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Abstract. We present a probabilistic model for robust principal com-
ponent analysis (PCA) in which the observation noise is modelled by
Student-t distributions that are independent for different data dimen-
sions. A heavy-tailed noise distribution is used to reduce the negative
effect of outliers. Intractability of posterior evaluation is solved using
variational Bayesian approximation methods. We show experimentally
that the proposed model can be a useful tool for PCA preprocessing
for incomplete noisy data. We also demonstrate that the assumed noise
model can yield more accurate reconstructions of missing values: Cor-
rupted dimensions of a “bad” sample may be reconstructed well from
other dimensions of the same data vector. The model was motivated
by a real-world weather dataset which was used for comparison of the
proposed technique to relevant probabilistic PCA models.

1 Introduction

Principal component analysis (PCA) is a widely used method for data prepro-
cessing (see, e.g., [1-3]). In independent component analysis (ICA) and source
separation problems, PCA is used for reducing the dimensionality of the data
to avoid overlearning, to suppress additive noise, and for prewhitening needed
in several ICA algorithms [2,4]. PCA is based on the quadratic criteria of vari-
ance maximisation and minimisation of the mean-square representation error,
and therefore it can be sensitive to outliers in the data. Robust PCA techniques
have been introduced to cope this problem, see, for example, [4] and the ref-
erences therein. The basic idea in robust PCA methods is to replace quadratic
criteria leading to standard PCA by more slowly growing criteria.

PCA has a probabilistic interpretation as maximum likelihood estimation of
a latent variable model called probabilistic PCA (PPCA) [5]. While PPCA is
a rather simplistic model based on Gaussion assumptions, it can be used as a
basis for building probabilistic extensions of classical PCA. Probabilistic models
provide a principled way to cope with the overifitting problem, to do model
comparison and to handle missing values. Probabilistic models for robust PCA
have been introduced recently [6-8]. They treat possible outliers by using heavy-
tailed distributions, such as Student-t or Laplacian, for describing the noise.

In this paper, we present a new robust PCA model based on the Student-
t distribution and show how it can be identified for incomplete data, that is,
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Fig. 1: Principal subspace estimation using (a) probabilistic PCA [5], (b) robust PCA
assuming fully corrupted outliers 7] and (c) robust PCA assuming partially corrupted
outliers. The crosses represent data points and the circles show their projections onto
the found principal subspace.

datasets with missing values. We assume that the outliers can arise indepen-
dently in each sensor (i.e. for each dimension of a data vector). This is different
to the previously introduced techniques [6, 7] which assume that all elements of
an outlier data vector are corrupted. This work was inspired by our intention
to apply a semi-blind source separation technique, called denoising source sepa-
ration (DSS) to a weather dataset which is too much corrupted by outliers and
missing values. We have earlier successfully applied DSS to exploratory analysis
of global climate data [9].

Our modelling assumption can be more realistic for some datasets and there-
fore they can improve the quality of the principal subspace estimation and
achieve better reconstructions of the missing values. The model can also be
used to remove outliers by estimating the true values of their corrupted compo-
nents from the uncorrupted ones. This is illustrated in Fig. 1 using an artificial
two-dimensional data with a prominent principal direction and a few outliers.
The subspace found by the simplest PCA model is affected by outliers, whereas
robust techniques are able to find the right principal subspace. However, the
reconstruction of the data is quite different depending on whether one assumes
fully corrupted or partially corrupted outliers: Fully corrupted outliers can be
reconstructed by projecting orthogonally onto the subspace, while improbable
values of partially corrupted samples can be ignored and reconstructed based on
the uncorrupted dimensions.

2 Model

Let us denote by {y,}Y_; a set of M-dimensional observations y,,. The data are
assumed to be generated from hidden D-dimensional states {x,})_, using the
transformation:

yn:W:Bn+/1'+€n7



where W is a M x D loading matrix, p is a bias term and €, is noise. Usually
the dimensions fulfil D < M < N. The prior models for the latent variables are
the same as in PPCA and we use conjugate prior for p and hierarchical prior
for W as in [10] to diminish overfitting [11]:
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Hyperparameters aq, bo, and 3 are fixed to some proper values.
The noise term €, is modelled using independent Student-¢ distributions for
its elements. This is achieved by using a hierarchical model with extra variables

Umn -

p(Y, U|W7 X, p, T, V) = H N (ymn|w;£1wn + fm, m) g(umnl Vén > UTm) )

mn|Omn

which yields a product of Student-t distributions S(ymn|wrk Ty + fim, TL, Vi)
with degrees of freedom v,,, when U is marginalised out [12]. Here, Oy, denotes
such indices that the corresponding y,,,, is actually observed and w.\, is the m-th
row of W. Precision 7, defines a scaling variable which is assigned a conjugate
prior

M

p(T) = H G(tmlar,bsr),

m=1

with a, and b, set to proper values. Separate 7, and v, are used for each
dimension but with simple modifications the dimensions can have a common
value. Especially for the precision 7, common modelling may prevent bad local
minima. For the degrees of freedom v we set a uniform prior.

3 Posterior Approximation

Bayesian inference is done by evaluating the posterior distribution of the un-
known variables given the observations. We use variational Bayesian approach
to cope with the problem of intractability of the joint posterior distribution (see,
e.g., [3, ch.10] for more details). The approximate distribution ¢ is factorised with
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Fig. 2: The weather stations are shown as purple dots on the topographical map of the
studied area. The colour represents the altitude above sea level in meters.

respect to the unknown variables as

N M M M M N D
H q(zn) H q(wp,) q(pm) H q(Tm) H H q(Umn) H q(aq)
n=1 m=1 m=1 m=1 m=1n=1 d=1

and each factor ¢(6;) is updated assuming the other factors are fixed. This is done
by minimising the Kullback-Leibler divergence cost function. Using conjugate
priors yields simple update rules presented in the appendix.

4 Experiments with real-world data

The proposed model was largely motivated by the analysis of real-world weather
data from the Helsinki Testbed research project of mesoscale meteorology. The
data consists of temperature measurements in Southern Finland over a period
of almost two years with an interval of ten minutes, resulting in 89000 time
instances. Some parts of the data were discarded: Stations with no observations
were removed and we used only the measurements taken in the lowest altitude
in each location. The locations of the remaining 79 stations are shown in Fig. 2.

The quality of the dataset was partly poor. Approximately 35% of the data
was missing and a large number of measurements were corrupted. Fig. 3 shows
representative examples of measurements from four stations. The quality of the
dataset can be summarised as follows: Half of the stations were relatively good,
having no outstanding outliers and only short periods missing. More than 10
stations had a few outliers, similarly to the first signal from Fig. 3. Five stations
had a large number of outliers, see the second signal in Fig. 3. The quality of
the data from the rest of the stations was somewhat poor: The signals contained
a small number of measurements and were corrupted by outliers, see the two
signals at the bottom of Fig. 3.

Although the outliers may sometimes be easily distinguished from the data,
removing them by hand requires a tedious procedure which turned out to be non-
trivial in some cases. Therefore, we used the proposed robust PCA method as a
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Fig. 3: Temperature data from four stations from the Helsinki Testbed dataset.

preprocessing step which automatically solves the problems of outlier removal,
dimensionality reduction and infilling missing values. To keep the preprocessing
step simple, we did not take into account the temporal structure of the data.

In the presented experiment, we estimated the four-dimensional principal
subspace of the data using the following models: probabilistic PCA [5], robust
PPCA (RPCA-s) [7] and the robust model presented in this paper (RPCA-d).
For RPCA-d, the degrees of freedom {v,,, }}_, were modelled separately for each
station whereas the precision 7,,, = 7 was set to be common. Broad priors were
obtained by setting aq = bey = 8 = a = by = 1073,

Fig. 4 presents the reconstruction of the missing data for the four signals
from Fig. 3 using the compared techniques. The reconstructions obtained by
PPCA and RPCA-s are clearly bad. Both models are over-fitted to outliers and
to spontaneous correlations observed in scarce measurements from problematic
stations. The methods reproduce accurately some outliers and generate new
outliers in the place of missing values. In contrast, the results by RPCA-d are
clearly much better: The outliers are removed and reasonable reconstructions
of the missing values are obtained. Although the signals look rather similar in
Fig. 4¢ (the analysed spatial area is small and the annual cycle is obviously the
dominant pattern), the reconstructed signals look very plausible.

The loading matrix W obtained with the different techniques is also visu-
alised in Fig. 4. Each column of W is a collection of weights showing the con-
tribution of one principal component in reconstructing data in different spatial
locations. The patterns shown in Fig. 4 are interpolations of the weights over the
map of Southern Finland. The patterns produced by PPCA and RPCA-s clearly
contain lots of artefacts: the components are over-fitted to the outliers registered
in some weather stations. On the contrary, the components found by RPCA-d
are much more meaningful (though they contain some artefacts due to problem-
atic stations in the central area): The first component explains the dominant
yearly and daily oscillations and the patterns associated with the rest of the
principal components are very typical for PCA applied to spatially distributed
data. Since the investigated area is rather small, the first principal component
has similar loading for all weather stations. Note a clear coast line pattern in
the second and the third components.
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Fig. 4: Experimental results obtained for the Helsinki Testbed dataset with different
models. Left: The reconstructions of the signals shown in Fig. 3. Right: The principal
component loadings interpolated over the map of Southern Finland.

5 Conclusions

In this paper, we presented a probabilistic model for robust PCA which can
be a useful tool for preprocessing incomplete data with outliers. The effect of
outliers is diminished by using the Student-¢ distribution for modelling the ob-
servation noise. We showed that using a model with independent elements of the
noise vector can be more appropriate for some real-world datasets. We tested
the proposed method on a real-world weather dataset and compared our ap-
proach with the probabilistic PCA model [5] and robust PPCA assuming fully



corrupted outlier vectors [7]. The experiment showed the superior performance
of the presented model, which found meaningful spatial patterns for the princi-
pal components and provided reasonable reconstruction in the place of missing
data.

The proposed algorithm is based on a probabilistic model and therefore it
provides information about the uncertainty of the estimated parameters. The
uncertainty information can be taken into account, for example, when the prin-
cipal components are ordered according to the amount of explained data variance
[11]. The model can easily be extended, for example, by taking into account the
temporal structure of the data. This would result in better performance in the
tasks of missing value reconstruction and outlier removal.

In our work, we use the proposed technique as a preprocessing step for fur-
ther exploratory analysis of data. For example, one can investigate a principal
subspace found for weather data in order to find meaningful weather patterns or
to extract features which might be useful for statistical weather forecasts. This
can be done, for example, by using rotation techniques closely related to ICA.
We have earlier used this approach for analysis of global climate data [9].
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Appendix: Update rules

q(wn) :N(mn|jn7 Zmn)v Q(wm> :N(wm|mm7 Z'wm) and (J(H) :N(,U'm|ﬁmv ﬁm)
are Gaussian density functions updated as follows:

S =T+ Y () () (@, + F,,)

m‘onln
Ty = Yy, Z <Tm><umn>ﬁm(ymn - ﬁm)
m|Omn
Tob =diag(a) + (Tm) > (tmn) (@ + Za,)
n|Omn
Wy = X, (Tm) Z (W) T (Yrmn — o)
n|Omn
fig! =B+ (Tm) D (ttmn)
n|Opmn
Pon, = Fim{Tm) Z (Urmn) (ymn - E%fn)
nlomn

where (-) denotes expectations over the approximate distribution.

v v

Approximate g(Tm) = G(Tmllr,,,br,.); @(Umn) = G(Uumn|tu,,,,bu,,,) and
q(aq) = G(aglde, ba, ) are Gamma density functions updated as follows:

r,, = r + % ETm =br + % Z <umn>(e12nn + i + gmn)
n‘onln
duwnn = UT + % Buwnn = Vén + %<Tm>(e$nn + /A’Zm + gmn)
M
o = (o + 5 bad:ba—l—% <w,2nd>
m=1

where @, and Eumn are estimated only for observed y,n, N, denotes the
number of observed values in the set {y,nn} ,Jy:l, while e,,,,, and &,,,,, are shorthand

notations for
€mn = Ymn — Eﬁin — b,
Eomn =W X Wy + T By, T + t1( Dy, X, ) -
The degrees of freedom v are point-estimated in order to keep the posterior

approximation analytically tractable. The maximum likelihood estimate is found
by maximising the lower bound of the model loglikelihood. This yields

L+ IOg(UTm) - w(%) + NLm Z ((log wmn) — (umn)) =0,
n|Omn

which can be solved using line search methods. One may try to start updating
the hyperparameters a and v after the iteration has already run for some time
if the algorithm seems to converge to bad local optimum.



