
Two-Level Phoneme Recognition Based on Successive Use

of Monophone and Diphone Models

Panu Somervuo

Neural Networks Research Centre

Helsinki University of Technology

P.O.Box 5400, FIN-02015 HUT

Finland

panu.somervuo@hut.fi

ABSTRACT

Two-level phoneme recognition method is proposed
based on successive use of monophone and diphone mod-
els. In the first level of the recognition, computationally
lighter (in terms of the number of the models) mono-
phone models are used for selecting a subset of diphone
models. For each input utterance, those diphone mod-
els are set active whose left or right contexts are present
in the recognized monophone sequence. The chosen di-
phone models are then evaluated in the next level of the
recognition. This substantially decreases the computa-
tional load compared to the case where all diphone mod-
els must be examined for each input utterance. In the
Finnish speaker-independent phoneme recognition task
on average half of the diphone models could be elim-
inated in the second level of the recognition per word
utterance while still achieving the same recognition ac-
curacy as when using all the models. Clustered mono-
phone and diphone models were also experimented as
the models in the first-level recognizer. This did not,
however, bring any further improvement to the results
obtained by using unclustered monophone and diphone
models.

1 Introduction

The approach to the current state-of-the-art speech
recognition can be described as a task for finding the
best path in a large graph where the nodes represent
atomic elements of speech [6]. It is important to im-
prove both the models of the nodes in the graph, i.e., the
current acoustic models, and the restrictions to the best
path in the graph, i.e., the language models. However, in
addition to these fundamental modeling tasks, it is also
important to develop speedup methods for the recogni-
tion systems in order to be able to construct practical
applications.
Expanding N-grams can be applied to both acoustic

and language models. The common goal is to utilize the
better accuracy of the more specific models while avoid-
ing unnecessary computation. Short-cuts are needed in
order to keep the computational load feasible. One ap-
proach is to use hierarchical recognition system for lim-

iting the search space. Recognition process begins using
coarse models and then proceeds using finer and more
detailed models in the next level. In this work mono-
phone and diphone models have been used, see Fig. 1.

A common method in continuous speech recognition is
to use Viterbi-beam search. Only recognition hypothe-
ses above a certain likelihood threshold are evaluated
further. This reduces the amount of computation. An
obvious problem, however, is how to choose the proper
threshold for cutting the unlikely hypotheses. In the
present work where the goal is phoneme recognition no
such threshold needs to be explicitly determined. The
result of the monophone recognizer is used for automati-
cally selecting a subset of diphone models for being eval-
uated.

The aim of the phoneme recognition is to convert
a feature vector sequence into a phoneme symbol se-
quence. In the Finnish language where the orthography
of a word is almost the same as its phonemic repre-
sentation, a continuous phoneme recognizer will provide
means for a vocabulary-free dictation system.

2 Speech data

Speech database consisted of word utterances collected
from 59 native Finnish speakers. Each speaker had read
a newspaper article in an isolated-word mode. The
database was randomly divided into three sets: train-
ing set consisting of 30 speakers, development set con-
sisting of 17 speakers, and final test set consisting of the
remaining 12 speakers. These sets contained 7298, 4290,
3000 and words, and 61907, 33768, and 23863 phonemes,
respectively. The phoneme set consisted of 24 symbols
including all existing phonemes in the Finnish language.
No distinctions were made between long and short ver-
sions of the same phoneme.

All data were recorded in a quiet office environment
using a 16 kHz sampling rate. 24-dimensional feature
vectors were computed from overlapping 16-ms time
windows. High frequencies were emphasized using a
first-order high-pass filter (zero at z=0.95) and the re-
sulting speech samples were weighted using a Ham-
ming window. Feature vectors consisted of 12 mel-

1

input speech monophone
recognizer phoneme string A choose subset of

diphone models

diphone
recognizer phoneme string B

Figure 1: Two-level phoneme recognition. Based on the result of the monophone recognition of an input utterance
(phoneme string A), a subset of diphone models is selected to be active. The final recognition result based on diphone
models is phoneme string B.

frequency based cepstral coefficients and their first-order
time derivatives. The time derivatives were computed
using two previous and two ensuing speech frames.

3 Phoneme model training

The recognizer used in this work was based on hid-
den Markov models (HMMs) [7] with Gaussian mixture
model densities. The mixture models were initialized
using the Self-Organizing Map (SOM) and fine tuned
with Learning Vector Quantization (LVQ) [2, 3].
The SOM can be thought as an elastic grid which is

fitted to the input data. Each node is associated with
a model of the input space (usually a feature vector).
Through an unsupervised learning process the models
become specially tuned and organized according to the
input patterns smoothly approximating the distribution
of the input data. The batch training of the SOM can
be expressed as [3]

mi =

∑

j hc(xj),i(t)xj
∑

j hc(xj),i(t)
, (1)

wheremi is the model vector associated with the map
unit i, hc(xj),i(t) is the neighborhood function, c(xj) is
the index of the best-matching unit for data vector xj

(the model vector with the smallest Euclidean distance
to the input vector), and t is the training time index.
The neighborhood function controls the learning rates
of the model vectors on the map. A large neighborhood
is used in the beginning of the training which results
in moving all model vectors near to the center of the
input data even if the model vectors had been randomly
initialized. As the training proceeds, the neighborhood
function is then gradually set smaller so that the model
vectors will better adapt to the finer details of the input
data set.
In its basic formulation, the SOM algorithm organizes

a vector quantization (VQ) codebook according to the
similarity of static, separate feature vectors taking no
temporal dependencies between the feature vectors into
account. The benefit of the HMM is then utilizing the
time-dependency and order of acoustic phenomena in
the recognition. Temporal speech patterns are com-
pactly stored in a state network. Combinations of the

SOMs and HMMs have been used earlier e.g. in [5].
In short, SOM gives a good initialization for the mean
vectors of the Gaussian mixture model.

Here spherical Gaussians were attached to each SOM
node with a common kernel width. This corresponds
to the reduced kernel-density estimator [1] with a single
smoothing parameter among the kernels. The value of
the smoothing parameter was set so that the number of
the insertion and deletion errors using development data
were in balance. The use of a single common smoothing
parameter is advantageous, since it allows an easy way
to use LVQ training when later fine tuning the mixture
densities for better phoneme discrimination. Another
aspect is that robust estimates for individual variances
of Gaussians are difficult to obtain. The model used
in the present work can be thought as a smoothed dis-
crete probability density. The obvious advantage com-
pared to the discrete pdf is the utilization of the quan-
tization error between the observation vector and the
VQ-codebook vector and the benefit compared against
the full parametric continuous pdf model is the reduced
number of parameters.

Phonemewise SOMs were initialized and trained us-
ing presegmented training data. It is possible to train
a large SOM and then allocate kernels to phonemes
according to majority voting. In this work, however,
an equal amount of kernels was first allocated to each
phoneme model. After training it is then possible to
prune away all weakly used kernels.

Segmental K-means (SKM) algorithm [7] was used for
re-training the models. In the K-means algorithm each
data vector is used for updating only its closest model
vector. Compared to the SOM algorithm, there is no
neighborhood function (or it is the Kronecker delta).
The updating of the model vectors is performed as

mi =

∑

j δ(c(xj)− i)xj
∑

j δ(c(xj)− i)
, (2)

where δ(c(xj)−i) is 1 ifmi is the closest model vector
to xj and 0 otherwise. Closest model vector to each data
vector is sought in the codebook of that state which is
assigned by the forced Viterbi-alignment corresponding
the correct state sequence of the training data.

2

Finally, the models were fine tuned using the Learn-
ing Vector Quantization (LVQ) [2, 3] algorithm embed-
ded in the Viterbi search [5]. In this error-corrective
training process, two state sequences are sought for each
training utterance. One sequence is the result of the
unforced Viterbi search giving the most likely state se-
quence without any constraints of the correct recogni-
tion result. Another state sequence is obtained by the
forced Viterbi search giving the best alignment of the
state sequence corresponding to the correct phoneme
symbol sequence of the utterance. LVQ is then applied
frame by frame trying to force the unforced state se-
quence to become closer to the desired state sequence.
This is carried out by using the batch version of the LVQ
algorithm [4]

mi =

∑

j sjxj
∑

j sj

, (3)

where sj is the indicator of the correctness of the clas-
sification, +1 in case of correct classification and -1 oth-
erwise. If the denominator

∑

j sj is zero or negative, no
updating is done.

Each monophone was modeled by a five-state left-to-
right HMM. Silence was modeled using a single-state
HMM. Each state of the monophone HMM was mod-
eled by a codebook with 20 kernels. This resulted in
altogether 2420 kernels. Each diphone was also mod-
eled using a five-state left-to-right HMM. The pdf of
each diphone model state was modeled by ten kernels
resulting in 20300 kernels. Monophones and diphones
were trained in a similar manner using the training pro-
cedure described above. After SOM initialization, five
batch rounds of SKM training were performed. Mono-
phone models were then fine tuned with five LVQ-batch
rounds. In case of the diphone models, after SKM train-
ing before applying the LVQ, those kernels were removed
whose mixture weight coefficients were less than 0.05.
The number of the remaining kernels was then 14624.
This pruning did not affect the recognition accuracy us-
ing development data. Two rounds of batch LVQ were
then applied to the pruned diphone models.

The transition probabilities between diphone mod-
els were smoothened using a small constant for un-
seen diphone pairs. The diphone models themselves
were trained only for those monophone pairs which were
present in the training data. This resulted in 406 di-
phone models the number of monophone models being
25 including the silence model.

4 Rcognition results

The purpose of the first experiment was finding out
the difference between monophone models and diphone
models in terms of the recognition accuracy. The re-
sults for training, development, and test data are shown
in Table 1.

The next question was how to achieve the recogni-
tion accuracy of the diphone models with less compu-
tation. In the current approach the solution was to use
a two-level recognition system where the result of the
monophone recognition of each input utterance is uti-
lized for selecting a subset of the diphone models to be
used in the next-level of the recognition. Those diphones
were selected whose left or right phoneme contexts were
present in the recognized monophone sequence. Besides
allowing the correction of phoneme substitution errors,
this enables also the correction of single-occurring dele-
tion or insertion errors in the result of the monophone
recognizer.

The recognition results using a two-level system are
shown in Table 2. Since almost identical recognition
accuracies were obtained when using all diphone mod-
els and when ignoring those diphone models whose left
or right contexts were not detected by the monophone
models, the results can be considered very satisfactory.

Table 1: Speaker-independent phoneme recognition us-
ing monophone and diphone models. Errors per cent.

monophone diphone
data set models models
training 20.3 11.9

development 29.0 22.9
test 27.5 20.7

Table 2: Speaker-independent phoneme recognition us-
ing the proposed two-level system, errors per cent. Full
set of diphones consisted of 406 models.

average number of
two-level evaluated diphone models

data set recognizer per word utterance
training 12.3 223

development 23.1 229
test 20.8 222

5 Model clustering

In the experiments described above, monophones were
used for selecting the diphone candidates for being eval-
uated in the second level of the recognition. Alterna-
tively, also clustered models can be used. In order to
apply clustering methods, a distance or similarity mea-
sure must be defined for the models. Here the distance
between two densities f(x) and g(x) was computed as

∫

|f(x)− g(x)|2dx =

∫

f(x)2 − 2f(x)g(x) + g(x)2dx.

(4)

Since f(x) and g(x) were in this work Gaussian mix-
ture densities, the integrand consists of the sum whose

3

A B D E F G H I J K L M N ng O P R S T U V Y Ä Ö

A

B

D

E

F

G

H

I

J

K

L

M

N

ng

O

P

R

S

T

U

V

Y

Ä

Ö

Figure 2: Pairwise distances between monophone mod-
els. Dark shade of gray indicates small distance and
light shade large distance, respectively.

A B D E FG H I J KLMN ng O PR S TUV YÄ Ö

Figure 3: Hierarchical clustering of monophone models
according to the pairwise distances shown in Fig. 2.

all elements are products of two Gaussians. The prod-
uct of two Gaussians is a Gaussian itself and since its
integral is easy to compute, also the distance between
two Gaussian mixture densities can be easily computed
analytically.

An example of the pairwise model distances between
monophones is shown in Fig. 2. The pairwise distances
between the pdfs of the states of the 5-state HMMs were
summed in order to get the distance between HMMs.

Based on the distances between HMMs, an agglom-
erative clustering procedure was performed [8]. In the
beginning of the clustering all models were in separate
clusters. The clusters were then merged one by one, see
an example in Fig. 3. The distance between two clusters
was defined to be the maximum distance between the
members of the clusters. In the recognition system, the
first-level recognizer consisted now of clustered models.

In the second level those diphone models were evaluated
who were members of the recognized clusters. Both clus-
tered monophone models and clustered diphone models
were experimented. But since the recognition results
using unclustered monophone and diphone models de-
scribed in the previous section were so close to the accu-
racy using the full set of diphone models, the clustering
did not give any improvement to these results.

6 Conclusions

The starting point of this work was that specific and
accurate acoustic models are usually computationally
more time-consuming. In order to decrease the amount
of computation, the recognition system can start us-
ing coarse models and then proceed with a subset of
more detailed models. In this work a two-level phoneme
recognition system was constructed where the output
of the monophone recognizer was used for selecting a
subset of diphone models for being evaluated. Those di-
phone models were selected whose left or right contexts
were present in the recognized monophone sequence.
The results were very satisfactory, only half of the di-
phone models needed to be evaluated on average in the
second level of the recognition for each input utterance
without significantly deteriorating the recognition accu-
racy. The experimented approach is very straightfor-
ward and it can be easily applied to triphones or other
higher order acoustic N-grams.

References

[1] Holmström, L. and Hämäläinen, A., “The self-
organized reduced kernel density estimator”, Proceed-
ings of International Conference on Neural Networks
(ICNN), pp. 417–421, 1993.

[2] Kohonen, T., “The Self-Organizing Map”, Proceedings
of the IEEE, 78(9):1464—1480, 1990.

[3] Kohonen, T., Self-Organizing Maps, Springer, 1995.

[4] Kohonen, T., “Self-Organizing Maps of Symbol
Strings”, Technical Report A42, Helsinki University of
Technology, Laboratory of Computer and Information
Science, 1996.

[5] Kurimo, M., “Training Mixture Density HMMs with
SOM and LVQ”, Computer Speech and Language
11(4):321–343, 1997.

[6] Ney, H. and Ortmanns, S., “Progress in Dy-
namic Search for LVSCR”, Proceedings of the IEEE,
88(8):1224–1240, 2000.

[7] Rabiner, L.R., “A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition”,
Proceedings of the IEEE, 77(2):257–286, 1989.

[8] Young, S.J. and Woodland, P.C., “The Use of State Ty-
ing in Continuous Speech Recognition”, Proceedings of
the 3rd European Conference on Speech Communica-
tion and Technology (Eurospeech’93), pp. 2203–2206,
1993.

4

