arsc, denoted as FRSRC

– Hash (10) values of all embedded items, denoted as FHASH.

The described static information represents the main functional properties
of the analysed objects, and therefore, indirectly characterizes their expected
behavioural patterns. For example, permissions data indicate the main privileges
the application requires in order to be executed by the Android operating system.
Another clear example is the presence of hardcoded URI in classes.dex: such
URIs usually indicate that an application is supposed to perform interaction
with a specific network host or service. Using the variety of possible behavioural
indicators along with the availability of substantial amount of training instances
leads to making malicious APK detection systems fast, precise and generic. Such
considerations explain the choice of feature sets we made. Further details on the
meaning of the used data can be obtained from numerous data sources, for
example [3].

5 Classification

In this section, we will describe the Machine Learning ensemble-based classi-
fication approach used for malware detection. To this end, we begin with the



10 P. Palumbo, et al.

baseline methodology using Naive Bayes classifier (NB), then describe in detail
the suggested ensemble approach, which is based on atomic NB classifiers.

5.1 Naive Bayes

Naive Bayes [26] is a very computationally efficient linear model that is suitable
for practical implementations, as well as fast in retraining. Naive Bayes classifier
has been extensively used with high-dimensional datasets, especially for text
classification tasks.

Our baseline method [8] uses a Normalized Bernoulli Naive Bayes classi-
fier which implements the following modifications in contrast to the canonical
Bernoulli NB classification approach: (1) the target likelihood is estimated with-
out modelling absence terms and (2) the final sum of log factors is normalized.
Given a file f , represented as a set of features, the ratio of the probability of it
being malicious to the opposite is represented by the following expression:

log
p(label = malicious|f)

p(label = benign|f)
= log

p(malicious)

p(benign)
+

∑
i∈f

θi. (1)

The used Laplace smoothing procedure adopts smoothing parameter k =
1/N where N denotes the number of used training samples:

θi =

c(wi,malicious)+k
M+2k

c(wi,benign)+k
B+2k

. (2)

In Equation 2, the numbers of malicious and benign training instances having
feature wi are denoted as c(wi,malicious) and c(wi, benign). Correspondingly,
M and B are the total number of malicious and benign training instances.

5.2 Ensemble learning

An ensemble of classifiers can be seen as a set of classifiers, whose individual
predictions about the class are combined for making a final prediction [27]. Each
separate ith classifier makes its own hypothesis Hi(x) about the class of the
classified object x. One necessary condition for choosing atomic classifiers for
the ensemble is their diversity, meaning that they make wrong predictions on
different data points. The way to combine the outputs of separate classifiers can
be diverse, including weighted average approach or majority voting.

One of the reasons to extend Normalized Naive Bayes with ensembles was
to provide even more robust detection, where different groups of factors are
taken into account separately. Another reason why ensembles are preferable for
detection is partially dealing with obfuscation. Although we select the features
by minimum frequency and most of the obfuscated features will not fall into the
selected set of features, the classifier may rely on features that clearly are not
associated with code, like APK permissions and resource strings.



Pragmatic Android Malware Detection 11

5.3 Proposed approach

So far we have explained the baseline approach using the Normalized NB. We
propose to use the Normalized NB as the separate classifiers for the ensemble.
Each Normalized NB is trained on a different set of features and provides a
confidence (probability) about the malicious class. Those confidences in turn
are used in a Support Vector Machine classifier [28], which provides the final
decision. Below we elaborate on our approach.

In the proposed approach a file instance f is represented by the feature spaces
from the collection F = 〈FMFP, FMFS, FDEXP, FDEXT, FDEXM, FDEXF, FDEXC,
FDEXS, FRSRC, FHASH〉 where each True value denotes a features existence and
False its absence.

Particular representations Rk(f) of file instances that are obtained during the
objects’ mapping procedure Rk : f → Fk × {malicious, benign} to feature space
Fk ∈ F are then used to instantiate particular entities of Normalized Bernoulli
NB classifiers NBCk for each feature space.

The output values ck(f) = NB(Rk(f)) representing confidences for malicious
class obtained from each Normalized Bernoulli NB classifier form the second level
representations C(f) = 〈c1(f), . . . , ck(f)〉 of training instances that in turn are
used for training the regularized Support Vector Machines classifier [28], which
combines the results obtained via the ensemble of NB classifiers. To this end,
the approach uses standard [29] implementation of SVM wrapped by scikit-learn
library [30].

Figure 1 presents the main structural elements of the suggested classification
scheme together with their connections.

6 Operational performance

As our system is designed to work at an industrial scale, precise running time
measurements are difficult to retrieve; even if that would be possible, they would
represent the performances of the system when implemented on specific hardware
and processing flow. For completeness’ sake, however, we include the data we
collected when performing our tests on a dedicated single machine. Our test
environment consisted of a test machine with 16 GB RAM, Intel Xeon E5430
quad-core CPU at 2.66 GHz, running on 64 bit Linux (Ubuntu). The tests were
conducted with a single threaded toolchain that included:

1. APK parser (raw feature extractor) written in Java
2. Python-based learning / testing framework (based on scikit-learn [30]).

Based on the above scenario, we observed that the biggest amount of time is
spent by the system when parsing an APK file; this processing took on average
3 seconds per sample and we will not consider time used for this task in the
remainder of the performance analysis. When presented with the full training
set, the system described above was able to complete the training procedure and
produce an output model within 8 hours; with this model prepared the prediction



12 P. Palumbo, et al.

Fig. 1. Graphical representation of the suggested classification scheme.The white rect-
angles denote Normalized Bernoulli NB classifiers that are used at the first level of
data processing; the text comments inside these items refers to the subsets of Boolean
features that they use. The grey rectangle at the bottom denotes the Support Vector
Machine classifier; its feature space is constructed with the confidence values produced
by the first level classifiers. The output of the proposed approach is a tuple containing
the predicted label and its confidence.

phase took on average 0.1 seconds per sample. Considering the numbers above,
we can state that already a small system like the one we used for testing can
process around 1,200 objects per hour from end to end. While this information is
specific to our particular environment, it provides a lower bound when it comes
to throughput expectations.

7 Experimental results

The development of the approach presented in the paper is primarily motivated
by the practical study we performed against the baseline classifier. Having ac-
cess to a big enough evolving data stream, we managed to establish a properly
arranged testing process and found out that although the approach provides
reasonable 90–98% of True Positive decisions, the amount of the produced False
Positives is substantially high.

Analysis of these problematic situations allowed us to identify the root cause
for such high false positive rates; the “knowingly clean” samples in the training



Pragmatic Android Malware Detection 13

set do not provide enough coverage of Android applications using third-party,
behaviourally neutral components that are also often used in malicious appli-
cations (for example, SDK components from Web analytics and advertisement
manufacturers and software packers or protectors).

7.1 Feature selection

To ensure a fair and valid comparison between the two approaches, during data
collection and the training of the classifiers we use functionally identical tools,
training sets and feature spaces. In order to provide the latter aspect, the feature
selection procedure Fk → F

′

k for both classification approaches is as follows:

F
′

k = {wi ∈ Fk | c(wi, benign) ≥ t ∧ c(wi,malicious) = 0

∨ c(wi,malicious) ≥ t ∧ c(wi, benign) = 0} (3)

The numbers of malicious and benign training instances having feature wi are
denoted as c(wi,malicious) and c(wi, benign) whereas the selection threshold is
denoted by t. In other words, features presented only in one class with more
than a threshold t were selected.

The full dataset contains more than 40 million unique features, and thus in
order to provide sufficient reduction to a more manageable number, the selection
threshold t is set to 100. The procedure was performed against every feature sub-
set except FMFP (manifest permissions), which does not need reduction due to its
initially reasonable size and the necessity to outline main functional character-
istics, e.g. given privileges, of training instances. The results of feature selection
procedure are presented in Table 2.

7.2 Evaluation of feature importance

To better estimate the contribution of each individual specific classifier towards
the common goal, we performed a dedicated set of experiments. These experi-
ments were conducted by selecting in each case a specific NB classifier and we
evaluate its performances against the training set described before; the results
include only those decisions made when the confidence level of the decision taken
by the classifier was 0.99 or above. Table 2 presents the results of our experi-
ments. Please note that the results are described in terms of feature types as
opposed to classifiers; this is because each classifier works with a single specific
feature space and therefore we can do this mapping. As it can be seen from
Table 2, the most valuable feature type is FDEXS, that encompasses all strings
that are not specifically referenced otherwise in the DEX header; examples of
DEX strings are hardcoded web links, command line strings to invoke additional
programs, various debug messages and so on. We can make also an important
consideration about APK permissions: in fact, while these are extremely useful
as supporting features, the results of our evaluation clearly highlight why rely-
ing on them to properly distinguish between malware and non-malware is not
enough.



14 P. Palumbo, et al.

Table 2. Ranking of individual features’ usefulness for detecting malware with 0.99
confidence

Subset
Total number
of features

Number of
selected features

Percentage of detected
malicious objects

FDEXS 9,170,037 131,807 91.97

FMFS 330,584 4,714 80.22

FHASH 7,371,961 29,327 77.96

FDEXT 5,696,265 81,244 76.83

FDEXM 2,301,487 36,179 76.60

FDEXF 5,788,696 79,769 66.38

FRSRC 9,022,058 352,853 64.16

FDEXC 569,925 14,229 41.93

FDEXP 60,353 1,081 34.75

FMFP 4,589 4,589 0

7.3 Classifier’s evaluation against evolving data streams

In order to evaluate the classifier’s performances using FPR and recall, we tested
it for an extensive period of time. The experiments were conducted by first
training the model with the previously described training set; this model was
kept constant for the duration of the experiments. For each day during the
testing period, we then fed the model with samples from the evolving data
streams. At the end of the testing period, we aggregated the collected results.
The information about obtained positive decisions is summarized and presented
in Figure 2.

Figure 2 shows the results of the classifier’s TPR measurements for the evolv-
ing data set of known malicious samples. During the specified time period, our
classifier detected 259,630 unique malicious objects (85.33% of all instances from
the data set).

If we focus on the linear trend, it can be observed that the recall for known
malware samples decreases over time. This can be explained as follows: we can
expect known families to give way to new, possibly more sophisticated ones that
will be detected by anti-virus programs only after our training was completed;
therefore we expect the capabilities of any system with a restricted amount of
knowledge obtained during a training phase to decrease over time.

Figure 3 presents the results of applying the trained model to the evolving
data set of unknown samples. The solid line shows the measured fraction of pos-
itive predictions (i.e., it indicates how many potentially malicious objects are
present in the stream of unknown samples) performed for each day of our mon-
itoring period, while the dotted one represents the linear trend. For the whole
time period the classifier labeled 319,828 unique instances as malicious (30.51%
of all instances from the data set). For the sake of clarity it is necessary to state



Pragmatic Android Malware Detection 15

0

10

20

30

40

50

60

70

80

90

100

Fig. 2. Percentage of detected samples from the malicious evolving stream. The solid
curve indicates results for each particular date starting with 26th October 2014 up to
31st January 2015. The dotted line represents the linear trend for the TPR. The recall
for known malware samples decreases over time.

that the obtained numbers cannot be considered objective due to two reasons.
First, this fact must be combined with additional information about the ex-
pected error rate (FPR) that is discussed in the next paragraphs. Secondly, even
though the FPR is known, it is still necessary to validate some of the decisions
with human analysts’ assistance that is beyond this paper’s scope. Overall, the
presented results give us an indication of how many new, previously undetected
malicious objects could be present in a stream of samples after scanning via
traditional means, such as antivirus signatures and heuristic engines. Follow-
ing these considerations, we define this rate as Unconfirmed True Positive Rate
(UTPR).

If we again focus on the linear trend from Figure 3, we can observe an increase
in the detection rate over time. The main explanation for this behavior is that in
this particular timeframe the antivirus vendor’s systems received an increasing
amount of malware undetected by standard methods that uses techniques that
are similar to those used by the samples our system was trained against. At
the same time, another possible explanation is that this increase is justified by
a growth in the false positive rate of the classifier as time goes by; in fact the
features that were more prevalent in malware samples at the time of training
might have been increasingly used in non-malicious applications produced after
training. For example, if during the training phase a specific advertisement plat-
form is used mostly by detected samples, there is the chance that as time goes by
the same advertisement platform would become popular also in non-malicious
applications.

In order to estimate the expected error rate for the positive decisions pro-
duced for the samples belonging to the evolving data set of unknown samples, we
performed the same evaluation procedure that was described above. Thus, each



16 P. Palumbo, et al.

unconfirmed positive decision (malware detection from the unknown data set)
was validated against the information available via the VirusTotal [25] service
that aggregates most AV detection engines. To this end, each positive decision
was confirmed so that if a given object is detected via the service by several
engines, then the decision is considered correct, otherwise the decision is con-
sidered to be a false positive. This procedure is only partially automated and
time consuming. Therefore, to verify our results, we selected as a benchmark
the same set of that was used to verify the Normalized Bernoulli Naive Bayes
classifier; specifically we selected the 17,317 unknown Android samples that were
collected on 31st January 2015. The final results of the carried out validation
are summarized in Table 3.

0

10

20

30

40

50

60

70

80

90

100

Fig. 3. Percentage of detected samples from the unknown evolving stream.The solid
line shows measurements performed for each day of our monitoring period while the
dotted one represents the linear trend. We can observe an increase in the detection
rate over time.

Table 3 describes the results of the comparison between the selected baseline
and proposed approaches. When it comes to the 10,688 knowingly malicious
samples obtained on the previously mentioned date, the results show that the
baseline approach performs better than the proposed one if we consider TPR
rate (column: TPR for knowingly malicious set). However, when we consider
the performances against the set of undetected samples, we can see that the
performances of the suggested approach are significantly better than those of
the baseline. The last column of the table, “Unverified positive decisions”, refers
to the percentage of samples that were detected by the two approaches but
that could not be verified using the previously described validation procedure;
this is because, at the time of verification, those samples were not known to
VirusTotal. This could be interpreted as a possible sign of maliciousness, but
that is not necessarily the case.



Pragmatic Android Malware Detection 17

Table 3. Comparison of accuracy between the baseline method and the new approach
on the evolving stream of data. The knowingly malicious dataset contains only malware,
and the precision is thus always 100%. For the “undetected” dataset, the number of false
negatives can not be counted, and hence only values for precision and false discovery
rate are presented.

Method
TPR, %,
knowingly
malicious

Precision, %,
undetected

False
Discovery
Rate, %,
undetected

Unverified
Positive
Decisions, %,
undetected

Baseline 98.64 75.49 16.06 8.45

New approach 90.82 88.08 4.07 7.86

In this experiment, the model was kept constant during the evaluation on the
evolving data stream. The trained model could, however, easily be updated when
new labels are available. In the Naive Bayes classifier, updating the model can
be done by updating existing feature counts without the need to go through old
training samples again. The SVM classifier on top of the Naive Bayes classifiers
needs to be retrained each time, but due to having only 10 inputs from 10 Naive
Bayes probability estimates, it is of low cost. Implementations of online learning
with SVM have also been studied, e.g., in [31].

0.00 0.02 0.04 0.06 0.08 0.10
False Positive rate

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
ru

e
 P

o
si

ti
v
e
 r

a
te

The ROC curves for the compared approaches

The baseline approach

The proposed approach

Fig. 4. ROC curves for the proposed approach and baseline approach on the static
data set. Note that both axes have been zoomed towards the top left corner.

7.4 Classifier’s evaluation against a static set

Additionally, we compared our approach with the selected baseline by applying
traditional methodologies on the fixed sample set from 2014. The fixed sample set
is overall composed of approximately 120,000 samples; 40,000 samples have then



18 P. Palumbo, et al.

been randomly selected for the purpose of this experiment. 20,000 of these sam-
ples have been added to the training set, while the remainder has been marked
as belonging to the test set. Each of these sets contains 10000 malicious samples
and 10,000 clean samples. For our experiments we have selected a threshold value
for the FP rate of 0.01%; we do consider a low FP rate to be critically important
for this kind of systems in an industrial scenario. We do however provide full
ROC curves for the interested reader; the curves are presented in Figure 4. From
Table 4, we can see that our approach improves over the baseline approach: the
new approach provides an increase of about 30% when it comes to the TP rate
with a small fixed FP rate of 0.01%. Table 4 provides additional insight into the
performances of the two approaches for the selected parameter. Even considering
that we compare only against the chosen baseline paper, the produced results,
particularly the increase in TP rate, represent a significant improvement over
existing work in the field of Android Malware detection.

Table 4. Comparison between the baseline and the new approaches on the fixed train-
ing (20,000 samples) and test (20,000 samples) data sets; acceptable false positive rate
is 0.01%.

Real labels Precision

Malicious Benign

The baseline approach, ROC AUC is 0.99602

Predicted labels
Malicious 5421 1 0.9998

Benign 4579 9999 0.6859

Recall 0.5421 0.9999 Accuracy: 0.7710

The proposed approach, ROC AUC is 0.99799

Predicted labels
Malicious 8485 1 0.9999

Benign 1515 9999 0.8684

Recall 0.8485 0.9999 Accuracy: 0.9242

8 Protected samples

Clearly, any purely static classification system will be unable to correctly handle
all of those samples that are protected against analysis and inspection. One of the
difficulties with these samples comes from the use of obfuscation. Obfuscation is a
common technique used to prevent security software from inspecting the contents
of malicious files. Obfuscated code is traditionally best handled via dynamic
analysis techniques, i.e., taking advantage of the relevant (virtual or real) CPU
in order to remove the obfuscated layers; attempting similar operations through
static techniques is often time consuming and not effective in the long term.



Pragmatic Android Malware Detection 19

At the same time, not all the obfuscators are the same. In some cases, the
obfuscator may not process the entirety of a target file’s structure and content.
In such cases, the features not modified by the obfuscator can be leveraged by
the proposed ensemble-based approach. Additionally, many obfuscators modify
their targets in such way that these modifications are reflected in specific fea-
tures spaces [32]. As previously mentioned, these cases are well handled by the
proposed approach.

Even in those cases where the proposed approach is not helpful in bypassing
the protective measure, it provides significant value in the form of operational
optimization. In fact, even in such cases the proposed approach can easily iden-
tify samples that are protected and provide such information to the rest of the
automation for appropriate handling; this could mean raising the priority of the
sample so that it undergoes deeper and more expensive dynamic analysis.

We do however consider the problem of dealing with packed and protected
APK samples as a significant challenge and leave further investigation to future
work.

9 Case study

In this section we investigate a few selected cases that help us illustrate the
effectiveness of the proposed ensemble-based approach. By comparing the per-
formances of the baseline NB classifier and the new, ensemble-based classifier we
are able to show that the increased precision of the ensemble classifier is at the
expense of the recall; this lowered recall, however, is still high enough to allow
the use of the classifier in a common data processing pipeline.

Table 5. Confidence values from atomic classifiers for Android malware families. Dif-
ferent families are detected by different atomic classifiers.

Feature subset BaseBridge.C SmsSend.OC SmsSend.WB

FDEXP 0.996 0.500 0.500

FMFS 0.500 0.998 0.500

FHASH 0.500 0.500 0.991

FDEXM 0.996 0.500 0.991

FDEXS 0.500 0.998 0.992

FMFP 0.560 0.554-0.559 0.617

FRSRC 0.500 0.500 0.991

FDEXF 0.996 0.500 0.991

FDEXT 0.996 0.500 0.991

FDEXC 0.500 0.991 0.991

Second level (SVM) classifier 1.000 1.000 1.000



20 P. Palumbo, et al.

If we review a number of detection cases for knowingly malicious Android
applications in Table 5, we can see that different families are detected by different
atomic classifiers. This gives a better understanding of how malware is developed,
deployed and of how it evolves.

For instance, test samples belonging to the Trojan:Android/BaseBridge.C
family of malware were detected by atomic classifiers trained against FDEXP,
FDEXM, FDEXF and FDEXT feature subsets. This indicates that this particular
family uses similar code constructs but changes auxiliary files and resources.

Malicious APK samples belonging to the Trojan:Android/SmsSend.OC fam-
ily were detected thanks to atomic classifiers associated with FDEXS, FDEXC and
FMFS. While examining samples belonging to this family it becomes apparent
that they all require different combinations of system permissions, which causes
a fluctuation in the confidence levels of FMFP; for example,the mere presence of
the permission SEND-SMS causes an increase in confidence of 0.005.

Finally, test malicious samples from Trojan:Android/SmsSend.WB family
can be detected with the help of atomic classifiers based on FDEXT, FDEXF,
FDEXS, FDEXC, FRSRC, FHASH and FDEXM. This also provides the useful obser-
vation on how different could be malicious objects that belong to a same family,
e.g. SmsSend.OC versus SmsSend.WB.

Fig. 5. PCA 2D visualization of a fraction of the test set provides good visibility on
separation of some Android malware families (Table 5) and clean APKs.



Pragmatic Android Malware Detection 21

As it can be seen, due to common values of confidences produced for various
malicious families, the ensemble-based detection approach can be easily adopted
for distance-based similarity visualisation. Although the thorough review of this
particular property of the proposed decision scheme is out of scope of the paper,
an example of Principal Component Analysis -based visualization for the data
in presented in Figure 5 (data points jittering is used).

10 Conclusions

In this paper we have introduced several important requirements for the real-
world deployment of automatic, machine learning-based Android malware de-
tection systems.

First we highlight how the usage of fixed training and test data sets during
development and testing of such systems is fraught with the risk of overestimat-
ing the systems’ accuracy. To address this challenge we extend the traditional
development process of such systems with an additional validation step, specifi-
cally adopting extra data sets representing the evolution of software applications
during a continuous time interval following the completion of the systems’ train-
ing.

Our paper also presents an improved approach for detecting new, previously
unseen malicious Android applications. It consists of an ensemble of Normalized
Bernoulli Naive Bayes [8] classifiers producing decisions that are consolidated
by a single Support Vector Machine classifier. The proposed scheme is trained
with a considerably sized, balanced data set received from a trustworthy source
[2]. The validation of the classifier was carried out against a continuous stream
of real-life new Android applications collected for a period of three months after
the completion of the classifier’s training. The results obtained clearly show that
our improved approach outperforms previous research approaches [8] in terms of
false positive rate. Our evaluation shows a FPR of 4.07% with a TPR of 90.82%
on the evolving stream and with a TPR of 85.84% with a fixed FPR of 0.01%
against the fixed dataset.

The ensemble-based nature of the proposed approach, where each member of
the ensemble works on the basis of specific family of features, makes it suitable
to counteract the evolution of malware, which happens almost exclusively in
incremental steps. This means that some of the features extracted from malware
will inevitably remain the same while only a subset change with any incremental
releases.

Despite the noteworthy performances of our ensemble-based classifier, we
need to acknowledge the difficult scenario in which these systems operate. For
this reason we consider the proposed system suitable for fast and effective prior-
itization of samples for human analysis and more expensive automatic systems.



22 P. Palumbo, et al.

Acknowledgements

This work was supported by the Tekes (the Finnish Funding Agency for Inno-
vation) project “Cloud-assisted Security Services” (3886/31/2016).

References

1. Net Applications: Operating system market share (2015) http://www.
netmarketshare.com/operating-system-market-share.aspx.

2. F-Secure Corp.: Protect your life on every device (2015)

3. Google Inc.: Android core technologies – Android open source project. http://
source.android.com.

4. ZD Net: Over 400 instances of dresscode malware found on Google play store,
say researchers. http://www.zdnet.com/article/over-400-instances-of-dresscode-
malware-found-on-google-play-store-say-researchers/.

5. Ars Technica: “godless” apps, some found in Google play, can root 90% of An-
droid phones http://arstechnica.com/security/2016/06/godless-apps-some-found-
in-google-play-root-90-of-android-phones/.

6. Bleeping computer: Adware found in Android app with over one million installs
on Google play store https://www.bleepingcomputer.com/news/security/adware-
found-in-android-app-with-over-one-million-installs-on-google-play-store/.

7. The Hacker News: Nasty Android malware that infected millions returns to Google
play store http://thehackernews.com/2017/01/hummingbad-android-malware.
html.

8. Sayfullina, L., Eirola, E., Komashinsky, D., Palumbo, P., Miche, Y., Lendasse, A.,
Karhunen, J.: Efficient detection of zero-day Android malware using normalized
bernoulli naive bayes. In: IEEE International Conference on Trust, Security and
Privacy in Computing and Communications. (2015)

9. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: Mining API-level features for ro-
bust malware detection in Android. In: Security and Privacy in Communication
Networks. Volume 127. (2013) 86–103

10. Peiravian, N.: Data mining heuristic-based malware detection for Android appli-
cations. Master’s thesis, Florida Atlantic University (2003)

11. Sahs, J., Khan, L.: A machine learning approach to Android malware detection.
In: Intelligence and Security Informatics Conference (EISIC), 2012 European. (Aug
2012) 141–147

12. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: DroidMiner: Automated
mining and characterization of fine-grained malicious behaviors in Android appli-
cations. In: Computer Security – ESORICS 2014. (2014) 163–182

13. Aung, Z., Zaw, W.: Permission-based Android malware detection. International
journal of scientific and technology research (2013) 228–234

14. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-based mal-
ware detection system for Android. In: Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices. (2011) 15–26

15. Chen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H., Zou, W., Liu,
P.: Finding unknown malice in 10 seconds: Mass vetting for new threats at the
Google-play scale. In: Proceedings of the 24th USENIX Conference on Security
Symposium. SEC’15 (2015) 659–674



Pragmatic Android Malware Detection 23

16. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Machine learning-based malware
detection for Android applications: History matters! (2014)

17. Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of Android
malware using embedded call graphs. In: Proceedings of the 2013 ACM Workshop
on Artificial Intelligence and Security. (2013) 45–54

18. Huang, C.Y., Tsai, Y.T., Hsu, C.H.: Performance evaluation on permission-based
detection for Android malware. In: Advances in Intelligent Systems and Applica-
tions – Volume 2. (2013) 111–120

19. Yerima, S.Y., Sezer, S., McWilliams, G., Muttik, I.: A new Android malware detec-
tion approach using bayesian classification. In: Advanced Information Networking
and Applications (AINA), 2013 IEEE 27th International Conference on. (March
2013) 121–128

20. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Blasco, J.: Dendroid: A text
mining approach to analyzing and classifying code structures in Android malware
families. Expert Systems with Applications 41 (2014) 1104 – 1117

21. Desnos, A., Gueguen, G.: Androguard (2015) https://github.com/androguard/
androguard.

22. Tumbleson, C., Winiewski, R.: Apktool – a tool for reverse engineering Android
apk files. (2015) http://ibotpeaches.github.io/Apktool/.

23. Smali team: smali – an assembler/disassembler for Android’s dex format. (2015)
24. Seneviratne, S., Seneviratne, A., Kaafar, M.A., Mahanti, A., Mohapatra, P.: Early

detection of spam mobile apps. In: Proceedings of the 24th International Confer-
ence on World Wide Web. WWW ’15 (2015) 949–959

25. Virus Total team: Virustotal – free online virus, malware and url scanner. (2015)
https://www.virustotal.com/.

26. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press
(2012)

27. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman &
Hall/CRC (2012)

28. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20 (1995)
273–297

29. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Trans. Intell. Syst. Technol. (2011) 27:1–27:27

30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011) 2825–2830

31. Laskov, P., Gehl, C., Krüger, S., Müller, K.R.: Incremental support vector learning:
Analysis, implementation and applications. Journal of machine learning research
7(Sep) (2006) 1909–1936

32. Yu, R.: Android packers: Facing the challenges, building solutions. In: Virus
Bulletin 2014 Proceedings. (2014) 266–275


